Ćwiczenie 33. Kondensatory
|
|
- Natalia Nowicka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 33 Kondensatory Cel ćwiczenia Pomiar ojemności kondensatorów owietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε i rzenikalności względnych ε r różnych materiałów. Wrowadzenie Kondensator jest układem rzewodników oddzielonych warstwą izolatora. Przez ojemność kondensatora C rozumiemy stosunek ładunku Q do naięcia między okładkami U Q C =. (1) U Poularny, acz uroszczony wzór na ojemność kondensatora łaskiego ε ε S C = r, () d wyraża wartość C jako funkcję owierzchni okładki S, odległości między okładkami d, wsółczynnika ε = 8,85 F/m nazwanego stałą elektryczną* i rzenikalności elektrycznej ε r materiału między okładkami kondensatora (tab. 1). Ze wzoru () wynika, że dla wyznaczenia stałych ε i ε r należy zmierzyć ojemność kondensatorów o znanych wymiarach geometrycznych, różniowego i wyełnionego dielektrykiem. W yz n a cz a nie stał e j elektryc z n ej ε W naszym ekserymencie rzybliżeniem kondensatora różniowego jest kondensator owietrzny (rys. 1). Okładkami kondensatora są kołowe łyty metalowe. Określoną odległość między łytami uzyskuje się rzez umieszczenie w trzech miejscach stosu izolujących krążków. Do omiaru ojemności kondensatora stosujemy cyfrowy miernik ojemności. Wartości ε nie możemy wyznaczać wrost ze wzoru () z dwóch owodów. Po ierwsze krążki określające odległość d między łytami wykonane są z materiału o rzenikalności dielektrycznej ε r znacznie większej od jedności, co owoduje owiększenie całkowitej ojemności kondensatora. * Uwaga: zgodnie z decyzjami ISO (International Organisation for Standarization) oraz IEC (International Electrotechnical Commission) z roku 199 dla symbol ε oraz µ wrowadzono nazwy stała elektryczna i stała magnetyczna (ang. electric constant, magnetic constant). Tradycyjne terminy rzenikalność elektryczna różni i rzenikalność magnetyczna różni sotkać można w starszych odręcznikach, n. w orzednich wydaniach odręcznika Hallidaya i Resnicka.. 1
2 Rys. 1. Powietrzny kondensator łaski z trzema słukami z dielektryka. Kondensator nasz otraktować można jako równoległe ołączenie kondensatora z dielektrykiem o rzenikalności względnej ε r i łącznej owierzchni okładek równej 3 S (gdzie S jest owierzchnią jednego krążka) oraz kondensatora różniowego, o owierzchni okładek równej S 3 S. Pojemność całkowita wynosi Z wzoru (3) wartość ε obliczamy jako ε ( S 3S ) ε ε r 3S C = +. (3) d d Cd ε =. () S+ 3( ε 1) r S Druga istotna orawka wynika z istnienia tzw. ola rozroszonego. Wzór () jest w istocie wzorem rzybliżonym. Jego wyrowadzenie rzy użyciu rawa Gaussa [1] oiera się na uraszczającym założeniu, że ole E ma wartość stałą we wnętrzu kondensatora i ratownie znika oza jego krawędzią. Z raw elektrostatyki wynika, że oza brzegami kondensatora istnieje niejednorodne (o zakrzywionych liniach sił) ole elektryczne, nazywane olem rozroszonym (rys. 1). Pole rozroszone owoduje dodatkowy wzrost ojemności kondensatora, w konsekwencji wartość ε wyliczona wrost z wzoru () byłaby zawyżona. Dla danej geometrii łyt odowiednią orawkę można obliczyć teoretycznie rzez numeryczne obliczenie rozkładu ola rzy brzegu kondensatora. W naszym ćwiczeniu zastosujemy doświadczalny sosób eliminacji wływu ola rozroszonego. Efektywna objętość ola rozroszonego jest rzędu πrd, gdyż ole to zajmuje z grubsza as o wysokości i szerokości rzędu d wokół obwodu kołowych łyt kondensatora. Natomiast objętość ola jednorodnego wewnątrz kondensatora wynosi πr d. Względny udział ola rozroszonego, będący stosunkiem tych objętości, wynosi d/r, czyli że maleje do zera w granicy d. Wykonamy zatem serię omiarów ojemności C dla różnych wartości d, a nastęnie wykres iloczynu Cd. w funkcji odległości okładek d (rys. ).
3 Rys.. Metoda eliminacji wływu ola rozroszonego (atrz tekst) Przez uzyskane unkty wykresu rzerowadzamy graficznie lub analitycznie gładką krzywą i ekstraolujemy, czyli rzedłużamy do wartości d =. Wsółrzędną unktu rzecięcia krzywej Cd = f(d) z osią ionową nazywamy ekstraolowaną wartością iloczynu (Cd ) extr. Wartość (Cd ) extr odstawiamy do licznika wzoru () by uzyskać orawną wartość ε. Ponadto owierzchnię okładki kondensatora S i rzekładki S obliczamy na odstawie zmierzonych średnic D i D jako końcowy π D S = i = S ( Cd ) extr 3( ε 1) π D =. W ten sosób otrzymujemy wzór ε. π (5) D + r D Trzecim otencjalnym źródłem błędu systematycznego rzy wyznaczaniu stałej elektrycznej jest fakt, że zamiast kondensatora różniowego mamy kondensator wyełniony owietrzem ( ε r = 1,5). Ocenie studenta ozostawiamy, czy odowiednią orawkę warto uwzględniać, biorąc od uwagę wielkość innych nieewności omiaru. Pomiar rzenikalności względnej dielektryków Wartość ε r dielektryków stałych (tab. 1) wyznaczyć można rzez omiar ojemności kondensatora łaskiego z okładkami oddzielonymi cienką łytą z badanego materiału. Korzystamy ze wzoru (), orawki na ole rozroszone nie będziemy uwzględniać. Obok kondensatora łaskiego rzykładem obiektu o określonej ojemności jest kabel koncentryczny (rys. 3). Można go traktować jako kondensator cylindryczny, którego jedną okładką jest środkowy drut, drugą miedziany olot. Pojemność kondensatora cylindrycznego wyraża wzór π ε ε r l C =, R ln r (6) w którym R i r oznaczają romienie okładek kondensatora, l jest jego długością. 3
4 Rys. 3. Kabel koncentryczny jako kondensator cylindryczny Pojemność kabla koncentrycznego, zwykle wyrażana w F/m, jest arametrem, który może mieć znaczenie dla działania wsółracujących układów elektronicznych. Jej omiar umożliwia wyznaczenie ε r dla stosowanego w nim dielektryka, którym zwykle jest olietylen (tab. 1). Tab. 1. Przenikalność elektryczna dla wybranych dielektryków w warunkach normalnych. Wartości wg. tablic []. MATERIAŁ ε r owietrze 1,59 olietylen,3 olichlorek winylu (PCV),8 leksiglas,6 szkło 6 8 chlorek sodu 11, krzem 11,7 ciekły azot (7 K) 1,5 etanol,6 woda 8, Wyznaczenie ε jako ośredni omiar rędkości światła W równaniach elektrostatyki (rawo Gaussa) ojawia się stała ε natomiast w równaniach magnetostatyki (rawo Amera) stała µ. Można odnieść wrażenie, że scharakteryzowanie własności elektromagnetycznych różni wymaga dwu stałych. Tak jednak nie jest, gdyż wartość jednej z nich, konkretnie µ w układzie SI, jest wynikiem konwencji definiującej jednostkę natężenia rądu elektrycznego. Przyomnijmy sobie, że amer jest zdefiniowany jako wartość rądu, który łynąc rzez dwa nieskończone równoległe rzewody odległe o a = 1 m wytwarza siłę F =. 1 7 N na odcinku l = 1 m długości rzewodu. Siła oddziaływania między rzewodami dana jest wzorem
5 F µ I l =. (7) π a Podstawiając do tego wzoru wymienione w definicji amera wartości F, l, i a oraz I = 1 A otrzymujemy zarówno wartość liczbową jak i jednostkę stałej magnetycznej, µ 7 7 π af π 1[m] 1 [N] = = = π 1 I l 1 [A ] 1[m] Vs Am Pełny układ równań elektromagnetyzmu (równania Maxwella) umożliwia obliczenie rędkości fali elektromagnetycznej w różni jako 1 c =. (8) ε µ Pomiar stałej elektrycznej ε stanowi więc ośrednią metodę wyznaczenia rędkości światła. Literatura 1. D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki cz. 3, PWN 5.. W. Mizerski, W. Nowaczek, Tablice fizyczno-astronomiczne, Wydawnictwo Adamantan
Ćwiczenie 33. Kondensatory
Ćwiczenie 33. Kondensatory Andrzej Zięba Cel ćwiczenia Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε 0 i przenikalności względnych ε r różnych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 33: Kondensatory Cel ćwiczenia: Pomiar pojemności kondensatorów powietrznych i z warstwą dielektryka w celu wyznaczenia stałej elektrycznej ε 0 (przenikalności
Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
POLE ELEKTRYCZNE PRAWO COULOMBA
POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
Fizyka środowiska. Moduł 5. Hałas i akustyka
Fizyka środowiska Moduł 5 Hałas i akustyka nstytut Fizyki PŁ 8 5 Równanie falowe Rozważmy nieruchomy jednorodny ośrodek o gęstości ρ i ciśnieniu Lokalna fluktuacja ciśnienia + (r t) wywołuje fluktuacje
Pierwsze prawo Kirchhoffa
Pierwsze rawo Kirchhoffa Pierwsze rawo Kirchhoffa dotyczy węzłów obwodu elektrycznego. Z oczywistej właściwości węzła, jako unktu obwodu elektrycznego, który: a) nie może być zbiornikiem ładunku elektrycznego
Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni
KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE A POMIAR ZALEŻNOŚCI POJENOŚCI ELEKTRYCZNEJ OD WYMIARÓW KONDENSATOR PŁASKIEGO I Zestaw przyrządów: Kondensator płaski 2 Miernik pojemności II Przebieg pomiarów: Zmierzyć
Płytowe wymienniki ciepła. 1. Wstęp
Płytowe wymienniki cieła. Wstę Wymienniki łytowe zbudowane są z rostokątnych łyt o secjalnie wytłaczanej owierzchni, oddzielonych od siebie uszczelkami. Płyty są umieszczane w secjalnej ramie, gdzie są
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
cz.3 dr inż. Zbigniew Szklarski
Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW
Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
SPIS TREŚCI WIADOMOŚCI OGÓLNE 2. ĆWICZENIA
SPIS TEŚCI 1. WIADOMOŚCI OGÓLNE... 6 1.2. Elektryczne rzyrządy omiarowe... 18 1.3. Określanie nieewności omiarów... 45 1.4. Pomiar rezystancji, indukcyjności i ojemności... 53 1.5. Organizacja racy odczas
Elektrostatyka, cz. 2
Podstawy elektromagnetyzmu Wykład 4 Elektrostatyka, cz. Praca, energia, pojemność i kondensatory, ekrany elektrostatyczne Energia Praca w polu elektrostatycznym dw =F dl=q E dl W = L F d L=q L E d L=q
ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH
ĆWICZENIE BADANIE BEZPIECZEŃSTWA UŻYTKOWEGO SILOSÓW WIEŻOWYCH 1. Cel ćwiczenia Celem bezośrednim ćwiczenia jest omiar narężeń ionowych i oziomych w ścianie zbiornika - silosu wieżowego, który jest wyełniony
UKŁADY KONDENSATOROWE
UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Analiza zderzeń dwóch ciał sprężystych
Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu
Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. Badanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.
21 ELEKTROSTATYKA. KONDENSATORY
Włodzimierz Wolczyński Pojemność elektryczna 21 ELEKTROSTATYKA. KONDENSATORY - dla przewodników - dla kondensatorów C pojemność elektryczna Q ładunek V potencjał, U napięcie jednostka farad 1 r Pojemność
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
CZUJNIKI POJEMNOŚCIOWE
ĆWICZENIE NR CZUJNIKI POJEMNOŚCIOWE A POMIAR PRZEMIESZCZEŃ ODŁAMÓW KOSTNYCH METODĄ POJEMNOŚCIOWĄ I Zestaw przyrządów: Układ do pomiaru przemieszczeń kości zbudowany ze stabilizatora oraz czujnika pojemnościowego
Zjawisko Comptona opis pół relatywistyczny
FOTON 33, Lato 06 7 Zjawisko Comtona ois ół relatywistyczny Jerzy Ginter Wydział Fizyki UW Zderzenie fotonu ze soczywającym elektronem Przy omawianiu dualizmu koruskularno-falowego jako jeden z ięknych
Podstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Fizyka - opis przedmiotu
Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 06.1-WM-MiBM-P-09_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn / Automatyzacja i organizacja procesów
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 22 ELEKTROSTATYKA CZĘŚĆ 2. KONDENSATORY
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 22 ELEKTROSTATYKA CZĘŚĆ 2. KONDENSATORY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO
Ćwiczenie Nr 11 Fotometria
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13
Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ
Wyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Analiza nośności pionowej pojedynczego pala
Poradnik Inżyniera Nr 13 Aktualizacja: 09/2016 Analiza nośności ionowej ojedynczego ala Program: Plik owiązany: Pal Demo_manual_13.gi Celem niniejszego rzewodnika jest rzedstawienie wykorzystania rogramu
MODELOWANIE POŻARÓW. Ćwiczenia laboratoryjne. Ćwiczenie nr 1. Obliczenia analityczne parametrów pożaru
MODELOWANIE POŻARÓW Ćwiczenia laboratoryjne Ćwiczenie nr Obliczenia analityczne arametrów ożaru Oracowali: rof. nadzw. dr hab. Marek Konecki st. kt. dr inż. Norbert uśnio Warszawa Sis zadań Nr zadania
Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: KONWEKCJA SWOBODNA W POWIETRZU OD RURY Konwekcja swobodna od rury
2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI
37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe
BADANIE OBWODÓW TRÓJFAZOWYCH
Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Instrukcja do ćwiczenia: BADAIE OBWODÓW TÓJFAZOWYCH . Odbiornik rezystancyjny ołączony w gwiazdę. Podłączyć woltomierze ameromierze
BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA
BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego
Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.
Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej
Teoria pola elektromagnetycznego
Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości
Badanie zjawiska rezonansu elektrycznego w obwodzie RLC
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 21 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC
Ć W I C Z E N I E N R C-5
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ
Kalorymetria paliw gazowych
Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2
Ćwiczenie 4. Wyznaczanie poziomów dźwięku na podstawie pomiaru skorygowanego poziomu A ciśnienia akustycznego
Ćwiczenie 4. Wyznaczanie oziomów dźwięku na odstawie omiaru skorygowanego oziomu A ciśnienia akustycznego Cel ćwiczenia Zaoznanie z metodą omiaru oziomów ciśnienia akustycznego, ocena orawności uzyskiwanych
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO
SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się
WYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D
KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:
Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3
Laboratorium Telewizji Cyfrowej
Laboratorium Telewizji Cyfrowej Badanie wybranych elementów sieci TV kablowej Jarosław Marek Gliwiński Robert Sadowski Przemysław Szczerbicki Paweł Urbanek 14 maja 2009 1 Cel ćwiczenia Celem ćwiczenia
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu
nstrukcja do laboratorium z fizyki budowli Ćwiczenie: Pomiar i ocena hałasu w omieszczeniu 1 1.Wrowadzenie. 1.1. Energia fali akustycznej. Podstawowym ojęciem jest moc akustyczna źródła, która jest miarą
ŁĄCZENIA CIERNE POŁĄ. Klasyfikacja połączeń maszynowych POŁĄCZENIA. rozłączne. nierozłączne. siły przyczepności siły tarcia.
POŁĄ ŁĄCZENIA CIERNE Klasyfikacja ołączeń maszynowych POŁĄCZENIA nierozłączne rozłączne siły sójności siły tarcia siły rzyczeności siły tarcia siły kształtu sawane zgrzewane lutowane zawalcowane nitowane
Wykłady z Fizyki. Magnetyzm
Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
ELEKTROSTATYKA. cos tg60 3
Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki
Fale elektromagnetyczne
Podstawy elektromagnetyzmu Wykład 11 Fale elektromagnetyczne Równania Maxwella H=J D t E= B t D= B=0 D= E J= E B= H Ruch ładunku jest źródłem pola magnetycznego Zmiana pola magnetycznego w czasie jest
DOBÓR ZESTAWU HYDROFOROWEGO
DOBÓR ZESTAWU YDROFOROWEGO Pierwszym etaem doboru Z jest wyznaczenie obliczeniowego unktu racy urządzenia: 1. Wymaganego ciśnienia odnoszenia zestawu = + min min ss 2. Obliczeniowej wydajności Q o Q 0