Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
|
|
- Anna Sobolewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba
2 Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów bazowych Kolejne rozwiązania generowane w oparciu o wyliczanie pewnych charakterystyk funkcji celu np. gradientu Kolejne rozwiązania generowane w oparciu o wykorzystanie mechanizmów analogicznych do reprodukcji biologicznej
3 Terminologia Osobnik rozwiązanie, punkt bazowy Chromosom łańcuch cech (genów) osobnika Gen - pojedynczy element chromosomu Allel wartość genu (0,1) Locus pozycja (miejsce) genu w chromosomie) Genotyp zespół genów danego organizmu warunkujących dziedziczenie (w GA chromosom) Fenotyp zbiór cech organizmu uwarunkowany przez genotyp i środowisko, służący do wyliczania przystosowania osobnika Przystosowanie wartość liczbowa określająca jakość osobnika, wyliczana na podstawie nieujemnej funkcji przystosowania (celu) Populacja - zbiór punktów bazowych, osobników Selekcja (selection), krzyżowanie (crossover), mutacja (mutation) operacje genetyczne
4 Algorytm genetyczny (klasyczny - SGA) Osobniki opisywane przez binarnie kodowane chromosomy o stałej długości Geny przyjmują wartości 0 lub 1 Selekcja proporcjonalna Krzyżowanie jednopunktowe Mutacja bitowa
5 Algorytm genetyczny 1. Populacja początkowa 2. Ocena przystosowania 3. Selekcja proporcjonalna 4. Krzyżowanie jednopunktowe 5. Mutacja procedure GA; { t = 0; initialize population P(t); until (done) { t = t + 1; parent_selection P(t); recombine P(t) mutate P(t); } }
6 Dane początkowe Zadanie optymalizacyjne: znaleźć maksimum danej funkcji przystosowania np. f(x)=10x 2 -x, x Є [0,10] Parametry: rozmiar populacji m, długość łańcucha binarnego (chromosomu) l, Warunek zatrzymania algorytmu (np. liczba generacji lg) Prawdopodobieństwo krzyżowania p c Prawdopodobieństwo mutacji p m
7 Algorytm genetyczny 1. Populacja początkowa 2. Ocena przystosowania 3. Selekcja proporcjonalna 4. Krzyżowanie jednopunktowe 5. Mutacja procedure GA; { t = 0; initialize population P(t); until (done) { t = t + 1; parent_selection P(t); recombine P(t) mutate P(t); } }
8 Populacja początkowa Osobnik x zakodowany w postaci ciągu binarnego o długości l x i = (l=10) Populacja m-elementowa P 0 ={x 0 1, x 0 2,, x 0 m} Losowa populacja początkowa (macierz [m, l], randint)
9 Algorytm genetyczny 1. Populacja początkowa 2. Ocena przystosowania 3. Selekcja proporcjonalna 4. Krzyżowanie jednopunktowe 5. Mutacja procedure GA; { t = 0; initialize population P(t); until (done) { t = t + 1; parent_selection P(t); recombine P(t) mutate P(t); } }
10 Ocena przystosowania Ocena osobników na podstawie fenotypów wymaga zdekodowania binarnego chromosomu do przestrzeni fenotypów Zadanie wstępne: znaleźć osobnika o największej liczbie jedynek w łańcuchu f(x)= f(x)= f(x)=4
11 Algorytm genetyczny 1. Populacja początkowa 2. Ocena przystosowania 3. Selekcja proporcjonalna 4. Krzyżowanie jednopunktowe 5. Mutacja procedure GA; { t = 0; initialize population P(t); until (done) { t = t + 1; parent_selection P(t); recombine P(t) mutate P(t); } }
12 Selekcja proporcjonalna (ruletkowa) Wybór rodzica zależny od jego jakości, zgodnie z prawdopodobieństwem: f ( xi ) p( xi ) m f ( x ) j 1 Wykonanie m losowań ruletką, na której kole przydzielono sektory proporcjonalne do wartości przystosowanie j
13 Koło ruletki f(x 1 )=3 r=25% f(x 2 )=6 r=50% f(x 3 )=2 r=16.6% f(x 4 )=1 r=8.4%
14 Metoda odwrotnej dystrybuanty p( x) { p( x ), p( x2 ),..., p( x 1 m Budujemy funkcję odwrotnej dystrybuanty zliczając sumy cząstkowe z wektora i fp( xi ) p( xk ), i 1,..., m k 1 Znajdujemy numer osobnika, dla którego: )} 1 fp(x 3 ) fp(x 2 ) rand p(x 2 ) p(x 3 ) p(x 4 ) fp(x i ) >= rand rand liczba losowa z przedziału [0,1] Wybrany osobnik zostawi potomka w kolejnej generacji fp(x 1 ) p(x 1 )
15 Algorytm genetyczny 1. Populacja początkowa 2. Ocena przystosowania 3. Selekcja proporcjonalna 4. Krzyżowanie jednopunktowe 5. Mutacja procedure GA; { t = 0; initialize population P(t); until (done) { t = t + 1; parent_selection P(t); recombine P(t) mutate P(t); } }
16 Krzyżowanie jednopunktowe Losowe kojarzenie w pary osobników wybranych w procesie selekcji Krzyżowanie z wybranym prawdopodobieństwem p c Losowo wybierany punkt krzyżowania k Wymiana odpowiednich części łańcucha pomiędzy rodzicami k=4, > >
17 Algorytm genetyczny 1. Populacja początkowa 2. Ocena przystosowania 3. Selekcja proporcjonalna 4. Krzyżowanie jednopunktowe 5. Mutacja procedure GA; { t = 0; initialize population P(t); until (done) { t = t + 1; parent_selection P(t); recombine P(t) mutate P(t); } }
18 Mutacja Losowa zmiana wartości genu (0 <>1) Mutacja z wybranym prawdopodobieństwem p m, które zwykle jest znacznie mniejsze niż prawdopodobieństwo krzyżowania p c k=5, >
19 Kryterium zatrzymania Osiągniecie optimum! Ograniczenia zasobów CPU: maksymalna liczba wyliczeń funkcji przystosowania Ograniczenie na cierpliwość użytkownika: po kilku (kilkunastu, kilkudziesięciu) generacjach bez poprawy
20 Inne uwagi Wykorzystywać możliwości Matlaba, szczególnie do pracy z macierzami i wektorami Program główny + podprogramy Zwięzłość kodu inicjalizacja 1 linijka mutacja 1 linijka
21 Algorytm genetyczny
22 Literatura D. Goldberg, Algorytmy Genetyczne w zastosowaniach, WNT, W-wa,1995 Z. Michalewicz, Algorytmy genetyczne+ struktury danych =programy ewolucyjne, WNT, W-wa, 1996 J. Arabas, Wykłady z algorytmów ewolucyjnych, WNT, W-wa, 2001
23 Algorytm genetyczny - program Parametry: rozmiar populacji - m długość łańcucha binarnego - l warunek zatrzymania algorytmu lg 1. Losowa populacja początkowa - macierz [m, l], randint 2. Ocena przystosowania - znaleźć osobnika o największej liczbie jedynek w łańcuchu 3. Selekcja proporcjonalna metoda odwrotnej dystrybuanty 4. Krzyżowanie jednopunktowe 5. Mutacja jednobitowa procedure GA; { t = 0; initialize population P(t); until (done) { t = t + 1; parent_selection P(t); recombine P(t) mutate P(t); }}
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
ALGORYTMY GENETYCZNE
ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
METODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
METODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Algorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji
Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)
1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta
Systemy Inteligentnego Przetwarzania wykład 4: algorytmy genetyczne, logika rozmyta Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Wprowadzenie Problemy
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne. Łukasz Pepłowski
Fizyka w symulacji komputerowej i modelowaniu komputerowym Metody Monte Carlo Algorytmy Genetyczne Łukasz Pepłowski Plan Metody Stochastyczne Łańcuchy Markowa Dynamika Brownowska Metoda Monte Carlo Symulowane
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
ALGORYTMY GENETYCZNE I EWOLUCYJNE
http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,
Techniki ewolucyjne - algorytm genetyczny i nie tylko
Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy
ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie
Optymalizacja parametryczna (punkt kartezjańskim jest niewypukła).
METODY INTELIGENCJI OBLICZENIOWEJ wykład RODZAJE ZADAŃ OPTYMALIZACJI (w zależno ności od przestrzeni szukiwań) Optymalizacja parametryczna (punkt U jest wektorem zm. niezależnych nych):. Zadania ciągłe
Program "FLiNN-GA" wersja 2.10.β
POLSKIE TOWARZYSTWO SIECI NEURONOWYCH POLITECHNIKA CZĘSTOCHOWSKA Zakład Elektroniki, Informatyki i Automatyki Maciej Piliński Robert Nowicki - GA Program "FLiNN-GA" wersja 2.10.β Podręcznik użytkownika
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R.
Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Znaleźć x X taki, że f(x) jest maksimum (minimum) funkcji
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Zaawansowane programowanie
Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach
METODY HEURYSTYCZNE 3
METODY HEURYSTYCZNE wykład 3 1 ALGORYTMY GENETYCZNE 2 SCHEMAT DZIAŁANIA ANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do
5. Algorytm genetyczny przykład zastosowania
5. Algorytm genetyczny przykład zastosowania Zagadnienie magicznych kwadratów Opis działania algorytmu Zagadnienie magicznych kwadratów polega na wygenerowaniu kwadratu n n, w którym elementami są liczby
Teoria algorytmów ewolucyjnych
Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może
Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych
Nazwa modułu: Algorytmy genetyczne i ich zastosowania Rok akademicki: 2013/2014 Kod: JIS-2-201-AD-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność:
ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1
Acta Sci. Pol., Geodesia et Descriptio Terrarum 12 (2) 2013, 21-28 ISSN 1644 0668 (print) ISSN 2083 8662 (on-line) ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1 Józef
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY
INTELIGENCJA OBLICZENIOWA. dr Katarzyna Grzesiak-Kopeć
INTELIGENCJA OBLICZENIOWA dr Katarzyna Grzesiak-Kopeć obliczenia ewolucyjne 2 Plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne
Obliczenia Naturalne - Strategie ewolucyjne
Literatura Historia Obliczenia Naturalne - Paweł Paduch Politechnika Świętokrzyska 3 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - 1 z 44 Plan wykładu Literatura Historia 1 Literatura Historia 2 Strategia
ZARZĄDZANIE POPULACJAMI ZWIERZĄT
ZARZĄDZANIE POPULACJAMI ZWIERZĄT Ćwiczenia 1 mgr Magda Kaczmarek-Okrój magda_kaczmarek_okroj@sggw.pl 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli
1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Anna Gryko-Nikitin Politechnika Białostocka, Wydział Zarządzania, Katedra Informatyki Gospodarczej i Logistyki
Niektóre osobliwości algorytmów genetycznych na przykładzie zagadnień logistycznych Certain peculiarities of the genetic algorithms based on logistic issues Anna Gryko-Nikitin Politechnika Białostocka,
6. Algorytm genetyczny przykłady zastosowań.
6. Algorytm genetyczny przykłady zastosowań. 1. Zagadnienie magicznych kwadratów. Opis działania algorytmu Zagadnienie magicznych kwadratów polega na wygenerowaniu kwadratu n n, w którym elementami są
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Wykorzystanie algorytmu genetycznego do generowania twarzy ludzkiej
Wykorzystanie algorytmu genetycznego do generowania twarzy ludzkiej Oleksandr Klosov* Kamil Jasiński** Streszczenie. Algorytmy genetyczne są przedmiotem aktywnych dyskusji w płaszczyźnie naukowej oraz
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM
mgr inż. Marta Woch *, prof. nadzw. dr hab. inż. Sylwester Kłysz *,** * Instytut Techniczny Wojsk Lotniczych, ** Uniwersytet Warmińsko-Mazurski w Olsztynie OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO
Algorytmy ewolucyjne (2)
Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania
ALGORYTMY DECYZYJNE I TEORIA ZŁOŻONOŚCI
ALGORYTMY DECYZYJNE I TEORIA ZŁOŻONOŚCI Problem maksymalnej kliki Proffesional Klika Solver - dokumentacja Autorzy: Michał Pieróg Jakub Jaśkowiec Witold Baran 1.Zagadnienie projektu 1.1. Temat : Znalezienie
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 1 communication
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
1 Genetykapopulacyjna
1 Genetykapopulacyjna Genetyka populacyjna zajmuje się badaniem częstości występowania poszczególnych alleli oraz genotypów w populacji. Bada także zmiany tych częstości spowodowane doborem naturalnym
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 FITNESS
GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR /
GENETYKA POPULACJI Ćwiczenia 1 Biologia I MGR 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli przewidywanie struktury następnego pokolenia przy
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Kodowanie Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 27 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura
Selekcja cech. Wprowadzenie Metody selekcji cech. Przykład zastosowania. Miary niepodobieństwa. Algorytmy przeszukiwania
Selekcja cech Wprowadzenie Metody selekcji cech Miary niepodobieństwa Algorytmy przeszukiwania Przykład zastosowania Wprowadzenie 2 Cel selekcji: dobór cech obiektu, na których opierać się będzie klasyfikacja