OBLICZENIA EWOLUCYJNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "OBLICZENIA EWOLUCYJNE"

Transkrypt

1 BINARNIE CZY INACZEJ? OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS F. wykład 4 VALUE fitness f. value MIGRATION PHASE FITNESS F. communication COMPUTATION with other SELECTION subpopulations YES TERMINATION CONDITION NO END 1 Binarnie Niebinarnie A B Z 1 6 Ciąg binarny Ciąg niebinarny Wartość Dopasowanie 1 Y L I T Porównanie liczby schematów: jednakowa liczba osobników; ciągi kodowe o różnych r długod ugościach. Liczba schematów: 3 l dla alfabetu dwójkowego (k+1) l dla alfabetu k-elementowego. By liczba punktów w w obu przestrzeniach była jednakowa: 2 l =k l tu: 3 5 = 243 dla alfabetu dwójkowego (32+1) 1 = 33 dla alfabetu k-elementowego. l długość osobnika zakodowanego binarnie, l dł.. osobnika zakodowanego w alfabecie k-elementowym tu: 2 5 =k 1 k = 32 3 Kod dwójkowy charakteryzuje się największ kszą ze wszyst- kich liczbą schematów przypadającą na bit informacji. 4 Jednakże e jeżeli: eli: zmiennych; dziedzina z zakresu [-5[ 5]; żądana dokładno adność 6 miejsc po przecinku; To: długość łańcucha binarnego wynosi 3; przestrzeń poszukiwań rzędu. Dla tak wielkich przestrzeni AG działaj ają słabo Zasada znaczących cych cegiełek: ek: Kod należy y dobierać w taki sposób, by schematy niskiego rzędu i o małej rozpięto tości wyrażały y własnow asności zadania oraz pozostawały y względnie niezależne ne od schematów w na pozycjach ustalonych. Zasada minimalnego alfabetu: Należy y wybrać najmniejszy alfabet, w którym zadanie wyraża a się w sposób b naturalny. 5 6

2 Jeden z celów w zmodyfikowanego kodowania: przybliżenie algorytmu do przestrzeni zadania. Dogodne jest, by dwa punkty leżą żące blisko siebie w przestrzeni reprezentacji (genotyp( genotyp) ) leżały y równier wnież blisko siebie w przestrzeni zadania (fenotyp). (Nie zawsze prawdziwe przy kodowaniu binarnym) np.: Binarnie Całkowitoliczbowo KOD GRAYA procedure GrayToBin value := g 1 b 1 := value for k := 2 to m do if g k = 1 then value := NOT value b k := value procedure BinToGray g 1 := b 1 for k := 2 to m do g k := b k 1 XOR b k 1 1 b = b 1, b 2,, b m liczba binarna g = g 1, g 2,, g m liczba w kodzie Graya; m długość ciągu kodowego. a b a XOR b Binarnie Kod Graya Zmiana 1 bitu w kodzie powoduje, że e otrzymana liczba ma szansę być liczbą bezpośrednio bliską liczbie przed zmianą. 9 KODOWANIE LOGARYTMICZNE Stosowane w celu zmniejszenia długod ugości łańcucha binarnego. [ b b bin] = ( 1) b b 1 2 ( 1) [ bin] 1 2 b 1 bit znaku wykładnika funkcji wykładniczej adniczej; b 2 bit znaku funkcji wykładniczej adniczej; bin reprezentacja wykładnika funkcji wykładniczej [bin] wartość dziesiętna liczby zakodowanej binarnie. 1 ( 1) [ 11 ] 6 [ 1] = ( 1) e = e = ( 1) [ 1 1 ] 3 [ 11] = ( 1) e = e = e Za pomocą 5 bitów w możliwe jest zakodowanie liczb z zakresu [-e 7, e 7 ] (w kodowaniu binarnym [, 31]). KODOWANIE CHROMOSOMU: Kodowanie (reprezentacja danych) to zbiór stanów w z przestrzeni zadania przedstawiony w postaci skończonego alfabetu znaków. Dalszą modyfikacją jest zastosowanie KODOWANIA ZMIENNOPOZYCYJNEGO. 11 Podział chromosomów uwzględniaj dniający strukturę: - standardowe (jak w klasycznym AG); - permutacyjne (np. problem komiwojażera - TSP); - drzewiaste; - macierzowe. 12

3 KODOWANIE CHROMOSOMU: Podział chromosomów uwzględniaj dniający wartości: - binarne (np. zadanie plecakowe); - całkowitoliczbowe (np. TSP); - zmiennopozycyjne (typowe inżynierskie zadania optymalizacji); - tekstowe. 13 Test: porównani wnanie wydajności kodowania binarnego i zmiennopozycyjnego. Zadanie sterowania: Ograniczenia: gdzie: N J = min xn + ( xk + uk) k = STEROWANIE OPTYMALNE - sterowanie automatyczne, w którym następuje ukształtowanie towanie przebiegu sygnału u sterującego powodujące maksymalizację lub minimalizację wartości funkcji celu. (charakteryzującej cej np. wydajność produkcji albo zużycie paliwa) x =, k =, 1,, N -1 k 1 x + + k uk x stan początkowy; x k R stan; u R N poszukiwany wektor sterowania. 14 Chromosom wektor sterowania u Wersja binarna: Dziedzina: -2, 2 dla każdego u i. Przyjęto to: x =, N=45 (u u = u,, u 44 ). Optimum: J* = K h 2 tu: J* = Każdy element wektora chromosomu zakodowano za pomocą tej samej liczby bitów; Każdy chromosom jest wektorem składaj adającym się z N słów; Nie pozwala na zwiększenie dokładno adności bez zwięk- szenia liczby bitów; Przy wzroście rozmiarów w dziedziny dokładno adność maleje przy konieczności ci zachowania stałej liczby bitów Wersja zmiennopozycyjna: Operatory określono tak, by każdy element chromosomu mieści cił się w wymaganym zakresie. Pozwala uwzględni dnić bardzo duże e dziedziny jak również przypadki o nieznanych dziedzinach; Łatwiej jest zaprojektować specjalistyczne narzędzia ułatwiające postępowanie powanie w przypadku nietrywialnych ograniczeń. 17 Porównywalno wnywalność algorytmów: Stała a liczebność populacji (6( osobników) Stała a liczba pokoleń (2 ) Każdy chromosom to wektor liczb zmiennopozycyj- nych o długod ugości zgodnej z wektorem rozwiązania; zania; W reprezentacji binarnej użyto u 3 bitów w do zakodo- wania jednej zmiennej, co daje: 3*45= 45=135 bitów w w chromosomie. Mimo użycia u różnych r operatorów (co wynika ze sposobu kodowania zadania i może powodować różnice w interpretacji) parametry programu dobrano tak, by wyniki mogły zostać uczciwie porównane. (np. w przypadku reprezentacji binarnej użyto klasycznych operatorów, jednak zezwolono na krzyżowanie tylko pomiędzy elementami). 18

4 Wyniki: L. elementów Czas CPU [s] (N ) zmiennopoz. binarnie Czas [s] zmiennopoz. binarnie l. elem. (N) Wnioski z testów: Reprezentacja zmiennopozycyjna jest szybsza. Reprezentacja zmiennopozycyjna jest stabilniejsza (daje bardziej zbliżone wyniki w różnych r przebiegach). Reprezentacja zmiennopozycyjna jest dokładniejsza (szczególnie w większych dziedzinach). Działanie anie algorytmów w (szybkość ść,, zbieżno ność) ) można poprawić wprowadzając specjalne operatory. W przypadku kodowania binarnego dla dużych dziedzin i wymaganej większej dokładno adności różnice r w czasach obliczeń powiększaj kszają się. 2 MODYFIKACJA PROBLEMU ZMODYFIKOWANY PROBLEM KLASYCZNY AG ZADANIE OPTYMALIZACJI ROZWIĄZANIE OPTYMALNE MODYFIKACJA ALGORYTMU ALGORYTM EWOLUCYJNY Zastosowanie AE 21 Modyfikacje: łańcuchy o zmiennej długod ugości; struktury bogatsze od łańcuchów w (np. macierze); zmodyfikowane operatory; nowe operatory (inwersja, klonowanie, itp.); inna niż binarna reprezentacja zadania; pamięć chromosomu; zmieniony AG, ulepszony AG, zmodyfikowany AG, 22 Różnorodne programy opierające się na zasadzie ewolucji mogą się różnić: strukturą danych; operatorami; metodami tworzenia populacji początkowej; sposobami uwzględniania ograniczeń zadania; parametrami. Zasada działania ania nie zmienia się: populacja osobników w podlega pewnej transformacji zaś osobniki starają się przetrwać w procesie ewolucji. 23 ALGORYTMY EWOLUCYJNE Rozwinięcie idei klasycznych AG w kierunku systemów bardziej skomplikowanych, zawierających: odpowiednie struktury danych (kodowanie); odpowiednie operatory. Słabość AE podstawy teoretyczne: tylko dla czystych AG istnieje tw.. o schematach; w innych podejściach tylko w niektórych przypadkach można wykazać teoretycznie ich zbieżno ność (np. strategie ewolucyjne stosowane do zadań regularnych). Zwykle jednak tylko uzyskujemy interesujące wyniki 24

5 Równoległość AG i AE: Rozproszony AE, autor: Wacław aw KUŚ: W świecie, w którym algorytmy sekwencyjne są przerabiane na równoleg wnoległe e za pomocą niezliczonych sztuczek i łamańców, jest niemałą ironią, że e AG (algorytmy wysoko równoleg wnoległe) e) są przerabiane na sekwencyjne za pomocą równie nienaturalnych sztuczek i wykrętów Goldberg,, 1995 Rozproszony AE znaczące ce przyspieszenie obliczeń N START POPULACJA POCZĄTKOWA OPERATORY EWOLUCYJNE MIGRACJA SELEKCJA WARUNEK ZATRZYMANIA STOP chromosom T f. celu FEM FEM (F. CELU) FEM PROCES ZARZĄDZAJĄCY komunikacja z innymi podpopulacjami Max liczba procesorów: (l. podpopulacji) (l. osobników) Dla danego problemu można określi lić wiele sposobów kodowania i zdefiniować szereg operatorów w (np. zadanie komiwojażera). AE to rozwinięcie i uogólnienie AG. Należy y jednoznacznie określi lić: schemat działania ania AE; metodę selekcji; sposób b kodowania i operatory genetyczne; środowisko działania ania AE. 27 procedure Algorytm_Ewolucyjny t:= wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do wybierz T(t) z P(t) (reprodukcja) utwórz O(t) z T(t) (działanie operatorów ewolucyjnych) oceń O(t) utwórz P(t+1) z O(t) ip(t) (sukcesja) t:=t+1 T temporary - tymczasowy O offspring - potomny 28 SELEKCJA = REPRODUKCJA (preselekcja) + SUKCESJA (postselekcja) procedure Algorytm_Ewolucyjny t:= wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do wybierz T(t) z P(t) (reprodukcja) utwórz O(t) z T(t) (operatory) oceń O(t) utwórz P(t+1) z O(t) ip(t) (sukcesja) t:=t+1 Napór r selekcyjny (selektywny nacisk selektywny nacisk): Tencja algorytmu do poprawiania wartości średniej przystosowania. Reprodukcja tworzenie populacji tymczasowej T(t), która jest poddawana działaniu operatorów genetycznych tworząc populację potomną O(t). Sukcesja tworzenie nowej populacji bazowej P(t+1) z populacji potomnej O(t) oraz starej populacji bazowej P(t). 29 Algorytm charakteryzuje się tym większym naporem selekcyjnym, im większa jest oczekiwana liczba kopii lepszego osobnika w porównaniu z oczekiwaną liczbą kopii osobnika gorszego. 3

6 METODY REPRODUKCJI Twarda (brutalna) selekcja wybór r do populacji potomnej i powielanie tylko najlepszego osobnika (metoda stochastycznego wzrostu). KOŁO O RULETKI Przyjęcie jednakowego prawdopodobieństwa - algorytm błąb łądzi przypadkowo (brak( selekcji). jak w AG W AE - metoda pośrednia, zwana miękką selekcją. REPRODUKCJA TURNIEJOWA Wybór k osobników (rozmiar turnieju, zwykle k=2) i selekcja najlepszego z grupy. Powtarzane pop_size razy REPRODUKCJA RANKINGOWA Szeregowanie osobników w według wartości przystosowania i selekcja zgodnie z kolejności cią (wg tzw. linii rangi ): METODY SUKCESJI SUKCESJA TRYWIALNA (z całkowitym zastępowaniem) Nową populacją bazową staje populacja potomna: P(t+1) = O(t) (jak w AG). 5 5 Najbardziej odporna na przedwczesną zbieżno ność Najwolniej prowadzi do rozwiązania zania optymalnego. zapobiega powstawaniu superosobników; pomija informację o względnych ocenach osobników. 33 Może e prowadzić do sytuacji, w której nie zawsze najlepsze rozwiązania zania z populacji P(t) znajdą się w populacji P(t+1) +1); 34 SUKCESJA Z CZĘŚ ĘŚCIOWYM ZASTĘPOWANIEM W nowej populacji bazowej sąs osobniki z populacji potomnej i ze starej populacji bazowej P(t+1) = O(t) + P(t) Prowadzi zwykle do stabilniejszej pracy AE. Może e spowodować tencję do osiągania maksimów w lokalnych. Mechanizm usuwania (warianty): usuwanie najgorzej przystosowanych osobników; usuwanie osobników w podobnych do potomnych; usuwanie losowo wybranych osobników. 35 SUKCESJA ELITARNA Gwarantuje przeżycie co najmniej najlepszego osob- nika poprzez odpowiedni wybór r osobników w z P(t) do P(t+1) Wzrost wielkości elity powoduje przyspieszenie zbieżno ności algorytmu. Wzrost wielkości elity powoduje większe prawdo- podobieństwo osiągania ekstremów w lokalnych. Wartość wielkości elity δ decyduje o naporze selek- cyjnym (δ= sukcesja trywialna). Najkorzystniej jeden, ew. kilka osobników. 36

7 EKSPLORACJA I EKSPLOATACJA G dziedzina funkcji; X maksimum lokalne funkcji przystosowania; Eksploracja: Wybranie zbioru G(X*),, zawierającego maksimum globalne X* z rodziny obszarów w przyciągania ekstremów w lokalnych. Eksploatacja: Przeszukiwanie obszaru przyciągania G(X) w celu wyznaczenie maksimum lokalnego X (sprowadza się do zadania optymalizacji lokalnej). 37 Najczęś ęściej informacja o rodzinie obszarów w przy- ciągania i wartości funkcji przystosowania w maksi- mach lokalnych nie jest dostępna pna,, a jej pozyskanie jest bardzo kosztowne. Zadanie optymalizacji globalnej jest nierozwiązywalne zywalne (w ogólnym przypadku, w dokładnym sensie). Poszukuje się metod optymalizacji prowadzących do uzyskania dobrych rozwiąza zań przybliżonych z akcep- towalnym kosztem jak algorytmy ewolucyjne. 38 LOSOWOŚĆ W AE OCENA DZIAŁANIA ANIA AE Różne zachowanie algorytmu w niezależnych nych uruchomieniach przy jednakowych ustawieniach parametrów w i identycznych populacjach początkowych tkowych Losowość jest wprowadzana w AE: Podczas generowania populacji początkowej. W procesie wyboru populacji potomnej na drodze reprodukcji (ukierunkowanie działania ania AE). 39 Podczas działania ania operatorów w ewolucyjnych (próbkowanie przestrzeni roboczej). 4 Należy y dokonać wielu niezależnych nych uruchomień dla losowej próby różnych r populacji bazowych P() (). W przypadku wielu uruchomień dla tej samej populacji P() można mówim wić o właściwow ciwościach ciach danego algorytmu dla konkretnej populacji początkowej. ANALIZA STATYSTYCZNA: Analiza wartości oczekiwanej i odchylenia standardowego wartości przystosowania w populacji bazowej. Uwzględnienie informacji o min. i max.. osiąganej wartości. Uwzględnienie informacji o liczbie przypadków w niewiele różnych r od najlepszego. Porównywane dwa algorytmy: wskazane jest aby próba ta była a taka sama (dla każdej losowej populacji początkowej uruchamia się dwa porównywane algorytmy). Prezentacja wyników w w postaci histogramu pozwala ocenić właściwości rozkładu, które mogą umknąć przy analizie ograniczonej jedynie do statystyki liczbowych. częstość 2 pokolenie: wartość f. przystosowania 42

8 KRZYWE ZBIEŻNO NOŚCI Są wykresem zmian wartości rozwiązania zania roboczego (średniego, najlepszego, najgorszego) w czasie. Kreśli się je: - dla pojedynczego uruchomienia algorytmu; - dla wielu niezależnych nych uruchomień. wartość f. przystosowania max śr min Szczególna krzywa zbieżno ności: wartość f. przystosowania 2 15 Przykładowe krzywe zbieżno ności (dla 1 uruchomienia algorytmu): pokolenie pokolenie 44 KOSZT SYMULACJI A LICZBA POKOLEŃ (Uśrednione bardziej reprezen- tatywne,, lecz gubi się niektóre informacje o zachowaniu AE w pojedynczych uruchomieniach). Wykres zmian w kolejnych pokoleniach wartości przys- tosowania najlepszego osobnika znalezionego od początku działania ania AE. Po zakończeniu działania ania AE osobnik ten jest rozwiąza za- niem wyz.. przez pojedyncze uruchomienie AE. W wielu metodach optymalizacji koszt jest utożsa sa- miany z liczbą iteracji metody (przetwarzane jest jedno rozwiązanie zanie). W przypadku algorytmów w ewolucyjnych liczba obliczeń wartości funkcji przystosowania w pojedynczej iteracji algorytmu ewolucyjnego jest zależna od liczności ci populacji potomnej (przetwarzana jest populacja rozwiąza zań). Np.: iteracji (pokoleń) ) i osobników iteracji (pokoleń) osobników 45 KRYTERIA ZATRZYMANIA AE 46 Dowody zbieżno ności są znane jedynie dla pewnych szczególnych przypadków funkcji przystosowania (takich jak funkcja kwadratowa). Optymalne kryterium - stwierdzenie, że e rozwiązanie zanie wygenerowane przez AE jest dostatecznie dobrym przybliżeniem maksimum globalnego funkcji celu. To implikuje znajomość tego maksimum jeszcze przed rozpoczęciem ciem optymalizacji KRYTERIA ZATRZYMANIA: Monitorujące zdolność algorytmu do eksploracji przestrzeni genotypów. 47 MONITOROWANIE WARTOŚCI FUNKCJI PRZYSTOSOWANIA Kryterium maksymalnego kosztu Polegające na monitorowaniu wartości funkcji przy- stosowania osobników w generowanych przez algorytm; Algorytm kończy działanie, anie, jeśli koszt algorytmu przekroczy założon oną wartość maksymalną K max. Wartość K max jest naj- Φ częś ęściej związana zana ze specyfiką zadania. Często sto: : przyjęcie pew- nej maksymalnej liczby pokoleń algorytmu. t (Czas działania ania zależy niejawnie max t od liczby nowych osobników generowanych w każdym pokoleniu!) 48

9 Kryterium zadowalającego poziomu funkcji przystosowania Zatrzymanie działania ania gdy AE znajdzie rozwiązanie zanie o wartości funkcji przystosowania Φ s określonej przez użytkownika jako zadowalająca. Φ Φ s t 49 Kryterium min. szybkości poprawy ε τ min. szybkość poprawy t 5 MONITOROWANIE ZDOLNOŚCI EKSPLORACYJNYCH 51 Kryterium zaniku różnorodnor norodności populacji Różnorodność: wpływa na odporność algorytmu ewolucyjnego na ekstrema lokalne; sprawia, że e krzyżowanie ma duży y zasięg; powoduje w efekcie, że e algorytm dość szybko generuje nowe rozwiązania. zania. (zwykle równowa wnoważne ne z eksploatacją obszaru przyciągania jednego ekstremum niekoniecznie globalnego) Zwykle nie jest łatwo (bez dostatecznie dobrej znajo- mości funkcji przystosowa- nia) określi lić wartość zadowalającą. AE może e działać dowolnie długo (należy y dodatkowo określi lić maksymalny koszt znalezienia rozwiązania). zania). Algorytm jest zatrzymywany, jeśli w kolejnych τ obli- czeniach wartości f. przystosowania nie uda się po- prawić wyniku o więcej niż ε. Często ε = - AE zatrzymywany, jeśli nie uda się uzyskać lepszego rozwiązania zania w kolejnych τ pokoleniach. Φ Zdolność algorytmu do eksploracji przestrzeni geno- typów jest czynnikiem warunkującym odporność algorytmu na ekstrema lokalne. Zdolność taka wynika zarówno z różnorodności populacji bazowej,, jak równier wnież z zasięgu operatora mutacji (jeśli podlega on samoczynnej adaptacji). Zanik różnorodnor norodności przełą łączenie się na przeszukiwa- nia ograniczone do niewielkiego obszaru Kryterium zatrzymania bazujące na różnorodnor norodności po- pulacji wykorzystuje fakt, że obniżenie różnorodnor norodności poniżej pewnego poziomu świadczy o przejściu do etapu eksploatacji obszaru przyciągania ekstremum. Algorytm należy y wówczas w wczas zatrzymać i wykorzystać pewną metodę lokalną do dokładnego wyznaczenia tego ekstremum. Kryterium zaniku samoczynnie adapto- wanego zasięgu operatora mutacji Hipoteza (eksperymentalnie( potwierdzona), że e jeśli w AE stosuje się adaptację zasięgu mutacji,, to od pewnego momentu zasięg g ten ma trwałą tencję do zmniej- szania się. Ograniczenie zasięgu wiąż ąże e się z przełą łączeniem AE na eksploatację znalezionego obszaru przyciągania. Oblicza się dla populacji bazowej wartość średnią standardowych odchyleń pamiętanych w genotypach osobników w wykorzystywanych podczas mutacji. Spadek tej wartości poniżej pewnego progu σ min zakończenie działania. ania. 54

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie

Bardziej szczegółowo

LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...

LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG... OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value

Bardziej szczegółowo

METODY HEURYSTYCZNE wykład 3

METODY HEURYSTYCZNE wykład 3 METODY HEURYSTYCZNE wykład 3 1 Przykład: Znaleźć max { f (x)=x 2 } dla wartości całkowitych x z zakresu 0-31. Populacja w chwili t: P(t)= {x t 1,...x t n} Założenia: - łańcuchy 5-bitowe (x=0,1,...,31);

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY

Bardziej szczegółowo

METODY HEURYSTYCZNE wykład 3

METODY HEURYSTYCZNE wykład 3 SCHEMAT DZIAŁANIA AG: METODY HEURYSTYCZNE wykład 3 procedure Algorytm_genetyczny t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do t:=t+ wybierz P(t) z P(t-) (selekcja)

Bardziej szczegółowo

METODY HEURYSTYCZNE 3

METODY HEURYSTYCZNE 3 METODY HEURYSTYCZNE wykład 3 1 ALGORYTMY GENETYCZNE 2 SCHEMAT DZIAŁANIA ANIA AG: procedure algorytm_genetyczny begin t:=0 wybierz populację początkową P(t) oceń P(t) while (not warunek_zakończenia) do

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE 1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value EVOLUTIONARY

Bardziej szczegółowo

ALGORYTMY GENETYCZNE I EWOLUCYJNE

ALGORYTMY GENETYCZNE I EWOLUCYJNE http://wazniak.mimuw.edu.pl INTELIGENTNE TECHNIKI KOMPUTEROWE wykład Karol Darwin (59 On the origin of species ): ALGORYTMY GENETYCZNE I EWOLUCYJNE Gregor Johann Mel (-) - austriacki zakonnik, augustianin,

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Optymalizacja parametryczna (punkt kartezjańskim jest niewypukła).

Optymalizacja parametryczna (punkt kartezjańskim jest niewypukła). METODY INTELIGENCJI OBLICZENIOWEJ wykład RODZAJE ZADAŃ OPTYMALIZACJI (w zależno ności od przestrzeni szukiwań) Optymalizacja parametryczna (punkt U jest wektorem zm. niezależnych nych):. Zadania ciągłe

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch

LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia

Bardziej szczegółowo

Strategie ewolucyjne (ang. evolu4on strategies)

Strategie ewolucyjne (ang. evolu4on strategies) Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Na poprzednim wykładzie:

Na poprzednim wykładzie: ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE 1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 FITNESS

Bardziej szczegółowo

Dobór parametrów algorytmu ewolucyjnego

Dobór parametrów algorytmu ewolucyjnego Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING FITNESS F. wykład VALUE fitness

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Równoważność algorytmów optymalizacji

Równoważność algorytmów optymalizacji Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM

Bardziej szczegółowo

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Teoria algorytmów ewolucyjnych

Teoria algorytmów ewolucyjnych Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może

Bardziej szczegółowo

Algorytmy genetyczne (AG)

Algorytmy genetyczne (AG) Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,

Bardziej szczegółowo

Zadania laboratoryjne i projektowe - wersja β

Zadania laboratoryjne i projektowe - wersja β Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny

Bardziej szczegółowo

OBLICZENIA EWOLUCYJNE

OBLICZENIA EWOLUCYJNE 1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 6 FITNESS

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Strategie ewolucyjne (ang. evolution strategies)

Strategie ewolucyjne (ang. evolution strategies) Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) 1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE

ALGORYTMY EWOLUCYJNE 1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.

Bardziej szczegółowo

WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES

WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES Dynamika mutacyjnego AE Mutacja gaussowska σ=0.1 Wszystkie wygenerowane punkty Wartość średnia jakości punktów populacji

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony

Bardziej szczegółowo

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy genetyczne

Obliczenia Naturalne - Algorytmy genetyczne Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura

Bardziej szczegółowo

przetworzonego sygnału

przetworzonego sygnału Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego

Bardziej szczegółowo

BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza

BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

LABORATORIUM 1: Program Evolutionary Algorithms

LABORATORIUM 1: Program Evolutionary Algorithms Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:

Bardziej szczegółowo

Algorytmy ewolucyjne `

Algorytmy ewolucyjne ` Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall

Bardziej szczegółowo

Techniki ewolucyjne - algorytm genetyczny i nie tylko

Techniki ewolucyjne - algorytm genetyczny i nie tylko Reprezentacja binarna W reprezentacji binarnej wybór populacji początkowej tworzymy poprzez tablice genotypów (rys.1.), dla osobników o zadanej przez użytkownika wielkości i danej długości genotypów wypełniamy

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA ZTUCZNA INTELIGENCJA WYKŁAD 6. ALGORYTMY GENETYCZNE - CHEMATY, METODY ELEKCJI Częstochowa 204 Dr hab. inż. Grzegorz Dude Wydział Eletryczny Politechnia Częstochowsa CHEMATY chemat zbór chromosomów o wspólnych

Bardziej szczegółowo

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż.

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Algorytmy genetyczne jako metoda wyszukiwania wzorców Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Marcin Borkowski Krótko i na temat: Cel pracy Opis modyfikacji AG Zastosowania

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia

Teoria informacji i kodowania Ćwiczenia Teoria informacji i kodowania Ćwiczenia Piotr Chołda, Andrzej Kamisiński Katedra Telekomunikacji Akademii Górniczo-Hutniczej Kod źródłowy Kodem źródłowym nazywamy funkcję różnowartościową, która elementom

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych

Rok akademicki: 2013/2014 Kod: JIS AD-s Punkty ECTS: 4. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych Nazwa modułu: Algorytmy genetyczne i ich zastosowania Rok akademicki: 2013/2014 Kod: JIS-2-201-AD-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność:

Bardziej szczegółowo

Algorytmy ewolucyjne Część II

Algorytmy ewolucyjne Część II Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Część II Metaheurystyki Treść wykładu Zastosowania Praktyczne aspekty GA Reprezentacja Funkcja dopasowania Zróżnicowanie dopasowania

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

ALGORYTMY GENETYCZNE

ALGORYTMY GENETYCZNE ALGORYTMY GENETYCZNE Algorytmy Genetyczne I. Co to są algorytmy genetyczne? II. Podstawowe pojęcia algorytmów genetycznych III. Proste algorytmy genetyczne IV. Kodowanie osobników i operacje genetyczne.

Bardziej szczegółowo

6. Projektowanie składu chemicznego stali szybkotn cych o wymaganej twardo ci i odporno ci na p kanie

6. Projektowanie składu chemicznego stali szybkotn cych o wymaganej twardo ci i odporno ci na p kanie 6. Projektowanie składu chemicznego stali szybkotn cych o wymaganej twardo ci i odporno ci na p kanie Do projektowania składu chemicznego stali szybkotn cych, które jest zadaniem optymalizacyjnym, wykorzystano

Bardziej szczegółowo

ROZWÓJ ALGORYTMU EWOLUCJI RÓŻNICOWEJ. Konrad Wypchło

ROZWÓJ ALGORYTMU EWOLUCJI RÓŻNICOWEJ. Konrad Wypchło ROZWÓJ ALGORYTMU EWOLUCJI RÓŻNICOWEJ Konrad Wypchło Plan prezentacji 2 Elementy klasycznego algorytmu ewolucyjnego Ewolucja różnicowa DMEA i inne modyfikacje Adaptacja zasięgu mutacji (AHDMEA, SaHDMEA)

Bardziej szczegółowo

ALHE. prof. Jarosław Arabas semestr 15Z

ALHE. prof. Jarosław Arabas semestr 15Z ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem

Bardziej szczegółowo