ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA
|
|
- Danuta Kornelia Kołodziej
- 8 lat temu
- Przeglądów:
Transkrypt
1 INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie i uogólnienie AG Należy jednoznacznie określić: schemat działania AE; metodę selekcji; sposób kodowania i operatory genetyczne; środowisko działania AE. 3 procedure Algorytm_Ewolucyjny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do begin wybierz T(t) z P(t) (reprodukcja) utwórz O(t) z T(t) (działanie operatorów ewolucyjnych) end oceń O(t) utwórz P(t+) z O(t) ip(t) (sukcesja) t:=t+ end T temporary - tymczasowy O offspring - potomny 4 SELEKCJA = REPRODUKCJA (preselekcja) + SUKCESJA (postselekcja) procedure Algorytm_Ewolucyjny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do begin wybierz T(t) z P(t) (reprodukcja) utwórz O(t) z T(t) (operatory) oceń O(t) utwórz P(t+) z O(t) ip(t) (sukcesja) t:=t+ end end Napór selekcyjny (selektywny nacisk selektywny nacisk): Tendencja algorytmu do poprawiania wartości średniej przystosowania. Algorytm charakteryzuje się tym większym naporem selekcyjnym, im większa jest oczekiwana liczba kopii lepszego osobnika w porównaniu z oczekiwaną liczbą kopii osobnika gorszego. Reprodukcja tworzenie populacji tymczasowej T(t), która jest poddawana działaniu operatorów genetycznych tworząc populację potomną O(t). Sukcesja tworzenie nowej populacji bazowej P(t+) z populacji potomnej O(t) oraz starej populacji bazowej P(t). 5 Superosobniki: niepożądane w początkowej fazie działania (przedwczesna zbieżność); pozytywne pod koniec pracy algorytmu (zawężenie przestrzeni poszukiwań). 6
2 Twarda (brutalna) selekcja wybór do populacji potomnej i powielanie tylko najlepszego osobnika (metoda stochastycznego wzrostu). Przyjęcie jednakowego prawdopodobieństwa - algorytm błądzi przypadkowo (brak( selekcji). W AE - metoda pośrednia, zwana miękką selekcją. METODY REPRODUKCJI 7 8 KOŁO O RULETKI SELEKCJA RANKINGOWA jak w AG... Szeregowanie osobników w wedługw wartości przystosowa- nia i selekcja zgodnie z kolejności cią (wg tzw. linii rangi ): SELEKCJA TURNIEJOWA Wybór k osobników (rozmiar turnieju, zwykle k=2) i selekcja najlepszego z grupy Zapobiega powstawaniu superosobników Powtarzane pop_size razy. 9 Pomija informację o względnych ocenach osobników. 0 SUKCESJA TRYWIALNA (z całkowitym zastępowaniem) METODY SUKCESJI Nową populacją bazową staje populacja potomna: P(t+) = O(t) (jak w AG). Najbardziej odporna na przedwczesną zbieżność. Najwolniej prowadzi do rozwiązania optymalnego. Może prowadzić do sytuacji, w której nie zawsze najlepsze rozwiązania z populacji P(t) znajdą się w populacji P(t+) +); 2 2
3 SUKCESJA Z CZĘŚ ĘŚCIOWYM ZASTĘPOWANIEM W nowej populacji bazowej są osobniki z populacji potomnej i ze starej populacji bazowej P(t+) = O(t) + P(t) Prowadzi zwykle do stabilniejszej pracy AE. Może spowodować tendencję do osiągania maksimów lokalnych. Mechanizm usuwania (warianty): usuwanie najgorzej przystosowanych osobników; usuwanie osobników podobnych do potomnych; usuwanie losowo wybranych osobników. SUKCESJA ELITARNA Gwarantuje przeżycie co najmniej najlepszego osob- nika poprzez odpowiedni wybór osobników z P(t) do P(t+) Wzrost wielkości elity powoduje przyspieszenie zbieżności algorytmu. Wzrost wielkości elity powoduje większe prawdo- podobieństwo osiągania ekstremów lokalnych. Najkorzystniej jeden, ew. kilka osobników). usuwanie losowo wybranych osobników. 3 4 TYPOWE OPERATORY KRZYŻOWANIA 5 Para rodziców para potomków Zwykle : 2 osobniki rodzicielskie - 2 (sprzężone) osobniki potomne. Pojedynczy osobnik potomny wariant dwuosobniczy para osobników rodzicielskich; wariant globalny jeden wiodący i n pomocniczych osobników rodzicielskich (po jednym dla każdego genu). Krzyżowanie wieloosobnicze: z wieloma osobnikami potomnymi; z jednym osobnikiem potomnym. 6 OPERATORY KRZYŻOWANIA WYMIENIAJĄCEGO 7 Wartość wielkości elity δ decyduje o naporze selek- cyjnym (δ=0 sukcesja trywialna). Tworzą chromosomy potomne przez składanie ich z wartości genów chromosomów rodzicielskich. Mogą być wykorzystywane zarówno przy kodo- waniu binarnym, jak i rzeczywistoliczbowym. Nie dochodzi do modyfikacji wartości genów zawartych w chromosomach krzyżowanych osobników rodzicielskich (tylko ich przetasowanie). 8 3
4 KRZYŻOWANIE JEDNOPUNKTOWE (proste) wybór (z rozkładem jednostajnym) liczby c (punkt rozcięcia) ze zbioru {, 2,..., n -} n - długość osobnika; Podział chromosomów X i X 2 poddawanych krzyżowaniu na dwie części i ich sklejanie: Y = [X[,,..., X c, X2 c+,,, X 2 n]. X X c Y Z W wersji z 2 osobnikami potomnymi drugi potomek: Z = [X[ 2,,..., X 2 c, X c+,,, X n ] 9 20 KRZYŻOWANIE DWUPUNKTOWE wybór 2 punktów rozcięcia c i c 2 ; X X Y 3.24 Z 2.22 Podział chromosomów X i X 2 poddawanych krzyżo- waniu na 3 części i wymiana środkowej części: Y = [X[,,..., X c, X 2 c+,, X 2 c2, X c2+,, X n ] c W wersji z 2 osobnikami potomnymi drugi potomek: c 2 Z = [X[ 2,,..., X 2 c, X c+,, X c2, X 2 c2+,, X 2 n ] c = c 2 krzyżowanie jednopunktowe KRZYŻOWANIE WIELOPUNKTOWE KRZYŻOWANIE RÓWNOMIERNE p e =0.5 Chromosom potomny: X i jeśli wylosowano liczbę < <p e ; Yi = 2 X i w przeciwnym razie. p e parametr krzyżowania (typowo p e =0.5) X X wylosowano Y Z W wersji z 2 osobnikami potomnymi drugi potomek: 2 X jeśli Y i = X i ; i Zi = X w przeciwnym razie. i
5 KRZYŻOWANIE DIAGONALNE Jest krzyżowaniem wieloosobniczym. Tworzy r potomków z r rodziców przy c = r - punktach krzyżowania. Osobniki potomne powstają w wyniku składania fragmentów kodu po przekątnej. Dla 3 osobników: Y = [X[,,..., X c, X 2 c+,, X 2 c2, X 3 c2+,, X 3 n ] Z = [X[ 2,,..., X 2 c, X 3 c+,, X 3 c2, X c2+,, X n ] W = [X[ 3,,..., X 3 c, X c+,, X c2, X 2 c2+,, X 2 n ] 25 X X 2 X 3 Y Z W W wersji potomkiem tylko potomek Y 26 OPERATORY KRZYŻOWANIA UŚREDNIAJĄCEGO Są specyficzne dla kodowania rzeczywistoliczbowego; Oddziałują na wartości genów chromosomów poddawanych krzyżowaniu; Wartości każdego genu chromosomów potomnych są liczbami zawierającymi się między największą i najmniejszą wartością genu chromosomów rodzicielskich KRZYŻOWANIE ARYTMETYCZNE X X 2 Y Z generowanie liczby losowej k z zakresu (0,) lub jej arbitralny wybór; uśrednianie arytmetyczne wartości genów chromosomów rodzicielskich: Y = X + k (X 2 - X ) k= W wersji z 2 osobnikami potomnymi drugi potomek: X 2 Rodzic 2 Linia krzyżowania Z = X 2 + X - Y Potomek 2 Potomek k=0.25 Rodzic 29 X 30 5
6 KRZYŻOWANIE HEURYSTYCZNE X X 2 Y i Nie jest krzyżowaniem uśredniającym! Generowanie liczby losowej k z zakresu (0,); Tworzy się (maksymalnie) jednego potomka: Y = k (X 2 - X ) + X przy założeniu, że X 2 X X 2 Może utworzyć potomka, który nie jest dopuszczalny, wówczas: Potomek Rodzic 2 Linia krzyżowania» generuje się nową liczbę losową i tworzy nowego potomka; Rodzic» Jeśli po założonej liczbie prób nie utworzono osobnika dopuszczalnego, to nie tworzy się potomka. 3 X 32 MUTACJA RÓWNOMIERNA TYPOWE OPERATORY MUTACJI 33 Losowy wybór genu w chromosomie. Przyjęcie przez gen wartości losowej (z rozkładem równomiernym) z zakresu dopuszczalnego dla danej zmiennej: Y = [X,..., X k,..., X n ], X k = left(k), right(k) Szczególnie użyteczna we wczesnej fazie działania AE (gdy pożądane jest szerokie przeszukiwanie obszaru poszukiwań optimum). 34 MUTACJA NIERÓWNOMIERNA Funkcja Δ(t,y) przyjmuje wartości z zakresu [0,y]; Należy do grupy tzw. mutacji ze strojeniem. Modyfikacja wartości wybranego genu o wartość pewnej funkcji Δ(t,y): Prawdopodobieństwo, że Δ(t,y) jest bliskie zero wzrasta ze wzrostem czasu obliczeń (nie zależy y jednak od zachowania się AE). Δ(t,y) Δ(t,y) Y = [X,..., X k,..., X n ], y y gdzie: X k =X k + Δ (t, right(k)-x k ) gdy wylosowano 0 X k =X k Δ (t, X k - left(k) gdy wylosowano 0 k 0 k 35 Początkowa faza obliczeń Pod koniec działania ania AE 36 6
7 MUTACJA BRZEGOWA MUTACJA GAUSSOWSKA Jest odmianą mutacji równomiernej, w której: X k = left(k) gdy wylosowano 0 X k = right(k) gdy wylosowano Przyjęcie przez wylosowany gen wartości losowej (z rozkładem Gaussa) o wartości oczekiwanej równej wartości przed zmianą: Y = [X,..., X k,..., X n ], X k = X k +N(0, N(0,σ) Szczególnie użyteczna, gdy rozwiązanie optymalne leży na brzegu obszaru dopuszczalnego lub bardzo blisko tego brzegu) LOSOWOŚĆ W AE OCENA DZIAŁANIA AE 39 Różne zachowanie algorytmu w niezależnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych... Losowość jest wprowadzana w AE: Podczas generowania populacji początkowej W procesie wyboru populacji potomnej na drodze reprodukcji (ukierunkowanie działania AE). Podczas działania operatorów ewolucyjnych (próbkowanie przestrzeni roboczej). 40 Należy dokonać wielu niezależnych uruchomień dla losowej próby różnych populacji bazowych P(0) (0). W przypadku wielu uruchomień dla tej samej popu- lacji P(0) można mówić o właściwościach danego algorytmu dla konkretnej populacji początkowej. Porównywane dwa algorytmy: wskazane jest aby próba ta była taka sama (dla każdej losowej populacji początkowej uruchamia się dwa porównywane algorytmy). ANALIZA STATYSTYCZNA: Analiza wartości oczekiwanej i odchylenia standardo- wartości przystosowania w populacji bazowej. wego Uwzględnienie informacji o min. i max.. osiąganej wartości. Uwzględnienie informacji o liczbie przypadków nie- różnych od najlepszego. wiele Prezentacja wyników w postaci histogramu pozwala ocenić właściwości rozkładu, które mogą umknąć przy analizie ograniczonej jedynie do statystyk liczbowych. Przykładowy histogram:
8 KRZYWE ZBIEŻNOŚCI Wykresy zmian wartości rozwiązania roboczego (średniego, najlepszego, najgorszego) w czasie. Kreśli się je: - dla pojedynczego uruchomienia algorytmu; - dla wielu niezależnych uruchomień. (Uśrednione bardziej reprezentatywne, lecz gubi się niektóre informacje o zachowaniu AE w pojedynczych uruchomieniach). Przykładowe krzywe zbieżności (dla uruchomienia algorytmu): wartość f. przystosowania max śr min Szczególna krzywa zbieżności: Wykres zmian w kolejnych pokoleniach wartości przys- tosowania najlepszego osobnika znalezionego od początku działania AE. Po zakończeniu działania AE osobnik ten jest rozwiąza- niem wyz.. przez pojedyncze uruchomienie AE wartość f. przystosowania pokolenie pokolenie KRYTERIA ZATRZYMANIA AE KRYTERIUM MAKSYMALNEGO KOSZTU Algorytm kończy działanie, jeśli koszt algorytmu przekroczy założoną wartość maksymalną K max. Często przyjęta odmiana przyjęcie pewnej maksymalnej dopuszczalnej liczby pokoleń algorytmu. Φ t max t KRYTERIUM ZADOWALAJĄCEGO POZIO- MU FUNKCJI PRZYSTOSOWANIA Zatrzymanie działania gdy AE znajdzie rozwiązanie o wartości funkcji przystosowania określonej przez użytkownika jako zadowalająca Φ s. KRYTERIUM MIN. SZYBKOŚCI POPRAWY Algorytm jest zatrzymywany, jeśli w kolejnych τ oblicze- niach wartości funkcji przystosowania nie uda się poprawić wyniku o więcej niż ε. Zwykle nie jest łatwo (bez dostatecznie dobrej znajo- mości funkcji przystosowa- nia) określić wartość zadowalającą. AE może działać dowolnie długo (należy dodatkowo określić maksymalny koszt znalezienia rozwiązania). Φ Φ s t 47 Często ε = 0 - algorytm zatrzymywany, jeśli nie uda się uzyskać lepszego rozwiązania w kolejnych τ pokoleniach. Φ min. szybkość poprawy ε τ t 48 8
METODY HEURYSTYCZNE wykład 3
METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);
METODY HEURYSTYCZNE wykład 3
SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)
METODY HEURYSTYCZNE 3
METODY HEURYSTYCZNE wykład 3 1 ALGORYTMY GENETYCZNE 2 SCHEMAT DZIAŁANIA ANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
OBLICZENIA EWOLUCYJNE
BINARNIE CZY INACZEJ? OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Na poprzednim wykładzie:
ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Algorytmy ewolucyjne. wprowadzenie
Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
Strategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
OBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji
Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
Algorytmy ewolucyjne Część II
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Część II Metaheurystyki Treść wykładu Zastosowania Praktyczne aspekty GA Reprezentacja Funkcja dopasowania Zróżnicowanie dopasowania
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła
Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena
ALGORYTMY GENETYCZNE
ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Techniki ewolucyjne - algorytm genetyczny i nie tylko
Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Obliczenia Naturalne - Strategie ewolucyjne
Literatura Historia Obliczenia Naturalne - Paweł Paduch Politechnika Świętokrzyska 3 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - 1 z 44 Plan wykładu Literatura Historia 1 Literatura Historia 2 Strategia
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES
WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES Dynamika mutacyjnego AE Mutacja gaussowska σ=0.1 Wszystkie wygenerowane punkty Wartość średnia jakości punktów populacji
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
ALHE Jarosław Arabas Metaheurystyki w Rn Ewolucja różnicowa EDA CMAES Rój cząstek
ALHE Jarosław Arabas Metaheurystyki w Rn Ewolucja różnicowa EDA CMAES Rój cząstek Metoda przeszukiwania stan adaptacja S0 S1 om : Π X M M inicjacja S2 S4 S8 selekcja I : S U X o s : Π H U X wariacja o
Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)
1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości
SZTUCZNA INTELIGENCJA
ZTUCZNA INTELIGENCJA WYKŁAD 6. ALGORYTMY GENETYCZNE - CHEMATY, METODY ELEKCJI Częstochowa 204 Dr hab. inż. Grzegorz Dude Wydział Eletryczny Politechnia Częstochowsa CHEMATY chemat zbór chromosomów o wspólnych
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY
Problem Komiwojażera - algorytmy metaheurystyczne
Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman
OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM
mgr inż. Marta Woch *, prof. nadzw. dr hab. inż. Sylwester Kłysz *,** * Instytut Techniczny Wojsk Lotniczych, ** Uniwersytet Warmińsko-Mazurski w Olsztynie OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
5. Algorytm genetyczny przykład zastosowania
5. Algorytm genetyczny przykład zastosowania Zagadnienie magicznych kwadratów Opis działania algorytmu Zagadnienie magicznych kwadratów polega na wygenerowaniu kwadratu n n, w którym elementami są liczby
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
ALGORYTMY GENETYCZNE I EWOLUCYJNE
http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
Wielokryterialne harmonogramowanie portfela projektów. Bogumiła Krzeszowska Katedra Badań Operacyjnych
Wielokryterialne harmonogramowanie portfela projektów Bogumiła Krzeszowska Katedra Badań Operacyjnych Problem Należy utworzyć harmonogram portfela projektów. Poprzez harmonogram portfela projektów będziemy
Teoria algorytmów ewolucyjnych
Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Programowanie genetyczne
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp
OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:
METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Algorytmy genetyczne i wielomiany w zagadnieniu interpolacji
Algorytmy genetyczne i wielomiany w zagadnieniu interpolacji Seminarium Metod Inteligencji Obliczeniowej Warszawa 30 V 2007 mgr inż. Marcin Borkowski Dziś opowiem o: Algorytmie genetycznym i niszach Starszym