WYKŁAD 13 GENERACJA REALISTYCZNYCH OBRAZÓW SCEN 3-D, 3 METODA ENERGETYCZNA. Φ = P = [ W ], [ lm ] Plan wykładu: dt Q energia promienowania I = [ W/m
|
|
- Mirosław Dudek
- 8 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 3 GENERACJA REALISTYCZNYCH OBRAZÓW SCEN 3-D, 3 METODA ENERGETYCZNA Pl wykłdu: Welkośc fyce osuące śwtło Złoże, de metody eegetyce Wsółcyk sęże otycego - oblce Algoytmy oblceowe w metode eegetyce. Welkośc fyce osuące śwtło Rdomet Eeg omeow Q (Rdt eegy) J (Joule) Moc omeow P (Rdt owe) W, J/s (Wtt) Ntężee omeow E (Rdosty, Idce) W/m Itesywość omeow I (Rdt Itesty) W/s Lumc eegetyc L (Rdce) W/m s Fotomet Eeg śwetl (Lumous eegy) Tlbot Moc śwetl (Lumous owe) Lume (lm) Ntężee ośwetle (Lumosty) Lu (lm/m ) Itesywość ośwetle (Lumous Itesty) Kdel (cd lub lm/s) Lumc (Lumce) Nt (cd/m, lm/m s) Moc omeow P (stumeń eeg) dq Φ P [ W ], [ lm ] dt Q eeg omeow Ntężee omeow E dφ E da Itesywość omeow I dφ I dω [ W/m ], [l] [ W/s ], [cd] Lumc eegetyc L de d Φ d Φ L [ W/m dω dω da dω da cosθ s ], [t] Sted est obsem ogcoym owechą stożk (ysuek). Pukt P est śodkem sfey o omeu. Kąt byłowy q eeetuący sted odowd obsow, dl któego ole owech wyck owech sfey A est ówe. Kdel, cd, edostk śwtłosć w ukłde SI, est ą śwtłość, ką osd w keuku omlym do owech cło doskole ce o owech /6-5 m utymywe w temetue keęc ltyy (4 K), duące sę od cśeem tmosfey.
2 . Złoże, de metody eegetyce Gool C., Toce K., Geeebeg D., Bttle B., Modelg the Itecto of Lght Betwee Dffuso Sufces, SIGGRAPH 984. Metod eegetyc (dosty method ) W metode ślede ome oblce odbywły sę y łożeu ustloego sosobu utow (ustloym ołożeu obsewto). W metode eegetyce e cy sę tkego łoże. Złoże: 3. Ems odbce są tke sme we wsystkch keukch (dyfu). 4. Cł eeg emtow lub odb e łty owech doce do ych łtów, e któe est bsobow lub odb (chowe eeg). Rówe eegetyce dl łt owech: E tężee omeow łt te owech (W/m, l) y v łt -ty E v. Modelow sce budow est e skońcoe lcby łtów owech.. Płty owech emtuą, bsobuą odbą śwtło. E tężee omeow łt te owech (W/m, l) E łt -ty v Rówe eegetyce łt wąże omestość łt E ego emsą włsą omestoścm ych łtów E W + ρ F E E - tężee omeow tego łt (W/m, l), E - tężee omeow tego łt (W/m, l), W -ems włs eeg tego łt (W/m, l), ρ - wsółcyk odbc śwtł dl tego łt, F - wsółcyk sęże otycego tego łt tym łtem, - lcb łtów owech scee, Ice ówe eegetyce dl łt owech moż sć ko E ρ FE W () W ówu, ewdomym są E o E, oostłe welkośc są beośedo de k W ρ, lub leżą od geomet scey k wsółcyk F. Rówe eegetyce dl scey: Rówe eegetyce dl scey est to ukłd ówń. Poscególe ów ukłdu są ówm eegetycym dl łtów owech w ostc (), ewdomym są E E. Rówń w ukłde est tyle, le est łtów owech scee.
3 Zsy w ostc mceowe, ukłd ówń wążący omestośc dl oscególych łtów owech wygląd stęuąco: ρf ρf ρf E W E W E W Jest to ukłd ówń lowych ewdomym ( est ce duże). Rowąe ukłdu oleg wyceu lcb E, E,, E,, E cyl tężeń ośwetle dl łtów owech scey. W ewsych cch dotycących metody eegetyce do ową ukłdu stosowo secyfcy, tecyy lgoytm Guss -Sedl. Poblemy metody:. Jk wycyć wsółcyk sęże otycego F?. Jk efektywe (być może wet w yblżeu) owąć ukłd ówń? 3. Oblce wsółcyków sęże otycego Wsółcyk sęże otycego F okeśl k tężee omeow wąe łtem - tym wływ tężee omeow - tego łt. Wsółcyk sęże otycego est bewymowy. W ltetue ose są óże sosoby wyc wsółcyk sęże otycego: metody ltyce, ote chuku óżckowym, metody yblżoe, buące dysketyc model cągłych, metody obblstyce, wykoystuące cłkowe Mote- Clo. Metod ltyc wyc wsółcyk sęże otycego omędy dwom łtm owech Alę owd sę w tech etch;. Oblc sę sężee omędy dwom elemetm óżckowym łtów.. Oblc sę sężee omędy elemetem óżckowym edego łt dugm łtem. 3. Wyc sę sężee omędy obom łtm.. Oblcee sęże omędy dwom elemetm óżckowym łtów y cym df dd da N Θ N Θ H π H gdy da est wdoce da, H w ydku ecwym da da 3
4 . Oblcee sęże elemetu da łtem owech A. F d H da π A 3. Oblcee sęże łt owech A łtem owech A. F A A A H dada π Numeyce wyc wsółcyk sęże otycego Cohe M., Geebeg D. The Hem-cube; Rdosty Soluto fo Comle Evomets Comute Ghcs, No 3, 985. Ide metody: hem-cube - ółseśc N A Wycee wsółcyk sęże otycego F metodą ltycą wymg oblc cłek owechowych. W ewsych bdch d metodą stosowo włśe tk sosób. komók śodek elemetu da Kżd śc ółseścu odelo est ówą lcbę komóek. Był Płt owech A est utowy ółseśc, y cym śodkem oekc est śodek elemetu da. N A gde - Θ - A - długość odck od śodk ół-seścu do śodk komók kąt mędy wektoem omlym komók odckem o długośc ole owech komók Nektóe komók leżą wewąt były, lub są ecęte e byłę, owstłą w wyku utow łt owech A ółseśc. Z kżdą komóką wąy est wsółcyk sęże otycego w ostc: F π N Θ Θ A F π 4
5 Jk oblcyć F dl ecętych e byłę komóek ółseścu? Pydek gdy komók leży góe śce ółseścu Pydek gdy komók leży góe śce ółseścu (, y, ) (, y, ) y + + N Θ Θ y N + y + π ( + y F + ) N Θ N Θ y π ( F + y + ) Algoytm wylc wsółcyk F :. Zgode odym wom oblcyć wsółcyk F dl komóek, któe weą ut łt A owech.. Wylcyć F d, sumuąc oblcoe oedo wsółcyk F. 3. Oblcyć F uśedąc wsółcyk F d o owech A. 4. Algoytmy oblceowe w metode eegetyce W mę dokłdy os scey wymg wykle użyc ce lcby łtów owech. Powd to do oblemu ową ukłądu ówń lowych ewdomym Złożoość oblceow d est kwdtow. Beośede owąe ukłdu ówń metod tecy Do ową est k wdomo ukłd ówń lowych sy w otc mceowe w ostc: A b Itecy metod ową oleg geec cągu wektoów ( ) ( ) ( ) ( ),,,,, beżego do ową ukłdu. 5
6 Kolee yblże ową okeśl sę y omocy leżośc ( + ) Φ ( ) ( ) ( ) - de (tw. ukt sttowy) Od kostukc fukc Φ leży od lgoytmu. Algoytm Guss-Sedl D G A b Mce A leży edstwć ko sumę tech mcey, A D + L + G L y cym, oscególe mcee sumy okeśloe są stęuąco Jeśl to skąd A D + L + G A D + L + G + b L b ( D + G ) Pykłd: Wyżee to owl otymć fukcę Φ() dl lgoytmu Guss-Sedl, któ m ostć ( + ) L b L D ( ) L G ( ) Wybeąc dowoly ukt sttowy () w koleych tecch blżmy sę do ową ów. Geeowe yblżeń końcymy gdy m ową w dwóch koleych tecch est uż ewelk. 6
7 y-tcg y-tcg dosty dosty y-tcg dosty 7
GENERACJA REALISTYCZNYCH METODA ENERGETYCZNA
WYKŁAD GENERACJA REALISTYCZNYCH OBRAZÓW W SCEN 3-D, 3 METODA ENERGETYCZNA Plan wykładu: Welkośc fzyczne osuące śwatło Założena, dea metody enegetyczne Wsółczynnk szęż ężena otycznego - oblczane Algoytmy
BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach
BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej
Novosibirsk, Russia, September 2002
Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego
PROGRAMOWANIE LINIOWE.
Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe
24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
ÓŁ Ł Ó ź Ł Ą Ł ń ń Ą ń ź Ą ń ż ć Ę Ę Ę ż ć ń ć ń ż ń ć ń Ę ż ć ź ć ź ć Ę ż ż Ę Ę Ą ż ź ń ź ź ż ć ż ń Ę ć ć ć ń Ę ń ć Ę ć ń ń ż ń ń ń ń ń ń ń ż Ę ń ń ń Ę ń ć ż Ż Ż ćę Ę Ę ż ć Ą ż Ę ż Ę ż Ę Ę ć Ę ć ż ż ć
Ł ÓŁ Ó Ó Ó ć Ź Ó Ą ć Ź Ó Ś ć Ś Ó Ó ć Ó Ź Ó Ś ć Ź ć Ę Ó Ó Ą Ł ć Ą Ą Ą Ó ć Ó Ó Ó ć Ó ć ć ć Ó Ą Ź Ó Ą ć Ś Ó Ą Ź Ó Ź Ś Ó Ó Ź Ó Ó Ź Ź Ó Ó ć Ó Ą Ć Ó Ó Ź Ź Ź Ę Ó ć ć Ł Ó Ó Ó ć ć Ó ź ć ć Ó Ś Ó ć ź Ź ź ć Ś Ó ć
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:
Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost
elektrostatyka ver
elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Spójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA
prwch rękops do żytk słżboweo ISTYTUT RGOLKTRYKI POLITCHIKI WROCŁAWSKIJ Rport ser SPRAWODAIA r LABORATORIUM TORII I THCIKI STROWAIA ISTRUKCJA LABORATORYJA ĆWICI r 9 Sterowe optymle dyskretym obektem dymcym
Dynamika bryły sztywnej
W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o. oet bewładośc Dyaka cała tywego uch łożoy cała tywego 3/4 L.. Jaoewc j j j j j
G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
Mechanika teoretyczna
ktestki geometcze Mecik teoetcz Wkłd 9, i ktestki geometcze figu płskic. Główe cetle osie ezwłdości. Pole powiezci Momet sttcz współzęde śodk ciężkości. Momet ezwłdości Momet odśodkow główe cetle osie
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
Liturgia eucharystyczna. Modlitwa nad darami œ
Msza święta Liturgia eucharystyczna # Modlitwa nad darami " # # K. Pa - nie, nasz Bo - że, niech ta O - fia - ra, któ - rą skła - da - my...... Przez Chry - stu - sa, Pa - na na - sze - go. lub... Któ
Wykład 6. Stabilność układów dynamicznych
Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog
Liturgia eucharystyczna. Modlitwa nad darami œ
Msza święta Liturgia eucharystyczna K. Pa - nie, nasz Bo - że, niech ta O - fia - ra, któ - rą skła - da - my...... Przez Chry - stu - sa, Pa - na na - sze - go. Modlitwa nad darami... Któ - ry ży - e
Ą Ą Ł Ś ÓŁ Ł ć ć ź ÓŁ ć ć Ś ć ć Ą ć ć ć ź ć ć ć ć ć Ą Ó ÓŁ ć ć Ł Ł ź Ś ć ć ć ć Ł Ł ć ć Ł Ł Ł ć Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ź Ż ź Ł ć Ż Ć Ż Ś Ż ć ć ć ć Ł Ż Ś ć Ś ź ć ź ć ć ć ź ć Ś Ź ŚĆ ź ć ć Ś Ś
ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż
ć ź ź Ł ź ź ź Ś ć ć Ę ÓŁ ź Ń ź ź ź ć ć Ń ć ć ć Ń ź Ę Ś Ń ć ć ć ź ć ć ć ć ć ć ź Ś Ę ź ź Ż ć ź ź ć ź Ń ź ć ć ć ź ź Ł Ń ć Ń Ń ź Ś Ń Ę Ę Ę ź ć ć Ę ź Ń Ł Ę ź ź Ń Ę Ę Ł Ł Ś Ś ć ć Ł ź ć ć Ł Ó Ż Ś Ł Ó ź Ę Ń
Ł ś Ł Ą ś Ź Ł ś Ł ś ź ś ę ÓŁ ÓŁ ź ź ś ś ę ę ź ć ś ś ę ć ę ś ę ś ź ę ś ę ś ś ś ę ę ć ę ś Ł ę ę ę Ę Ą ś ś ś Ł ś ę ś Ł Ń Ł Ń ę ś ś ę Ż Ż ś Ż ś ś Ż ś ź ś ś ź ś ę ś ę Ń ę ę ę ś ę ś ę ś ź ś Ł ś ś ś ś ę ś ś
Ą Ł Ł Ł Ś ż ź ź Ł Ś Ą Ł Ś Ś Ł Ó ż Ł Ś Ą ć ć ż ż Ą ż ć ż ż ć ć ć Ś ć ż Ś ż ż Ą ć ż ż ć ć ć ć ż ż Ś ć ż ż ÓŁ ż ż ż Ł Ł Ś Ó ć ż Ł ż ż ż ż ż Ć Ó Ó ż ż Ó Ł Ł ż Ą ż ż ż ż ż ż ż ż ż ć ż ż ć ż ż ż ć ż ż ż Ł ć
Ń ÓŁ Ł Ś Ł Ł Ś ÓŁ Ł Ś Ń ÓŁ Ł Ń Ź ę Ą ę ę ę ę ę ę Ź ę ć ć ę ę ę ę ę Ź ć ę ę ę ć ć ę ę ę Ł ę ę ę Ł Ł ę ę ę ę ę ź ę ę ę ę ź ę ć ę ć ć ę ę ź ź ę ć ę ę ź Ź ę ź ę ę ć Ź Ą ć ć ć ę ę ę ę ę Ź ź ę ć Ł ź ę ę Ź Ę
Ł ÓŁ Ł Ą Ś Ą Ą Ś Ś ć ć ć ć ć ć ć ć ć ć ć Ę ć ń ć ć ć ć ć ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ń ń ć Ś ń ć ń ć ń ć ć Ś ć Ż Ś Ś ń Ł Ń ń ć ć ć ć Ś ń
Ł Ń Ś ś ę ę ś ś ś ś ę ę ę ę ś ś ę ś ę ś ę ś ś ć Ą ś ę ś ś ę ś ę ś ś Ń ś ś ś ś ś ś ę ę ę ę ś ś ę ć ś ś ę ś ę ś ę ę ś ę ś Ą ę ś ę ś ś ś ś ę ś ś ę ę ś ś ę ś ś ś ę ę ę ś ś ś ę ś ę ś ę ć ś ś ę ś ę ę Ą ę ę ę
Zastosowanie działań na hipersześcianach binarnych w diagnostyce sieci komputerowych
toowe dłń hpereścch brych w dgotyce ec komputerowych Formle, -wymrowym hpereścem brym ywmy grf wykły o węłch których kżdy opy jet ym wektorem brym (,..., ),( {, }, ) or o krwędch, łącących te węły, których
Mo emy dostarczyæ równie przepustnice jednop³aszczyznowe sterowane rêcznie lub si³ownikiem.
PODSTWY UNIWERSLNE DO WENTYLTORÓW DOWY PU i PUT ZSTOSOWNIE Podstawy owe s³u ¹ do zamocowaia ów owych OWD; WDVOS; WDVOS; WDVS; WDVS; WDJ; WDJV oraz WD i WD PLUS. Wykoywae s¹ jako uiwersale PU i jako uiwersale
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
Wydajność konwersji energii słonecznej:
Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego
Program Narzędziownia
Sp.... Pgm Sp.... Pgm Pgm mgyy służy eecj lścej tścej: Mgyó epytych Opyą Mtełó Śkó tłych Wybó e e scególym ugleem y, ypżyc pyel sptu jeg użytkkm. Sp.... Pgm Zlety pgmu: Psty bsłue Łty e e żeu Elstycy T
GEOMETRIA ANALITYCZNA W PRZESTRZENI
GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r
Program Narzędziownia
Pjekte Wże Glce Pgm Pjekte Wże Glce Pgm Pgm mgyy służy eecj lścej tścej: Mgyó epytych Opyą Mtełó Śkó tłych Wybó e scególym ugleem y, ypżyc pyel sptu jeg użytkkm. Pjekte Wże Glce Pgm Zlety pgmu: Psty bsłue
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01
WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b...
RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Ukłd rówń liiowch iewidoi isuje w ostci Z ukłde () wiąe są ciere A X B które w: A cierą wsółcików X koluą iewidoch B koluą wrów wolch Wkorstując owżse ocei ukłd
dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T )
Cłi potróje Niech 3 : R R ędie cją oreśloą ogricom osre domiętm o reg mir Jord cli osre mjącm ojętość. Podoie j ostrcji cłi podójej dielim osr poierchimi o ojętości osr or torm logicą smę cłoą: ξ i ηi
23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA
. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
c 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
Zawód: stolarz meblowy I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z ak res wi ad omoś c i i u mi ej ę tn oś c i wł aś c i wyc h d
4 6 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu S T O L A R Z M E B L O W Y Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania
ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d
W siła działająca na bryłę zredukowana do środka masy ( = 0
Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
4. Podzielnica uniwersalna 4.1. Budowa podzielnicy
4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
A r promień wektor. r = f 1 (t), φ = f 2 (t) y r φ. x, = 0
1 Ruchem cił wm chodącą w csie mię jego położei wględem iego cił, któe umowie pjmujem ieuchome. Rówi uchu puktu we współędch postokątch l pomień wekto W ppdku gd pukt pous się, cli miei upłwem csu swoje
M G 4 2 7 v. 2 0 1 5 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
=I π xy. +I π xz. +I π yz. + I π yz
GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π
PROJEKT DOCELOWEJ ORGANIZACJI RUCHU
ży Oły Wł, ęy Oł Wł VETIGO MGET JCZEWSK UL JCKOWSKIEGO - WOCŁW TEL/FX l: -l: v@l OJEKT DOCELOWEJ OGIZCJI UCHU y: I Ząy: O: Ll: ///W/ G Wł l y T - - Wł ż Oły ęy Oł Wł Wó: lślą, : Wł, G: Wł, ż Oły T: ży
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1
O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i
Pajączek 1. na proste plecy. medpatent.com.pl. Pajączek 1 to niewielkie urządzenie do noszenia na plecach. Zasygnalizuje, kiedy się zgarbisz.
Pajączek 1 na proste plecy Pajączek 1 to niewielkie urządzenie do noszenia na plecach. Zasygnalizuje, kiedy się zgarbisz. Kup Pajączka na stronie medpatent.com.pl lub w dobrych sklepach medycznych. Pajączek
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Ż Ł ć ć ź ź Ś Ó ćę Ę Ą Ę ć Ę ć Ń Ż ć ć Ż ć ć ć ć ć ć ć ć ć Ź ć ć Ę ć ć ć Ą ć Ż ć Ł Ż ć Ę ć ć ć ć ć ć ć ć Ż ć Ż ć ć ć ć ć Ż ć Ą Ź ć Ą ź Ż ć ć ć ć ć Ź ź Ź ć Ż Ź Ż Ź Ź ć Ż ć Ę Ł Ż ć ź Ż ć ć ź ć ć ć ź Ż Ę
ć ŚĆ Ś Ż Ś ć ć ŚĆ ć ć ć Ś ź ź Ł Ń Ź ź ć Ś ć Ę Ś ź ć Ó ć ć Ś Ś Ś Ł Ś ć ć Ł ć ŚĆ Ś ź Ś Ś Ś Ś ć ć Ł ć Ę Ę ć Ś Ś ć Ś Ę ć Ę Ś Ś Ś Ś Ś Ś ć ć Ś Ż ć ć ć ć ć ć ć ć ć Ę Ż ć ć Ś Ś ź Ś Ś Ę Ł Ń ć Ę ć Ś ć Ż ć Ę Ę Ę
ż Ść Ś Ś Ś Ś Ę Ą Ę ź Ę Ę ć ć Ź Ć Ó Ę Ę Ń Ś Ą ć Ę ć ć ćę ż ż ć Ó ż Ę Ń Ą Ą Ż Ę Ę Ść ć ż Ż ż Ż ć Ż ź Ę Ść Ż Ę Ść Ś ż Ń Ą ż Ę ż ż Ś ż ż Ó Ś Ę Ó ź ż ż ć ż Ś ż Ś ć ż ż Ś Ś ć Ż Ż Ó ż Ż Ż Ś Ś Ś ć Ź ż Ś Ś ć Ą
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
MISKOLC. ubytovací katalóg. 1 www.hellomiskolc.hu
O í O OÓW OOWY 1 www í,, ý, ľ x š, í ť, čť, š š čý ý ľ, ý, ž ž,, ý č í Uč ľ, ň ý ľ í í í žť ť š ý ž ý č ž ý ô, š ď š í O 16 -í š äčš ž? ôž ť ž čť! ý ľ x č ý ť žť šť äčší žý ý í í ď, šš, č, í, í žčíš íš
8 7 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M O N T E R I N S T A L A C J I G A Z O W Y C H K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś