OBLICZENIA EWOLUCYJNE
|
|
- Seweryna Kaczmarczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY OPERATORS MIGRATION PHASE FITNESS F. COMPUTATION communication with other subpopulations SELECTION YES TERMINATION CONDITION NO END 1
2 LICZEBNOŚĆ POPULACJI 2
3 Istotny parametr AG... Możliwości regulacji liczebności populacji: Metaalgorytmy genetyczne sterujące parametrami innego AG; Skorzystanie z różnych algorytmów ustalania liczebności populacji ; AG ze zmienną liczebnością populacji. 3
4 procedure AGzZLP begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek zakończenia) do begin t:=t+1 podnieś wiek każdego osobnika o 1 zmień P(t) (utwórz P (t)) oceń P (t) usuń osobniki o wieku większym od ich czasużycia end end 4
5 Populacja pomocnicza P (t): pop_size (t) = ρ pop_size(t) ρ współczynnik reprodukcji procedure AGzZLP begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek zakończenia) do begin t:=t+1 podnieś wiek każdego osobnika o 1 zmień P(t) oceń P (t) usuń osobniki o wieku większym od ich czasużycia end end Prawdopodobieństwo wyboru do P (t) niezależne od dopasowania osobnika. Krzyżowanie i mutacja tylko w populacji P (t); Czas życia przypisywany jest jednorazowo każdemu osobnikowi; Wiek osobnika rośnie od 0; Śmierć osobnika gdy wiek przekracza czas jego życia. 5
6 Liczebność populacji po jednej iteracji: pop_size(t+1) = pop_size(t) + pop_size (t) D(t) D(t) liczba osobników, które wyginęły w pokoleniu t. Ustalanie czasu życia osobników: Wzmacnianie osobników z wartością dopasowania powyżej średniej i osłabianie gorszych od średniej; Dostrajanie liczebności populacji do bieżącego etapu poszukiwań (szczególnie ochrona przed wykładniczym wzrostem populacji). 6
7 Przykład: ( ) 2 sin x + y 0.5 f ( x) = ( x + y ) -100 x, y
8 f śr pop_size Numer pokolenia 8
9 METODY UWZGLĘDNIANIA OGRANICZEŃ 9
10 Np. Problem komiwojażera: Kodowanie klasyczne: (W genie danego miasta zapisany jest numer miasta docelowego). Kodowanie permutacyjne: (W kolejnych genach zapisane są kolejne miasta) Dla kodowania klasycznego: 10
11 1. Metoda kary Kara stała (w tym kara śmierci); Kara zależna od stopnia naruszenia ograniczenia (zależność liniowa, logarytmiczna, wykładnicza itp). 2. Algorytmy naprawy Wady: - korygowanie rozwiązań niedopuszczalnych. znaczne wydłużenie czasu obliczeń; algorytm naprawy musi być dopasowany do konkretnego zadania; proces korygowania może być równie złożony, jak zadanie początkowe. 11
12 3. Użycie dekoderów Dekodery przekształcenia reprezentacji gwarantujące (lub zwiększających prawdopodobieństwo) generowania osobników spełniających ograniczenia. Wady: wysokie wymagania obliczeniowe; nie wszystkie ograniczenia mogą być w ten sposób uwzględnione; konieczność stosowania dedykowanych dekoderów. 12
13 Zadanie załadunku (plecakowe) Istnieje cały szereg zadań załadunku (zadań plecakowych). Dany jest zbiór rzeczy o nadanych rozmiarach i wartościach; Należy wybrać jeden lub wiele rozłącznych podzbiorów tak, by suma rozmiarów w każdym podzbiorze nie przekroczyła zadanego ograniczenia (pojemność plecaka) i by suma wartości była maksymalna. Wiele zadań z tej klasy jest NP-trudnych. 13
14 PROBLEMY NP Problem NP (nondeterministic polynomial): problem decyzyjny, dla którego rozwiązanie można zweryfikować w czasie wielomianowym. Problem P 0 jest NP-zupełny, gdy: 1.P 0 należy do klasy NP, 2.Każdy problem z klasy NP da się sprowadzić w czasie wielomianowym do problemu P 0. Problem NP-trudny spełnia tylko punkt 2. Problemy NP-zupełne maja postać pytania czy istnieje. Problemy NP-trudne to zwykle ich optymalizacyjne wersje ( znajdź najmniejszy ). 14
15 PROBLEMY NP więcej: 15
16 Zero-jedynkowe zadanie załadunku Wybierz wektor binarny x = x[1],..., x[n] spełniający warunki: n i= 1 x[ i] W[ i] n i= 1 C P( x) = x[ i] P[ i] = max gdzie: W[i] zbiór wag (rozmiarów); P[i] zbiór zysków; C pojemność. 16
17 Wylosowano 3 zbiory danych: W[i] przypadkowe ([1,ν]) o rozkładzie 1. Nieskorelowane: jednostajnym; P[i] przypadkowe ([1,ν]) o rozkładzie jednostajnym. 2. Słabo skorelowane: W[i] zbiór wag (rozmiarów); P[i] zbiór zysków; P[i] = W[i] + przypadkowe ([-r, r]) o rozkładzie jednostajnym. 2. Silnie skorelowane: P[i]= W[i] + r. Przyjęto parametry: ν = 10, r = 5 Większa korelacja to mniejsza wartość różnicy: max(p[i]/w[i]) - min(p[i]/w[i]), i = 1...n co może powodować większe problemy przy optymalizacji. 17
18 Rozpatrzono 2 rodzaje zadania załadunku: (Michalewicz) Z ograniczoną pojemnością (C 1 ) (Rozwiązanie optymalne zawiera bardzo mało artykułów). Ze średnią pojemnością (C 2 ) (Rozwiązanie optymalne zawiera ok. połowy artykułów). Rodzaje użytych algorytmów: Algorytmy z funkcją kary (A p [k]); Algorytmy z metodami naprawy (A r [k]); Algorytmy z dekoderami (A d [k]). k numer algorytmu 18
19 Ad. 1 ALGORYTMY Z FUNKCJĄKARY ( A p [k]) Wektor x jest reprezentowany przez łańcuch binarny o długości n. Artykuł i-ty jest ładowany do plecaka tylko wtedy, gdy: x[i]=1 Dopasowanie: n eval( x) = x[ i] P[ i] Pen( x) i= 1 gdzie: Pen(x) funkcja kary: a) Pen(x) = 0 dla rozw. dopuszczalnych; b) Pen(x) > 0 dla pozostałych rozwiązań. 19
20 Wzrost kary (ze stopniem przekroczenia ograniczenia): a. logarytmiczny: n Ap[1]: Pen( x) = log2 1 + ρ x[ i] W[ i] C i= 1 b. liniowy: n Ap[2] : Pen( x) = ρ x[ i] W [ i] C i= 1 c. kwadratowy: n Ap[3] : Pen( x) = ρ x[ i] W [ i] C i= 1 ρ = max{p[i]/w[i]}, i = 1...n 2 20
21 Ad. 2 ALGORYTMY Z MET. NAPRAWY ( A r [k] ) Wektor x jest reprezentowany przez łańcuch binarny o dł. n. Artykuł i-ty jest ładowany do plecaka tylko wtedy, gdy x[i]=1. Dopasowanie: n eval( x) = x '[ i] P[ i] i= 1 Można stosować różne metody naprawy. gdzie: x naprawiona wersja wektora x. Zastosowane algorytmy różnią jedynie procedurą wybierającą artykuł do wyjęcia z plecaka: A r [1] naprawa losowa; A r [2] naprawa zachłanna (Wszystkie artykuły w plecaku są ustawione w porządku malejącym względem stosunków zysków do wagi. Procedura wyboru wybiera ostatni artykuł na liście). 21
22 Ad. 3 ALGORYTMY Z DEKODERAMI ( A d [k] ) Wektor x jest reprezentowany przez łańcuch całkowito-liczbowy o długości n, gdzie i-ty składnik wektora to liczba z zakresu [1, n i + 1]; Artykuł i-ty jest ładowany do plecaka tylko wtedy, gdy znajduje się na bieżącej liście. Reprezentacja porządkowa korzysta z listy L artykułów, dekodowanie za pomocą wektora następuje poprzez wybór artykułów z bieżącej listy, np: dla listy: L = (1, 2, 3, 4, 5, 6) dekodowanej za pomocą wektora: < 4, 3, 4, 1, 1, 1 > otrzymujemy ciąg artykułów : 4,3,6,1,2,5 22
23 A d [1] dekodowanielosowe Procedura dekodowania tworzy listę L artykułów takich, że ich kolejność na liście odpowiada kolejności artykułów w zbiorze wejściowym (który jest przypadkowy). A d [2] dekodowaniezachłanne Procedura dekodowania tworzy listę L artykułów w porządku malejącym względem stosunków zysków do wagi. Dekodowanie wektora x następuje na podstawie uporządkowanego zbioru. Parametry programu: liczebność populacji pop_size = 100 (stała); p m = 0.05; p c = 0.65; liczba pokoleń gen_number = 500. Wyniki średnia z 25 obliczeń 23
24 Korelacja BRAK SŁABA MOCNA Liczba artykułów Typ pojemności C 1 (ograniczona) C 2 (średnia) A p [1] * 398 A p [2] * 341 A p [3] * 243 Metoda A r [1] C 1 * * * C C 1 * * * C C 1 * * * C C 1 * * * C C 1 * * * C C 1 * * * C C 1 * * * C A r [2] A d [1] A d [1] C 1 * * * C
25 Wnioski: Dla zadań ze średnią pojemnością algorytm A p [1] (z logarytmiczną funkcją kary) jest najskuteczniejszy; Dla zadań z ograniczoną pojemnością zachłanna metoda naprawy (A r [2]) jest najskuteczniejsza. 25
26 BINARNIE CZY INACZEJ? 26
27 Binarnie Niebinarnie A B... Z Ciąg binarny Ciąg niebinarny Wartość Dopasowanie Y L I T
28 Porównanie liczby schematów: jednakowa liczba osobników; ciągi kodowe o różnych długościach. By liczba punktów w obu przestrzeniach była jednakowa: l długość osobnika zakodowanego binarnie, l dł. osobnika zakodowanego w alfabecie k-elementowym tu: 2 l =k l 2 5 =k 1 k = 32 28
29 Liczba schematów: 3 l dla alfabetu dwójkowego (k+1) l dla alfabetu k-elementowego. tu: 3 5 = 243 dla alfabetu dwójkowego (32+1) 1 = 33 dla alfabetu k-elementowego. Kod dwójkowy charakteryzuje się największą ze wszyst-kich liczbą schematów przypadającą na bit informacji. 29
30 Jednakże jeżeli: 100 zmiennych; dziedzina z zakresu [ ]; żądana dokładność 6 miejsc po przecinku; To: długość łańcucha binarnego wynosi 3000; przestrzeń poszukiwań rzędu Dla tak wielkich przestrzeni AG działają słabo... 30
31 Zasada znaczących cegiełek: Kod należy dobierać w taki sposób, by schematy niskiego rzędu i o małej rozpiętości wyrażały własności zadania oraz pozostawały względnie niezależne od schematów na pozycjach ustalonych. Zasada minimalnego alfabetu: Należy wybrać najmniejszy alfabet, w którym zadanie wyraża się w sposób naturalny. 31
32 Jeden z celów zmodyfikowanego kodowania: przybliżenie algorytmu do przestrzeni zadania. Dogodne jest, by dwa punkty leżące blisko siebie w przestrzeni reprezentacji (genotyp) leżały również blisko siebie w przestrzeni zadania (fenotyp). (Nie zawsze prawdziwe przy kodowaniu binarnym) np.: Binarnie Całkowitoliczbowo
33 KOD GRAYA procedure GrayToBin begin value := g 1 b 1 := value for k := 2 to m do begin if g k = 1 then value := NOT value b k := value end end procedure BinToGray begin end b = b 1, b 2,..., b m liczba binarna g 1 := b 1 for k := 2 to m do g k := b k 1 XOR b k g = g 1, g 2,..., g m liczba w kodzie Graya; m długość ciągu kodowego. a b a XOR b
34 Binarnie Kod Graya Zmiana 1 bitu w kodzie powoduje, że otrzymana liczba ma szansę być liczbą bezpośrednio bliską liczbie przed zmianą. 34
35 KODOWANIE CHROMOSOMU: Kodowanie (reprezentacja danych) to zbiór stanów z przestrzeni zadania przedstawiony w postaci skończonego alfabetu znaków. Podział chromosomów uwzględniający strukturę: - standardowe (jak w klasycznym AG); - permutacyjne (np. problem komiwojażera - TSP); - drzewiaste; - macierzowe. 35
36 KODOWANIE CHROMOSOMU: Podział chromosomów uwzględniający wartości: - binarne (np. zadanie plecakowe); - całkowitoliczbowe (np. TSP); - zmiennopozycyjne (typowe inżynierskie zadania optymalizacji); - tekstowe. 36
37 Test: porównanie wydajności kodowania binarnego i zmiennopozycyjnego. Zadanie sterowania: Ograniczenia: gdzie: N J = min xn + ( xk + uk ) k = 0 x = + x + u k 1 k k, k = 0, 1,..., N -1 x 0 stan początkowy; x k R stan; u R N poszukiwany wektor sterowania. 37
38 Chromosom wektor sterowania u Dziedzina: -200, 200 dla każdego u i. Przyjęto: x 0 =100, N=45 (u = u 0,..., u 44 ). Optimum: J* = K h tu: J* =
39 Wersja binarna: Każdy element wektora chromosomu zakodowano za pomocą tej samej liczby bitów; Każdy chromosom jest wektorem składającym się z N słów; Nie pozwala na zwiększenie dokładności bez zwiększenia liczby bitów; Przy wzroście rozmiarów dziedziny dokładność maleje przy konieczności zachowania stałej liczby bitów. 39
40 Wersja zmiennopozycyjna: Każdy chromosom to wektor liczb zmiennopozycyjnych o długości zgodnej z wektorem rozwiązania; Operatory określono tak, by każdy element chromosomu mieścił się w wymaganym zakresie. Pozwala uwzględnić bardzo duże dziedziny jak również przypadki o nieznanych dziedzinach; Łatwiej jest zaprojektować specjalistyczne narzędzia ułatwiające postępowanie w przypadku nietrywialnych ograniczeń. 40
41 Porównywalność algorytmów: Stała liczebność populacji (60 osobników) Stała liczba pokoleń (20 000) W reprezentacji binarnej użyto 30 bitów do zakodowania jednej zmiennej, co daje: 30*45=1350 bitów w chromosomie. Mimo użycia różnych operatorów (co wynika ze sposobu kodowania zadania i może powodować różnice w interpretacji) parametry programu dobrano tak, by wyniki mogły zostać uczciwie porównane. (np. w przypadku reprezentacji binarnej użyto klasycznych operatorów, jednak zezwolono na krzyżowanie tylko pomiędzy elementami). 41
42 Wyniki: L. elementów (N) Czas CPU [s] zmiennopoz. binarnie Czas [s] zmiennopoz. binarnie l. elem. (N)
43 Wnioski z testów: Reprezentacja zmiennopozycyjna jest szybsza. Reprezentacja zmiennopozycyjna jest stabilniejsza (daje bardziej zbliżone wyniki w różnych przebiegach). Reprezentacja zmiennopozycyjna jest dokładniejsza (szczególnie w większych dziedzinach). Działanie algorytmów (szybkość, zbieżność) można poprawić wprowadzając specjalne operatory. W przypadku kodowania binarnego dla dużych dziedzin i wymaganej większej dokładności różnice w czasach obliczeń powiększają się. 43
44 ZADANIE OPTYMALIZACJI MODYFIKACJA PROBLEMU MODYFIKACJA ALGORYTMU ZMODYFIKOWANY PROBLEM ALGORYTM EWOLUCYJNY KLASYCZNY AG Zastosowanie AE ROZWIĄZANIE OPTYMALNE 44
45 Modyfikacje: łańcuchy o zmiennej długości; struktury bogatsze od łańcuchów (np. macierze); zmodyfikowane operatory; nowe operatory (inwersja, klonowanie, itp.); inna niż binarna reprezentacja zadania; pamięć chromosomu;... zmieniony AG, ulepszony AG, zmodyfikowany AG,... 45
46 Różnorodne programy opierające się na zasadzie ewolucji mogą się różnić: strukturą danych; operatorami; metodami tworzenia populacji początkowej; sposobami uwzględniania ograniczeń zadania; parametrami. Zasada działania nie zmienia się: populacja osobników podlega pewnej transformacji zaś osobniki starają się przetrwać w procesie ewolucji. 46
47 47
48 ALGORYTMY EWOLUCYJNE Rozwinięcie idei klasycznych AG w kierunku systemów bardziej skomplikowanych, zawierających: odpowiednie struktury danych (kodowanie); odpowiednie operatory. Słabość AE podstawy teoretyczne: tylko dla czystych AG istnieje tw. o schematach; w innych podejściach tylko w niektórych przypadkach można wykazać teoretycznie ich zbieżność (np. strategie ewolucyjne stosowane do zadań regularnych). Zwykle jednak tylko uzyskujemy interesujące wyniki... 48
49 Równoległość AG i AE: W świecie, w którym algorytmy sekwencyjne są przerabiane na równoległe za pomocą niezliczonych sztuczek i łamańców, jest niemałą ironią, że AG (algorytmy wysoko równoległe) są przerabiane na sekwencyjne za pomocą równie nienaturalnych sztuczek i wykrętów Goldberg, 1995 Rozproszony AE znaczące przyspieszenie obliczeń 49
50 Rozproszony AE, autor: Wacław KUŚ: START... POPULACJA POCZĄTKOWA FEM FEM (F. CELU) FEM OPERATORY EWOLUCYJNE chromosom f. celu PROCES ZARZĄDZAJĄCY MIGRACJA N SELEKCJA WARUNEK ZATRZYMANIA T komunikacja z innymi podpopulacjami STOP Max liczba procesorów: (l. podpopulacji) (l. osobników) 50
51 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie i uogólnienie AG. Należy jednoznacznie określić: schemat działania AE; metodę selekcji; sposób kodowania i operatory genetyczne; środowisko działania AE. 51
52 procedure Algorytm_Ewolucyjny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do begin wybierz T(t) z P(t) (reprodukcja) utwórz O(t) z T(t) (działanie operatorów ewolucyjnych) oceń O(t) utwórz P(t+1) z O(t) i P(t) (sukcesja) t:=t+1 end T temporary - tymczasowy end O offspring - potomny 52
53 REPRODUKCJA (preselekcja) SELEKCJA = + SUKCESJA (postselekcja) procedure Algorytm_Ewolucyjny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do begin wybierz T(t) z P(t) (reprodukcja) utwórz O(t) z T(t) (operatory) oceń O(t) utwórz P(t+1) z O(t) i P(t) (sukcesja) t:=t+1 end end Reprodukcja tworzenie populacji tymczasowej T(t), która jest poddawana działaniu operatorów genetycznych tworząc populację potomną O(t). Sukcesja tworzenie nowej populacji bazowej P(t+1) z populacji potomnej O(t) oraz starej populacji bazowej P(t). 53
54 METODY REPRODUKCJI 54
55 R. PROPORCJONALNA jak w AG... 55
56 R. TURNIEJOWA Wybór k osobników (rozmiar turnieju, zwykle k=2) i selekcja najlepszego z grupy. Powtarzane pop_size razy. 56
57 R. RANKINGOWA Szeregowanie osobników według wartości przystosowania i selekcja zgodnie z kolejnością (wg tzw. linii rangi ): zapobiega powstawaniu superosobników; pomija informację o względnych ocenach osobników. 57
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
Bardziej szczegółowoMETODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
Bardziej szczegółowoMETODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value EVOLUTIONARY
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
BINARNIE CZY INACZEJ? OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS
Bardziej szczegółowoPLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Bardziej szczegółowoAlgorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Bardziej szczegółowoAlgorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Bardziej szczegółowoMETODY HEURYSTYCZNE 3
METODY HEURYSTYCZNE wykład 3 1 ALGORYTMY GENETYCZNE 2 SCHEMAT DZIAŁANIA ANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Bardziej szczegółowoALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie
Bardziej szczegółowoSCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Bardziej szczegółowoAlgorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Bardziej szczegółowoAlgorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Bardziej szczegółowoAlgorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Bardziej szczegółowoLABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
Bardziej szczegółowoALGORYTMY GENETYCZNE I EWOLUCYJNE
http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,
Bardziej szczegółowoGenerowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Bardziej szczegółowoAlgorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Bardziej szczegółowoZadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Bardziej szczegółowoObliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY
Bardziej szczegółowoMetody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Bardziej szczegółowoALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Bardziej szczegółowoKatedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Bardziej szczegółowoTechniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Bardziej szczegółowoDobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Bardziej szczegółowoAlgorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Bardziej szczegółowoZadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Bardziej szczegółowoAlgorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
Bardziej szczegółowoProblemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Bardziej szczegółowoAlgorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Bardziej szczegółowo6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Bardziej szczegółowoAlgorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Bardziej szczegółowoLABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Bardziej szczegółowoAlgorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Bardziej szczegółowoLABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
Bardziej szczegółowoAlgorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Bardziej szczegółowoWAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 FITNESS
Bardziej szczegółowoAlgorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Bardziej szczegółowoRównoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS F. wykład VALUE fitness
Bardziej szczegółowoAlgorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Bardziej szczegółowoAlgorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Bardziej szczegółowoAlgorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Bardziej szczegółowoModyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Bardziej szczegółowoTeoria algorytmów ewolucyjnych
Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może
Bardziej szczegółowoALGORYTMY EWOLUCYJNE
1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.
Bardziej szczegółowoAlgorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
Bardziej szczegółowoALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Bardziej szczegółowoEfektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Bardziej szczegółowoAlgorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
Bardziej szczegółowoStruktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Bardziej szczegółowoAlgorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Bardziej szczegółowoStrefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Bardziej szczegółowoAproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Bardziej szczegółowoNa poprzednim wykładzie:
ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Bardziej szczegółowoStrategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Bardziej szczegółowoSztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
Bardziej szczegółowoAlgorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Bardziej szczegółowow analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Bardziej szczegółowoStandardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
Bardziej szczegółowoALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Bardziej szczegółowoSYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Bardziej szczegółowoMatematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Bardziej szczegółowoPLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
Bardziej szczegółowoPLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
Bardziej szczegółowoAlgorytmy ewolucyjne (2)
Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania
Bardziej szczegółowoTeoria informacji i kodowania Ćwiczenia
Teoria informacji i kodowania Ćwiczenia Piotr Chołda, Andrzej Kamisiński Katedra Telekomunikacji Akademii Górniczo-Hutniczej Kod źródłowy Kodem źródłowym nazywamy funkcję różnowartościową, która elementom
Bardziej szczegółowoMetody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Bardziej szczegółowoAlgorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Bardziej szczegółowoInspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
Bardziej szczegółowoKompresja Kodowanie arytmetyczne. Dariusz Sobczuk
Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany
Bardziej szczegółowoAlgorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż.
Algorytmy genetyczne jako metoda wyszukiwania wzorców Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Marcin Borkowski Krótko i na temat: Cel pracy Opis modyfikacji AG Zastosowania
Bardziej szczegółowoTechniki ewolucyjne - algorytm genetyczny i nie tylko
Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy
Bardziej szczegółowoOptymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Bardziej szczegółowoWybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Bardziej szczegółowoStrategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
Bardziej szczegółowoSkalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności
Bardziej szczegółowoALGORYTMY GENETYCZNE
ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.
Bardziej szczegółowoOdkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Bardziej szczegółowoObliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
ZTUCZNA INTELIGENCJA WYKŁAD 6. ALGORYTMY GENETYCZNE - CHEMATY, METODY ELEKCJI Częstochowa 204 Dr hab. inż. Grzegorz Dude Wydział Eletryczny Politechnia Częstochowsa CHEMATY chemat zbór chromosomów o wspólnych
Bardziej szczegółowoKodowanie informacji
Kodowanie informacji Tomasz Wykład 4: kodowanie arytmetyczne Motywacja Podstawy i własności Liczby rzeczywiste Motywacje 1 średnia długość kodu Huffmana może odbiegać o p max + 0.086 od entropii, gdzie
Bardziej szczegółowoOBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 6 FITNESS
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Bardziej szczegółowoTemat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoPROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE
D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny
Bardziej szczegółowoAlgorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
Bardziej szczegółowo