OBLICZENIA EWOLUCYJNE
|
|
- Maciej Jankowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY OPERATORS MIGRATION PHASE FITNESS F. COMPUTATION communication with other subpopulations SELECTION YES TERMINATION CONDITION NO END 1
2 OPTYMALIZACJA WIELOMODALNA Cel: Znalezienie pewnej liczbny k jak najlepszych ekstremów lokalnych funkcji wielomodalnych. f(x) Dlaczego? Niekiedy dogodne jest znalezienie kilku różnych rozwiązań, by móc wybrać takie, które jest najlepsze z punktu widzenia kryteriów nie zawartych w funkcji celu (np. estetyka rozwiązania). x 2
3 Podstawowa technika: utrzymywanie różnorodności populacji bazowej. Przeszkoda: globalność selekcji (każdy osobnik konkuruje podczas reprodukcji i sukcesji z każdym innym). Zapobieganie: Dodanie czynnika losowego, niezależnego od stanu populacji (zwykle dodatkowy operator typu mutacji bądź losowe zaburzanie funkcji przystosowania), Zmniejszenie zasięgu selekcji (ograniczenie konkurencji do osobników znajdujących się blisko siebie w przestrzeni genotypów wyłanianie nisz). 3
4 Techniki wyłaniania nisz: Metody polegające na wyróżnianiu podpopulacji na podstawie odległości genotypów; Metody koewolucyjne (równoczesna ewolucja wielu auto-nomicznych populacji z częściową wymianą mat. genet.); Metody dokonujące lokalnej deformacji funkcji przystosowania (np. dodawanie losowego szumu). Efekt: f(x) f(x) x x 4
5 RÓWNOLEGŁOŚĆ W AE 1. Równoległość na poziomie implementacji: (schemat algorytmu nie zmienia się): Równoległe generowanie osobników w populacji początkowej; Równoległe obliczanie funkcji przystosowania; Równoległe wykonywanie operatorów ewolucyjnych; Sekwencyjne dokonywanie wyboru nowej populacji (selekcja).
6 2. Równoległość na poziomie koncepcji (algorytmy koewolucyjne): Algorytm wyspowy Podpopulacje ewoluują (prawie) niezależnie, ze sporadyczną wymianą informacji. Parametry ewolucji a nawet funkcja przystosowania mogą być różne w różnych podpopulacjach. Algorytm komórkowy (masowo równoległy, dyfuzyjny) Każdy procesor zajmuje się ewolucją jednego osobnika, dla którego wyznaczane jest pewne sąsiedztwo w przestrzeni genotypów. Ewolucja odbywa się z uwzględnieniem sąsiedztwa (krzyżowanie z losowymi sąsiadami).
7 2. Równoległość na poziomie koncepcji (algorytmy koewolucyjne): Algorytm wyspowy Podpopulacje ewoluują (prawie) niezależnie, ze sporadyczną wymianą informacji. Parametry ewolucji a nawet funkcja przystosowania mogą być różne w różnych podpopulacjach. Algorytm komórkowy (masowo równoległy, dyfuzyjny) Każdy procesor zajmuje się ewolucją jednego osobnika, dla którego wyznaczane jest pewne sąsiedztwo w przestrzeni genotypów. Ewolucja odbywa się z uwzględnieniem sąsiedztwa (krzyżowanie z losowymi sąsiadami).
8 Rozproszony AE (W. Kuś) START POPULACJA POCZĄTKOWA OPERATORY EWOLUCYJNE f. celu FEM FEM FEM (F. CELU) chromosom PROCES ZARZĄDZAJĄCY... MIGRACJA N SELEKCJA WARUNEK ZATRZYMANIA STOP T komunikacja z innymi podpopulacjami Max liczba procesorów: (l. podpopulacji) (l. osobników) 8 8
9 POŁĄCZENIE AE Z METODAMI LOKALNYMI: Połączenie nieprecyzyjnego AE z nieodpornymi metodami lokalnymi. Prowadzi to często do uzyskania algorytmu hybrydowego o właściwościach lepszych od każdej z wchodzących w jego skład metod. PUNKT STARTOWY Warianty: algorytmy, w których metoda lokalna służy do dokończenia obliczeń rozpoczętych przez AE; wprowadzeniu dodatkowego operatora genetycznego (np. mutacji gradientowej), który sprowadzałby się do wykonania metody lokalnej; przeszukiwanie lokalne wykonywane podczas obliczania przystosowania osobnika. PUNKT STARTOWY ALGORYTM EWOLUCYJNY OPTIMUM ALGORYTM EWOLUCYJNY ALGORYTM GRADIENTOWY OPTIMUM ALGORYTM GRADIENTOWY (mutacja gradientowa) 9 9
10 Np. metody stosowane kolejno: Funkcja celu ALGORYTM EWOLUCYJNY ALGORYTM GRADIENTOWY Pokolenie 10
11 INNE AE 11
12 PROGRAMOWANIE GENETYCZNE programy, które powstają samoczynnie... Automatyczne generowanie tekstów programów, jeśli znane są kryteria oceny prawidłowości działania. Język bazowy LISP (program jest reprezentowany w iden-tyczny sposób jak dane - w postaci drzewa). Kodowanie w postaci łańcucha binarnego zastąpiono drzewiastym. W węzłach mogą znajdować się: symbole pewnego alfabetu; wartości liczbowe - dyskretne i ciągłe; stałe, zmienne lub funkcje. 12
13 Operatory genetyczne: uwzględnienie specyfiki metody kodowania i umożliwienie modyfikacji: wartości w węzłach drzewa; struktury drzewa. Obecnie: programowanie genetyczne - często do określenia wszelkich algorytmów wykorzystujących drzewiastą reprezentację zadania i modyfikujących strukturę tej reprezentacji, np: zadanie syntezy drzewa decyzyjnego; projektowanie układów elektronicznych; regresja symboliczna;... 13
14 Kodowanie drzewiaste: Chromosom jest kodowany jako drzewo, składające się z węzłów i krawędzi. Informacja jest zawarta w węzłach, zaś krawędzie określają wzajemne relacje pomiędzy węzłami. Jeśli krawędź jest skierowana od węzła A do B, to A jest nazywany nadrzędnym, B - podrzędnym. Węzły: terminalne (nie posiadają węzłów podrzędnych); pośrednie (nieterminalne). Istnieje dokładnie jeden węzeł, nie posiadający nadrzędnego korzeń drzewa. 14
15 Przykład Funkcja obliczająca pierwiastki rzeczywiste równania 2 kwadratowego: y = ax + bx + c (defun pierwiastki (a b c) ( (setq (delta -( *(b b) *(4 * (a c))))) (if <(delta 0) (setq n 0) ) (if =(delta 0) ( (setq n 1) (setq x1 ( /((-b)(* (2 a)))) ) (if >(delta 0) ( (setq n 2) (setq x1 ( /((-( -b sqrt(delta) )(* (2 a)))))) (setq x2 ( /((+( -b sqrt(delta) )(* (2 a)))))) ) ) ) setq delta - * * b b 4 * a c 15
16 Krzyżowanie: Jest wykonywane dla pary osobników rodzicielskich i prowadzi do powstania pary osobników potomnych. Z każdego z osobników rodzicielskich wyodrębniany jest losowo wybrany węzeł pośredni (wraz ze swoim poddrzewem) lub terminalny. Chromosomy potomne powstają w wyniku zamiany powstałych poddrzew. 16
17 * * + sin + sin x y - x y * 32 * 12 x 2 y / sin * y 12 x sin y / - 32 * 2 y 17 17
18 Mutacja - warianty: Zmiana zawartości węzła terminalnego: + + y x y 11 Zamiana węzła terminalnego na korzeń losowego wygenerowanego poddrzewa: + + y x y + x
19 Mutacja - warianty: Zamiana korzenia poddrzewa na węzeł terminalny: - y * - y 4 x 13 Zamiana poddrzewa na inne: - - y + 12 x y sin * 3 x 19 19
20 Mutacja - warianty: Reorganizacja poddrzew: - - sin cos cos sin * y y * 3 x 3 x 20 20
21 STRATEGIE EWOLUCYJNE STRATEGIA EWOLUCYJNA (1+1) Przetwarzany jest tylko jeden chromosom X(t). W każdym kroku generowany jest nowy chromosom Y(t) poprzez mutację X(t). Wartości funkcji przystosowania w obu chromosomach są porównywane. Chromosomem X(t+1) staje się ten, którego wartość funkcji przystosowania jest wyższa. 21
22 procedure SE(1+1) begin t:=0 inicjalizacja X(t) ocena X(t) while (not warunek zakończenia) do begin Y(t) := mutacja X(t) ocena Y(t) if (Y(t) >X(t) )thenx(t+1) :=Y(t) t:=t+1 end end else X(t+1) := X(t) 22
23 Mutacja w strategii (1+1): Chromosom Y(t) jest generowany poprzez dodanie losowej modyfikacji (z rozkładem normalnym) do każdego genu chromosomu X(t) : Y ( t) = X ( t) + σ k i i N k N zmienna losowa o rozkładzie normalnym [0,1]. Wartość σ określa zasięg mutacji (większa wartość to większe perturbacje chromosomu bazowego). Algorytm doboru σ powinien uwzględniać większy zasięg mutacji w początkowej fazie a mniejszy pod koniec działania SE. n.p. reguła 1/5 sukcesów... 23
24 Reguła 1 / 5 sukcesów: 1. Jeśli przez kolejnych k generacji liczba mutacji zakończonych sukcesem przewyższa 1 / 5 ogólnej liczby wykonanych mutacji, to należy zwiększyć zasięg mutacji: σ = c i σ. 2. Gdy dokładnie 1 / 5 mutacji kończy się sukcesem, wartość σ nie wymaga modyfikacji. 3. W przeciwnym przypadku należy zawęzić zasięg mutacji według wzoru σ = c d σ. Wartość 1 / 5 została zaproponowana na podstawie rozważań teoretycznych. Wartości ustalone eksperymentalnie: c d = 0.82, c i = 1/
25 STRATEGIA EWOLUCYJNA (µ+λ) Jedna z najczęściej stosowanych. Bardziej odporna na minima lokalne. Wprowadzenie mechanizmu samoczynnej adaptacji zasięgu mutacji (zastępuje regułę 1/5 sukcesów). Wprowadzenie operatora krzyżowania. Przetwarzana jest bazowa populacja P(t) zawierająca µ osobników o specjalnej strukturze. Nową populację bazową tworzy µ najlepszych osobników wybranych spośród µ+λ znajdujących się w złączeniu populacji P(t) i O(t). 25
26 procedure SE(µ+λ) begin t:=0 inicjalizacja P(t) ocena P(t) while (not warunek zakończenia) do begin T(t) := reprodukcja P(t) O(t) := krzyżowanie i mutacja T(t) ocena O(t) P(t+1) := µ najlepszych osobników z P(t) O(t) t:=t+1 end end 26
27 Struktura osobnika: Dwa chromosomy: 1. Wektor X wartości zmiennych niezależnych; 2. (Zwykle) wektor σ zawierający wartości standardowych odchyleń wykorzystywanych podczas mutacji. Mutacja: Trójetapowa, związana z samoczynną adaptacją zasięgu mutacji tak, by minimalizować wartość oczekiwaną czasu dojścia do optimum globalnego. Krzyżowanie: Najczęściej uśrednianie lub wymiana wartości wektorów X i σ chromosomów macierzystych w wyniku powstają 2 chromosomy potomne. 27
28 STRATEGIA EWOLUCYJNA (µ,λ) Strategia (µ+λ) zawodzi w przypadku, gdy w populacji znajdzie się osobnik o wyróżniającej się wartości f. przystosowania, lecz zbyt dużych lub zbyt małych wartościach standardowych odchyleń. Różnica: nowa populacja bazowa jest tworzona wyłącznie na podstawie osobników potomnych z populacji O(t). 28
29 PRZYKŁADY ZASTOSOWAŃ AE 29
30 UKŁADANIE PLANU LEKCJI Jest problemem należącym do klasy NP-trudnych. Wiele nietrywialnych ograniczeń. Zadanie opisuje się poprzez: listę nauczycieli n; listę grup g; listę terminów t; listę sal s. Zadanie polega na wygenerowaniu pewnej czteroargumentowej relacji określonej na zbiorze nauczycieli, grup, sal i godzin zajęciowych, do której należą wszystkie takie i tylko takie czwórki n,g,s,t, że nauczyciel n prowadzi zajęcia z grupą g w sali s i w terminie t. 30
31 Ograniczenia: 1. Twarde: Zadana jest liczba godzin dla każdego nauczyciela i każdej grupy; W każdej sali i terminie jest tylko jeden nauczyciel; Nauczyciel nie może uczyć dwu grup naraz; W każdej sali z zaplanowanymi zajęciami znajduje się nauczyciel. 31
32 Ograniczenia: 2. Miękkie: Cele dydaktyczne (rozłożenie przedmiotów w tygodniu); Cele personalne (pozostawienie wolnych niektórych terminów dla niektórych nauczycieli); Cele organizacyjne (dodatkowy nauczyciel na każdy termin na zastępstwo). Zadanie układania planu lekcji rozwiązane z użyciem AE zostało pomyślnie przetestowane np. dla danych z dużej szkoły w Mediolanie (1991)... 32
33 Programy wspomagające układanie planu, np: 33
34 PROGRAMOWANIE DROGI W ŚRODO- WISKU RUCHOMEGO ROBOTA Cel: Znalezienie się robota w punkcie docelowym bez zagubienia się i kolizji z jakimkolwiek obiektem. Rozwiązania: Droga planowana jest na wstępie (skuteczne jedynie przy założeniu, że środowisko poruszania się robota jest dokładnie znane i nie zmienia się). Wiedza o otoczeniu jest czerpana na bieżąco poprzez badanie otoczenia lokalnego (pozwala to na ominięcie nieznanych jak i ruchomych przeszkód). 34
35 Nawigator ewolucyjny (Michalewicz) - połączenie planowań: zawczasu i bieżącego drogi robota: Początkowo: (planowanie zawczasu) poszukiwanie najlepszej drogi (rozwiązanie optymalne): p p a b p k 35
36 Planowanie bieżące rozwiązuje problemy związane z nowymi obiektami na wcześniej zaplanowanej trasie. p p a d p p a d e b b p k p k p p a d e b p p p k f p k 36
37 UNIKANIE KOLIZJI NA MORZU Obiekt ruchomy (np. statek) może być niebezpieczny dla obiektu własnego jeśli: Wszedł w zakres obserwacji (5-8 mil morskich przed dziobem i 2-4 mile za rufą); Może przeciąć kurs zadany w niebezpiecznej odległości (jej wartość zależy od pogody, rejonu pływania i prędkości statku); Funkcja przystosowania uwzględnić powinna zarówno warunki bezpieczeństwa żeglugi jak i warunki ekonomiczne. 37
38 A. Stała prędkość statku własnego: v = 8.6w 38
39 B. Stała prędkość statku własnego: v = 5.6w 39
40 C. Zmienna prędkość (mutacja prędkości) v = {3.6; 8.6; 13.6}w 40
41 AE W GRACH (OTHELLO) Gra: Rywalizacja prowadzona przez uczestników zgodnie z ustalonymi regułami, by osiągnąć założony cel. Podział: Losowe (ruletka); Takie, w których element losowy wpływa na rozgrywkę (brydż); Deterministyczne (szachy). 41
42 Gra: Gracze wykonują kolejne ruchy (podejmują decyzje) ze zbioru ruchów dopuszczalnych aż do osiągnięcia stanu końcowego. Rozgrywka jest poszukiwaniem takich ruchów gracza, które zapewnią mu zwycięstwo. Proces poszukiwań można opisać za pomocą drzewa rozwiązań (korzeń stan początkowy, węzły kolejne stany, jakie będą możliwe po wykonaniu danego ruchu). Liście takiego drzewa oznaczają stany końcowe gry: wygrane, remisowe lub przegrane dla gracza. 42
43 Drzewo reprezentuje wszystkie możliwe rozwiązania, np.: warcaby: węzłów; szachy: węzłów. Cel gry: znalezienie strategii wygrywającej (niezależnie od posunięć przeciwnika). W ogólnym przypadku wymaga to zbudowania i przeszukania całego drzewa zwykle niemożliwe. W efekcie: zwykle bada się tylko część drzewa (możliwie jak najgłębiej). 43
44 Othello (reversi): rozgrywka jest skomplikowana; brak dobrego programu grającego; 44
45 3 znane strategie gry: 1. Maksymalnej liczby punktów prowadzi zwykle do blokady ruchów gracza. 2. Pól ważonych (cel: przejęcie pól strategicznych ). 3. Mnimalnej liczby pionków (minimalizacja liczby własnych pionów, by zwiększyć możliwości ruchu stosowana ślepo prowadzi do przegranej ). 45
46 Zast. AE do tworzenia programów grających: 1. AE jako narzędzie wspomagające proces szukania dobrej strategii gry. Program grający nie wykorzystuje podczas gry AE, lecz ma wbudowaną strategię (znalezioną wcześniej za pomocą AE). 2. Zastosowanie AE jako wbudowanego modułu grającego. AE na każdym etapie gry odpowiada za znalezienie opty-malnego posunięcia przez program grający. 46
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 7 FITNESS
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 6 FITNESS
ALGORYTMY IMMUNO- LOGICZNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome wykład AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS 7 VALUE fitness
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Na poprzednim wykładzie:
ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Obliczenia Naturalne - Strategie ewolucyjne
Literatura Historia Obliczenia Naturalne - Paweł Paduch Politechnika Świętokrzyska 3 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - 1 z 44 Plan wykładu Literatura Historia 1 Literatura Historia 2 Strategia
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
METODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES
WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES Dynamika mutacyjnego AE Mutacja gaussowska σ=0.1 Wszystkie wygenerowane punkty Wartość średnia jakości punktów populacji
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Strategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Programowanie genetyczne
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Algorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
Algorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
METODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
ALGORYTMY EWOLUCYJNE
1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
OBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
METODY HEURYSTYCZNE wykład 7
METODY HEURYSTYCZNE wykład 7 PROJEKTOWANIE BAZ REGUŁ 2 Informacja niezbędna do zaprojektowania sterownika: numeryczna (ilościowa) z czujników pomiarowych; lingwistyczna (jakościowa) od eksperta. Stworzenie
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
OBLICZENIA EWOLUCYJNE
OPTYMALIZACJA WIELOMODALNA OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
OBLICZENIA EWOLUCYJNE
BINARNIE CZY INACZEJ? OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS
Programowanie genetyczne - gra SNAKE
PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Rój cząsteczek. Particle Swarm Optimization. Adam Grycner. 18 maja Instytut Informatyki Uniwersytetu Wrocławskiego
Rój cząsteczek Particle Swarm Optimization Adam Grycner Instytut Informatyki Uniwersytetu Wrocławskiego 18 maja 2011 Adam Grycner Rój cząsteczek 1 / 38 Praca Kennedy ego i Eberhart a Praca Kennedy ego
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
SYSTEMY (ALGORYTMY) MRÓWKOWE
OLIZNI WOLUYJN ITNSS. STRT OMPUTTION ITNSS. OMPUTTION INITIL SUGenration SNING HROM. TO OMPUTRS chromosome VOLUTIONRY OPRTORS N RIVING ITNSS. wykład 7 VLU fitness f. value MIGRTION PHS ITNSS. communication
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:
CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 1 communication
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Programowanie genetyczne (ang. genetic programming)
Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
Algorytmy ewolucyjne (2)
Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1
Acta Sci. Pol., Geodesia et Descriptio Terrarum 12 (2) 2013, 21-28 ISSN 1644 0668 (print) ISSN 2083 8662 (on-line) ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1 Józef
Gospodarcze zastosowania algorytmów genetycznych
Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych