ALGORYTMY IMMUNO- LOGICZNE
|
|
- Ewa Sowińska
- 9 lat temu
- Przeglądów:
Transkrypt
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome wykład AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS 7 VALUE fitness f. value MIGRATION PHASE communication FITNESS F. COMPUTATION with other SELECTION sugenrations YES TERMINATION CONDITION NO ALGORYTMY IMMUNO- LOGICZNE END 1 2 NATURALNY SYSTEM IMMUNOLOGICZNY: Może yć przedstawiony w postaci warstwowej: Jego zadaniem jest ochrona żywego organizmu przed działaniem ocych struktur mających charakter chorootwórcze (patogeny( patogeny), ), jak wirusy, akterie, grzyy czy niewłaściwie funkcjonujące komórki. Wszystkie te struktury, które wywołują reakcję immunologiczną,, nazywane są antygenami. Bardzo ogólnie: rozpoznawanie antygenów na zasadzie swój-ocy i eliminowanie tych drugich. 1. Skóra podstawowa ariera ochronna. 2. Warstwa fizjologiczna (temperatura, ph) stwarza warunki niekorzystne dla rozwoju ocych organizmów. 3. Odporność wrodzona (nieswoista) 4. Odporność adaptacyjna (swoista) 3 rozpoznawanie i eliminacja antygenów przez odpowiednie komórki 4 Limfocyty komórki, ędące głównymi składowymi adaptacyjnego systemu immunologicznego. Limfocyty (głównie typów T i B) ) w wielkich ilościach krążą w płynach ustrojowych system immunologiczny jest systemem zdecentralizowanym a wszystkie jego komórki mogą się dowolnie przemieszczać. Limfocyty rozpoznają napotykane antygeny i pomagają je eliminować,, przy czym mogą ze soą lokalnie współpracować. Limfocyty typu B - produkcja przeciwciał rozpoznających antygen. Limfocyty typu T - rozpoznawanie swój-ocy. Duże zróżnicowanie limfocytów: - pozwala na rozpoznawanie wielu różnych antygenów; - pierwotnie zyt mała licza komórek rozpoznających antygen y go zwalczyć
2 SZTUCZNY SYSTEM IMMUNOLOGICZNY (Artificial Immune System, AIS) Ziór metod oliczeniowych inspirowanych zasadami działania ania układ adów odpornościowych kręgowców. Tylko niektóre elementy naturalnych układów są rane pod uwagę, typowo: mutacja limfocytów B, proliferacja cja, komórki pamięci, rozpoznawanie antygenów z użyciem limfocytów B i T. Niektóre zastosowania: - optymalizacja (patogen reprezentuje optimum gloalne, szukane jest najlepiej dopasowane przeciwciało); - zagadnienia zw. z ezpieczeństwem sieciowym (np. NIDS - network intrusion detection system) - uczenie maszynowe; - systemy agentowe. 7 AIS - POJĘCIA: Komórka macierzysta wzorzec akceptowany w systemie; Przeciwciało oiekt rozpoznający oiekty nie ędące komórkami macierzystym (wzorce niepożą żądane). Antygen oiekt rozpoznawany i uaktywniający przeciwciała. Komórka pamięciowa przechowuje informacje o rozpoznanym antygenie; przy kolejnym ataku antygenu zostaje on dużo szyciej rozpoznany. Proliferacja namnażanie się komórek. Hipermutacje mutacje,, których częstotliwość jest przynajmniej o jeden rząd wielkości większa, niż innych mutacji w organizmie (zwykle jeszcze częściej). 8 PODSTAWOWE MECHANIZMY: PODSTAWOWE MECHANIZMY: Selekcja klonalna (limfocyty B) Cel namnożenie odpowiednich przeciwciał, iorących udział w zwalczaniu danego antygenu. Uaktywnione limfocyty B dzielą się produkując wiele klonów, które następnie przechodzą hipermutację y wytworzyć lepiej dopasowane przeciwciała. Dla powstałej populacji zmutowanych klonów oceniany stopień dopasowania każdego z nich do antygenu. Słao dopasowane są usuwane, dorze dopasowane pozostają. Selekcja negatywna (limfocyty T) Cel utworzenie zioru przeciwciał - detektorów, które nie są uaktywniane przez komórki macierzyste. W procesie selekcji negatywnej limfocytom T pokazywane są komórki własne. Jeśli dany limfocyt rozpozna którąś z nich, jest on usuwany. Nie podlegają mutacji /~stw/ais/ks/natural.html Przykład: AIS autorstwa dra inż. Wacława Kusia 1. Losowe wygenerowanie komórek pamięciowych. 2. Komórki pamięciowe proliferują i mutują tworząc limfocyty B (licza klonów zależy od przystosowania). 3. Oliczenie wartości przystosowania dla limfocytów B. 4. Selekcja na podstawie odległości między każdą komórką pamięciową a limfocytami B. 5. Mechanizm zatłoczenia usuwa podone komórki pamięci. 6. Procedura jest powtarzana do spełnienia warunku zakończenia (np. licza iteracji). 12 2
3 ALGORYTMY IMMUNOGENETYCZNE Są połączeniem mechanizmów genetycznych (ewolucyjnych) i immunologicznych; AIS i AE mają wiele cech wspólnych, np. działanie na populacji osoników, stosowanie mechanizmów selekcji. W algorytmach immunogenetycznych stosowane są operatory krzyżowania, mutacji i selekcji (jak AE) przy zachowaniu populacji antygenów i przeciwciał (jak AIS). Często: AE do generowania populacji przeciwciał, y poddać je immunologicznej selekcji negatywnej. Funkcja przystosowania zwykle miary azujące na stopniu dopasowania przeciwciała do antygenu (jak w AIS). PRZYKŁADY ZASTOSOWAŃ AE UKŁADANIE PLANU LEKCJI Jest prolemem należącym do klasy NP-trudnych trudnych. Wiele nietrywialnych ograniczeń. Zadanie opisuje się poprzez: listę nauczycieli n; listę grup g; listę terminów t; listę sal s. Zadanie polega na wygenerowaniu pewnej czteroargu- mentowej relacji określonej na ziorze nauczycieli, grup, sal i godzin zajęciowych ciowych,, do której należą wszystkie ta- kie i tylko takie czwórki n,g,s,t, że nauczyciel n prowadzi zajęcia z grupą g w sali s i w terminie Ograniczenia: 1. Twarde: Zadana jest licza godzin dla każdego nauczyciela i każdej klasy; W każdej sali i terminie jest tylko jeden nauczyciel; Nauczyciel nie może uczyć dwu grup naraz; W każdej sali z zaplanowanymi zajęciami znajduje się nauczyciel. terminie t Ograniczenia: Programy wspomagające układanie planu, np: 2. Miękkie: Cele dydaktyczne (rozłożenie przedmiotów w tygodniu); Cele personalne (pozostawienie wolnych niektórych terminów dla niektórych nauczycieli); Cele organizacyjne (dodatkowy nauczyciel na każdy termin na zastępstwo). Zadanie układania planu lekcji rozwiązane z użyciem AE zostało pomyślnie przetestowane np. dla danych z dużej szkoły w Mediolanie (1991)
4 PROGRAMOWANIE DROGI W ŚRODO- WISKU RUCHOMEGO ROBOTA Cel: Znalezienie się roota w punkcie docelowym ez zaguienia się i kolizji z jakimkolwiek oiektem. Nawigator ewolucyjny (Michalewicz) - połączenie planowań: zawczasu i ieżącego drogi roota: Początkowo: (planowanie( zawczasu) ) poszukiwanie najlepszej drogi (rozwiązanie optymalne): Rozwiązania: Droga planowana jest na wstępie (skuteczne skuteczne jedynie przy założeniu, że środowisko poruszania się roota jest dokładnie znane i nie zmienia się). ). Wiedza o otoczeniu jest czerpana na ieżąco poprzez adanie otoczenia lokalnego ( (pozwala to na ominięcie nieznanych jak i ruchomych przeszkód). 19 a 20 Planowanie ieżące rozwiązuje prolemy związane z nowymi oiektami na wcześniej zaplanowanej trasie. a a f d d e a d e UNIKANIE KOLIZJI NA MORZU Oiekt ruchomy (np. statek) może yć nieezpieczny dla oiektu własnego jeśli: Wszedł w zakres oserwacji (5-8 8 mil morskich przed dzioem i mile za rufą); Może przeciąć kurs zadany w nieezpiecznej odległości (jej wartość zależy od pogody, rejonu pływania i prędkości statku); Funkcja przystosowania uwzględnić powinna zarówno warunki ezpieczeństwa żeglugi jak i warunki ekonomiczne A. Stała prędkość statku własnego: v = 8.6w B. Stała prędkość statku własnego: v = 5.6w
5 C. Zmienna prędkość (mutacja prędkości) v = {3.6; 8.6; 13.6}w AE W GRACH (OTHELLO) Gra: Rywalizacja prowadzona przez uczestników zgodnie z ustalonymi regułami, y osiągnąć założony cel. Podział: Losowe ( (ruletka); Takie, w których element losowy wpływa na rozgrywkę ( (rydż); Deterministyczne ( (szachy) Gra: Gracze wykonują kolejne ruchy (podejmują decyzje) ze zioru ruchów dopuszczalnych aż do osiągnięcia stanu końcowego. Rozgrywka jest poszukiwaniem takich ruchów gracza, które zapewnią mu zwycięstwo. Liście takiego drzewa oznaczają stany końcowe gry: wygrane, remisowe lu przegrane dla gracza. 27 warcay: węzłów; szachy: węzłów. Cel gry: znalezienie strategii wygrywającej (niezależnie od posunięć przeciwnika). W ogólnym przypadku wymaga to zudowania i przeszukania całego drzewa zwykle niemożliwe. W efekcie: zwykle ada się tylko część drzewa (możliwie jak najgłęiej). 28 Othello (reversi): rozgrywka jest skomplikowana; rak dorego programu grającego; Proces poszukiwań można opisać za pomocą drzewa rozwiązań (korzeń stan początkowy, węzły kolej- ne stany, jakie ędą możliwe po wykonaniu danego ruchu). Drzewo reprezentuje wszystkie możliwe rozwią- zania,, np.: 3 znane strategie gry: 1. Maksymalnej liczy punktów prowadzi zwykle do lokady ruchów gracza. 2. Pól ważonych (cel: przejęcie pól strategicznych ). 3. Mnimalnej liczy pionków (minimalizacja liczy włas- nych pionów, y zwiększyć możliwości ruchu stosowana ślepo prowadzi do przegranej )
6 Zast.. AE do tworzenia programów grających: 1. AE jako narzędzie wspomagające proces szukania dorej strategii gry. Program grający nie wykorzystuje podczas gry AE, lecz ma wudowaną strategię (znalezioną wcześniej za pomocą AE). 2. Zastosowanie AE jako wudowanego modułu grającego. AE na każdym etapie gry odpowiada za znalezienie opty- malnego posunięcia przez program grający. 31 6
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 7 FITNESS
SYSTEMY (ALGORYTMY) MRÓWKOWE
OLIZNI WOLUYJN ITNSS. STRT OMPUTTION ITNSS. OMPUTTION INITIL SUGenration SNING HROM. TO OMPUTRS chromosome VOLUTIONRY OPRTORS N RIVING ITNSS. wykład 7 VLU fitness f. value MIGRTION PHS ITNSS. communication
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 5fitness f. value EVOLUTIONARY
Zastosowanie sztucznych systemów immunologicznych w zagadnieniach optymalizacji
Zastosowanie sztucznych systemów immunologicznych w zagadnieniach optymalizacji 26 października 2011 Agenda Wprowadzenie 1 Wprowadzenie 2 Struktura układu odpornościowego Adaptacja i dywersyfikacja systemu
METODY HEURYSTYCZNE wykład 7
METODY HEURYSTYCZNE wykład 7 PROJEKTOWANIE BAZ REGUŁ 2 Informacja niezbędna do zaprojektowania sterownika: numeryczna (ilościowa) z czujników pomiarowych; lingwistyczna (jakościowa) od eksperta. Stworzenie
Plan. Sztuczne systemy immunologiczne. Podstawowy słownik. Odporność swoista. Architektura systemu naturalnego. Naturalny system immunologiczny
Sztuczne systemy immunologiczne Plan Naturalny system immunologiczny Systemy oparte na selekcji klonalnej Systemy oparte na modelu sieci idiotypowej 2 Podstawowy słownik Naturalny system immunologiczny
METODY HEURYSTYCZNE 7
METODY HEURYSTYCZNE wykład 7 PROJEKTOWANIE BAZ REGUŁ 2 Informacja niezbędna do zaprojektowania sterownika: numeryczna (ilościowa) z czujników pomiarowych; lingwistyczna (jakościowa) od eksperta. Stworzenie
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
OBLICZENIA EWOLUCYJNE
METODY ANALITYCZNE kontra AG/AE OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome EVOLUTIONARY OPERATORS AND RECEIVING
ALGORYTMY EWOLUCYJNE
1 ALGORYTMY FITNESS F. START COMPUTATION FITNESS F. COMPUTATION EWOLUCYJNE INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f.
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 communication
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Propozycje tematów zadań
Propozycje tematów zadań 1. WARCABY Opracować program do gry w warcaby dla dwu graczy. Program ma umożliwiać przesuwanie kursora na zmianę po polach białych lub czarnych, wskazywanie początku końca ruchu.
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI FUNKCJI OCENIAJĄCEJ W GRZE OTHELLO Tomasz Dąbrowski, Halina Kwaśnicka, Maciej Piasecki Wydziałowy Zakład Informatyki, Politechnika Wrocławska, ul. Wybrzeże
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Na poprzednim wykładzie:
ALGORYTMY EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3 fitness f. value FITNESS F.
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
LICZEBNOŚĆ POPULACJI OBLICZENIA EWOLUCYJNE. wykład 3. Istotny parametr AG...
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. EVOLUTIONARY OPERATORS VALUE fitness f. value
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
oporność odporność oporność odporność odporność oporność
oporność odporność odporność nieswoista bierna - niskie ph na powierzchni skóry (mydła!) - enzymy - lizozym, pepsyna, kwas solny żołądka, peptydy o działaniu antybakteryjnym - laktoferyna- przeciwciała
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Algorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
OBLICZENIA EWOLUCYJNE
OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. wykład VALUE 3fitness f. value EVOLUTIONARY
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 1 communication
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Gospodarcze zastosowania algorytmów genetycznych
Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
GRY I ZABAWY UMYSŁOWO- LOGICZNE JAKO FORMA UPOWSZECHNIANIA KULTURY. Donata Fraś
GRY I ZABAWY UMYSŁOWO- LOGICZNE JAKO FORMA UPOWSZECHNIANIA KULTURY Donata Fraś Gry umysłowe To gry towarzyskie, których rezultat zależy wyłącznie od świadomych decyzji podejmowanych przez partnera Wymagają:
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Lp. tydzień wykłady seminaria ćwiczenia
Lp. tydzień wykłady seminaria ćwiczenia 21.02. Wprowadzeniedozag adnieńzwiązanychzi mmunologią, krótka historiaimmunologii, rozwójukładuimmun ologicznego. 19.02. 20.02. Wprowadzenie do zagadnień z immunologii.
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Planowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
Algorytmy immunologiczne. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Algorytmy immunologiczne Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Metody uczenia maszynowego Uczenie z nauczycielem Uczenie
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Model Marczuka przebiegu infekcji.
Model Marczuka przebiegu infekcji. Karolina Szymaniuk 27 maja 2013 Karolina Szymaniuk () Model Marczuka przebiegu infekcji. 27 maja 2013 1 / 17 Substrat Związek chemiczny, który ulega przemianie w wyniku
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBGenration SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 6 FITNESS
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Metody sztucznej inteligencji w układach sterowania Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
LABORATORIUM 1: Program Evolutionary Algorithms
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:
Obliczenia Naturalne - Algorytmy immunologiczne
Literatura Podstawowe pojęcia Obliczenia Naturalne - immunologiczne Paweł Paduch Politechnika Świętokrzyska 10 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - immunologiczne 1 z 44 Plan wykładu Literatura
Programowanie genetyczne - gra SNAKE
PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Programowanie genetyczne
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów
Rywalizacja w sieci cd. Protokoły komunikacyjne. Model ISO. Protokoły komunikacyjne (cd.) Struktura komunikatu. Przesyłanie między warstwami
Struktury sieciowe Struktury sieciowe Podstawy Topologia Typy sieci Komunikacja Protokoły komunikacyjne Podstawy Topologia Typy sieci Komunikacja Protokoły komunikacyjne 15.1 15.2 System rozproszony Motywacja
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Teoria gier. Jakub Cisło. Programowanie z pasją maja 2019
Teoria gier Jakub Cisło Programowanie z pasją http://programowaniezpasja.pl jakub@programowaniezpasja.pl 10 maja 2019 Jakub Cisło (Programowanie z pasją) Teoria gier 10 maja 2019 1 / 18 Plan wykładu 1
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
OBLICZENIA EWOLUCYJNE
1 OBLICZENIA EWOLUCYJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromosome AND RECEIVING FITNESS F. VALUE fitness f. value wykład 2 FITNESS
3. MINIMAX. Rysunek 1: Drzewo obrazujące przebieg gry.
3. MINIMAX. Bardzo wygodną strukturą danych pozwalającą reprezentować stan i przebieg gry (szczególnie gier dwuosobowych) jest drzewo. Węzły drzewa reprezentują stan gry po wykonaniu ruchu przez jednego
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej