WSTSP. str. 1, Wstęp... t e Elementy niewłaściwe p_r o_a_t_ojk_jjb_jtt_e_;_. Rozdział I. Punkt, prosta i płaszczyzna,,
|
|
- Wacława Skowrońska
- 6 lat temu
- Przeglądów:
Transkrypt
1 \ S P I S TREŚCI WSTSP. str. 1, Wstęp.... t e Elementy niewłaściwe... 1 CZjjlŚó I.! i f R aju. t y p_r o_a_t_ojk_jjb_jtt_e_;_ Rozdział I. Punkt, prosta i płaszczyzna,, 3. Rauty punktów właściwych... ( Rzuty prostej Rzuty punktu, leżącego na prostej danej Ślady prostej Punkty w których prosta przebija płaszczyzny dwusieczne SI 8. Położenia szczególne prostych względem płaszczyzn rzutów Względne położenie dwóch prostych w przestrzeni 27 $ 10. Odwzorowani płaszczyzny zapomooą śladów Położenia szczególne płaszczyzn względem płaszczyzn rzutów Rzuty prostej leżącej w danej płaszczy nie33
2 R2uty punktu leżącego w danej płaszczyźnie Ślady płaszczyzny przechodzącej przez dane proste i punkty Prosta przecięcia dwóch płaszczyzn Punkt przebicia płaszczyzny prostą Proste i płaszczyzny prostopadłe 50 Rozdział U. Zmiana płaszczyzn rzutów. 18. Rzut punktu na płaszczyznę prostopadłą do P, lub Ę 54 $ 21. Rzuty punktu na dowolną płaszczyznę Rzut prostej i ślad płaszczyzny na nowej płaszczyźnie rzutów prostopadłej do lub P z Płaszczyzny rzutów boczne Rzuty wielośoianów Zastosowanie zmiany płaszczyzn rzutów do zadań miarowych Rozdział III. Obroty i kłady. $ 4. Ruch obrotowy Obrót figury dokoła osi prostopadłej do do jednej z płaszczyzn rzutów Zastosowanie do zadań miarowych obrotu figur dokoła osi prostopadłej doż?lub do/? 83 GEOMETRJA WYKREŚLHA Arkusz 41-szy.
3 Obrót figury dokoła prostej jakiejkolwiek Kłady płaszozyzn..., $ 29, Z»stosowanie kładów do zadań miarowych , Kłady figur płaskich Powinowactwo geometryczne, Rozdział I?. Przesuwanie równoległe osi rzutów 32. Przesuwanie figur w kierunku prostopadłym do I płaszczyzny dwusieoznej 105 f 33. Odwzorowanie elementów geometryoznyoh z pominięciem osi rzutów Zadanie.109 $ 35. Zadanie Zadanie Zadanie, Zadanie..115 $ 39. Zadanie miarowe.115 $ 40. Zadanie Zadanie Kąt dwuśoienny dwóch płaszczyzn danyoh Zadanie Zadanie CZgŚi II. Aa s o n o metr, ja,. Rozdział V, Aksonometrja prostokątna. 45, Zalety i wady rzutów prostokątnych
4 Istota aksonometrji Twierdzenie Polke r go Aksonometrje ukośne ogólne Aksonometrje specjalne Związek aksonometrji prostokątnej z metodą rzutów prostokątnych Trójkąt śladów i rzuty osiowe Rzuty odcinka danej długości, leżącego na osiach spółrzędnyoh Podziałki kątowe Wykreślenie rzutu aksonometrycznego figury, której rzuty prostokątne są dane V 55. Warunki korzystnego wrażenia ryg.aksonomeirycznego 146 $ 56. Rzut izometryczny ^.... ^., 149 Rozdział YI. Rzuty ukośne. 57. Odwzorowanie punktu Rzut ukośny figury, której rzuty prostokątne są dane Perspektywa wojskowa Trójkąt rautowy Pierwsza i druga płaszczyzna rzutów Przeniesienie równoległe osi Związek rzutów ukośnych danej figury z jej rzutami prostokątnemi Zadania położenia
5 Zadanie miarowe Proste i płaszczyzny prostopadłe Rozdział 711. Przepięcia i przenikania wielośoianów. 67. Przebicie wielościanu prostą fczajemne przenikanie dwóch wielośoianów Przenikanie sześoianu i ośmiośoianu. foremnego o osiaoh wzajemnie równoległych 176 $ 70. Przenikanie dwóch ostrosłupów Przenikanie dwóch graniastosłupów lub ostrosłupa z graniastosłupem $ 72. Przecięcie wielościanu płaszczyzną jakąkolwiek ^ Rozwinięcie powierzohni graniastosłupa Przecięcie ostrosłupa płaszczyzną Trójkąty De^argues'a Kolineacja środkowa. '..19* 77. figury homologiczne jako rzuty środkowe tej samej fig. płask, z dwóoh punktów na tę samą płaszczyznę... o $ 78. wyznaczenie kolineaoji.196 $ 79. Proste wzajemne Rzut środkowy i. kład figury płaskiej...200
6 CZEŚĆ III. y f- = P e r s p e k t y w a Rozdział Punkt główny TIII. i Prosta, koło oddalenia punkt i. płaszczyzna^ Promienie i płaszczyzny rzucające Rzut środkowy punktu i prostej Odwzorowanie prostej zapomooą jej śladu i punktu zbiegu Odwzorowanie punktu, Odwzorowanie płaszczyzny zapomooą jej śladu i prostej zbiegu. 215 Rozdział IX. Zagadnienia położenia. 87. Proste leżące w danej płaszczyźnie Prosta przeoięcia dwóoh płaszczyzn danyoh Punkt przebicia płaszczyzny prostą Proste przecinające się Proste równoległe Proste i płaszczyzny równoległe Płaszczyzny równoległe Zadanie Zadanie Zadanie Zadanie Zadanie 225
7 Rozdział I, Zagadnienie miarowe,, 99. Kłady figur leżących w płaszczyźnie rzucającej Kłady figur leżących w płaszczyźnie jakiejkolwiek Zadania miarowe, dotyczące figur leżących w danej płaszczyźnie Zadanie płaskie zasadnicze.dotyczące kątów Zadanie płaskie zasadnicze,dotyczące odcinków. Punkty miarowe ,.23? 104. Zastosowanie powinowactwa do wyznaczenia punktu przecięoia prostych, których rzuty przecinają się pod małym kątem Proste i płaszczyzny prostopadłe. Zadania Kąty dwuśoienne. Zadanie Kąt prostej z płaszczyzną. Zadanie $ 108. Odległość prostych skośnych Zastosowanie. Zadanie 251 Rozdział XI. Perspektywa stosowana Stożek i koło wyraźnego widzenia nybór koła oddalenia Linja przyziemna, horyzont,punkty oddalenia Perspektywa figury, której rzuty prostokątne są dane $ 114. Punkty zredukowane s'
8 647 - CZEŚĆ IV. K r z y w e.stożki i p o w i e r z c h n i e d r u g i e g o s t o p n i a.. Rozdział XII. Szeregi i pęki rzutowe Określenie geometrji rzutowej Geometrja rzutowa płaska i geometrja rzutowa wiązki Dwoistość w geometrji przestrzeni.., Dwoistość w geometrji płaskiej i w geometrji wiązki Dwustosunek 4 punktów jednej prostej Grupy harmoniczne punktów Dwustosunek 4 promieni, wychodzących, z jednego punktu Grupy harmoniczne promieni Twierdzenie Własności harmoniczne czworoboku i czworokąta zupełnego : Czwórki perspektywiczne , Szeregi i pęki perspektywiczne Czwórki i szeregi rzutowe Twierdzenie $ 129. Wyznaczenie elementów odpowiednich d^óch rzutowych szeregów, albo pęków > albo szeregu i pęku,, 3Q2
9 Zasatosowariie Szeregi rzutowe na wspólnej podstawie, i pęki rzutowe o wspólnym wierzchołku Blomenty podwójne 319 $ 133. Zastosowanie Szeregi i pęki inwolucyjne 326 $ 135. *łaanośoi inwolucyjne czworokąta i czworoboku zupełnego. 330 $ 136. Zastosowanie koła Stoinera do wyznaczenia elementów sprzężonych i podwójnych danej inwoluoji Inwolucja hiperboliosna, paraboliczna i eliptyczna Inny sposób wyznaczenia elementów sprzężonych i podwójnyoh inwoluoji Punkty i prosto urojono Proste jednorodne i punkty kołowo Rozdział XIII. Kolineacja i biegunowość" $ 141. Perspektywiczność 2-ch układów płaskich 356 i 142. Kolineacja środkowa 2-ch układów płask Kolineacja ogólna dwóoh układów płaskioh Korelacja dwóch układów płaskich Układ biegunowy Punkty i proste sprsężone 372
10 Trójkąty biegunowe Układy biegunowe jednostajne i niejednostajne Określenie stożkowych Stożkowe urojone i rzeczywiste Stożkowe zwyrodniałe Proste zewnętrzne, sieczne i styczne Punkty wewnętrzne, punkty zewnętrzne 1 punkty leżąoe na stożkowej Metoda biegonowyoh wzajemnych Trzy rodzaje stożkowych Środek, średnica, asymptoty Własności harmoniczne bieguna " i biegunowej 396* 158. Osie i wierzchołki Koło jako stożkowa Hiperbola równoboczna Czworokąt zupełny wpisany w stożkową, i ozworobok zupełny opisany na stożkowej402, 162. Wyznaczenie bieguna i biegunowej względem wykreślonej stożkowej Twierdzenie Stożkowa rzeczywista jako rzut koła.. 410
11 " ' '' 165. Zastosowanie Stożki drugiego stopnia Osie i przecięcia kołowe stożka drugiego stopnia Czworokąt wpisany w stożkową i czworobok opisany na niej wzajemnie biegunowe Stożkowa rzeczywista, jako miejsce punktów przecięcia prostych odpowiednich dwóch punktów rzutowych Zastosowanie Stożkowa rzeczywista, jako obwiednią prostych łączących punkty odpowiednie dwóch szeregów rzutowyoh Zastosowanie Twierdzenie Pascala Twierdzenie odwrotne i jego zastosowanie Twierdzenie Brianchona Twierdzenie odwrotne i jego zastosowanie Twierdzenie Sta^dta Zadanie Zadanie Zadanie Zadanie Własności ogniskowe stożkowych 480
12 Twierdzenie De3argues'a , Zagadnienia 2-go stopnia 496 Rozdział XIV. Powierzohnie drugiego stopnia a 185, Kolineacja środkowa dwóoh układów przestrzennych Kolineacja ogólna dwóoh układów przestrzennych Korelacja dwóoh układów przestrzennych Układ biegunowy przestrzenny Czworościany biegunowe Trzy rodzaje układów biegunowych * przestrzennych. 511 i 191. Powierzchnia drugiego Stopnia Środek, średnice, osie, stożek asymptotyczny.525, 193. Klasyfikacja powierzchni drugiego stopnia Powierzohnie urojone Powierzohnie krzywokreślne Powierzohnie prostokreślno Powierzchnie drugiego stopnia zwyrodniałe 543
13 , CZjiŚi V. K r z y w e i p o w i e r z c h n i e w o g ó n o ś o i. Rozdział XV. Krzywe płaskie Krzywa płaska jako miejsce i jako obwiednią Koło krzywizny 554 $ 200. Ewoluta i ewolwenta Ewolwenta koła Rulety Oykloidy Bpioykloidy i hypooykloidy >. Elipsa jako hypooykloida Wyznaczenie osi elipsy Środki krzywizny elipsy w jej wierzchołkach Rozdział XVI. Krzywe skośne. ' 1 A $ 208. Krzywe skośne Krzywizna i skręceni krzywych skośnych 595 $ 210. Normalna główna i binormalna.' Powierzchnie rozwijalne Linja ś r u b o w a ^
14 Zadanie Zadanie Konoida śruby i powierzchnia śrubowa 0 oatryn gwincie Krzywa przenikania dwóoh powierzchni 619 Rozdział XVII. 0 powierzohniach obrotowych Pojęcie ogólne o powierzchniach Płaszczyzny styozne, styczne główne. Punkty hiperboliosne, paraboliczne 1 eliptyczne , Pojęcie ogólne o powierzonniach obrotowych. Równoleżniki i południki Rzuty punktu leżącego na powierzchni 632 obrotowej $ 220. Punkty przebicia powierzchni obrotowej prostą Przecięcie powierzchni obrotowej płaczozyzną styczną
Spis treści. Słowo wstępne 7
Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne
rozwiązanie zadania us. 25-go. 28. Własność czterech punktów na kole, przez które przechodzą promienie pęku harmonicznego, maj%cogo swój wierzchołek
SPIS RZECZY. PRZEDMOWA Errata Str. XIII XVI ROZDZIAŁ I. POJĘCIA WSTĘPNE slr. 1 6 1. Szereg punktów. 2. Zwykłe wyznaczanie położenia punktu na prostej. 3. Wyznaczenie położenia punktu na prostej przy pomocy
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
SPIS RZECZY. GEOMETRJA ANALITYCZNA NA PŁASZCZYŹNIE.
SPIS RZECZY. CZĘŚĆ PIERWSZA. GEOMETRJA ANALITYCZNA NA PŁASZCZYŹNIE. ROZDZIAŁ I. Współrzędne na płaszczyźnie. Wektory. 1. Uwaga wstępna 1 2. Współrzędne punktu 1 3. Położenie wektora na osi 4 4. Kąt między
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
GEOMETRIA WYKREŚLNA ZADANIA TESTOWE
Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...
Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.
Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
(a) (b) (c) o1" o2" o3" o1'=o2'=o3'
Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że
ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII
WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
Kilka twierdzeń o przekrojach płaskich powierzchni drugiego stopnia i niektóre ich zastosowania.
Kilka twierdzeń o przekrojach płaskich powierzchni drugiego stopnia i niektóre ich zastosowania. Twierdzenie I. Przez każde dwa przekroje płaskie powierzchni drugiego stopnia można poprowadzić dwa stożki
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
O zastosowaniu rzutu stereograiicznego do gieometrji koła.
O zastosowaniu rzutu stereograiicznego do gieometrji koła. 1. Badanie figur płaskich zapomocą figur przestrzeni, od których tamte pochodzą, jest jedną z najpotężniejszych metod gieometrji płaskiej. Niebywały
Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ
Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Sesja Naukowa objęta honorowym patronatem przez Jego Magnificencję Rektora Politechniki Śląskiej prof. dr hab. inż. Andrzeja
w jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,...
Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Rzut sferyczny (projekcja sferyczna) Kryształ zastępuje się zespołem płaszczyzn i prostych równoległych do odpowiadających im płaszczyzn
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA
Krzywe stożkowe Lekcja VII: Hiperbola
Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
Planimetria 1 12 godz.
Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
RÓWNANIA RÓŻNICZKOWE WYKŁAD 14
RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 Wybrane przykłady krzywych płaskich Wybrane przykłady krzywych Cykloida Okrąg o promieniu a toczy sie bez poslizgu po prostej. Ustalony punkt tego okręgu porusza się po krzywej
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Geometria wykreślna 7. Aksonometria
Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the
Geometria wykreślna. 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław
Geometria wykreślna 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
Wstęp do grafiki inżynierskiej
Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały
Grafika inżynierska geometria wykreślna. 9. Aksonometria
Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)
Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury
STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny
Przedmiotowe Zasady Oceniania
Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka III 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy
PDM 3 zakres podstawowy i rozszerzony PSO
PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
Wymagania na poszczególne oceny szkolne
MATEMATYKA Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS.
Anna BŁACH, Piotr DUDZIK, Anita PAWLAK Politechnika Śląska Ośrodek Geometrii i Grafiki Inżynierskiej ul. Krzywoustego 7 44-100 Gliwice tel./ fax: 0-32 237 26 58, e-mail: anna.blach@polsl.pl, piotr.dudzik@polsl.pl,
Plan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
Trójwymiarowa grafika komputerowa rzutowanie
Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła
reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego
FUNKCJE LOGARYTMICZNE powtórzenie 4 godziny RACHUNEK PRAWDOPODOBIEŃSTWA 28 godz. Moduł - dział -temat Reguła mnożenia. Reguła dodawania Lp 1 2 reguła mnożenia ilustracja zbioru wyników doświadczenia za
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum
Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające
Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 9 tygodni 6 godzin = 7 godziny Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna.
ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM
ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy
Przedmiotowy system oceniania z matematyki kl.ii
DZIAŁ 1. POTĘGI Matematyka klasa II - wymagania programowe zna i rozumie pojęcie potęgi o wykładniku naturalnym (K) umie zapisać potęgę w postaci iloczynu (K) umie zapisać iloczyn jednakowych czynników
NaCoBeZU z matematyki dla klasy 8
NaCoBeZU z matematyki dla klasy 8 I. LICZBY I DZIAŁANIA 1. Zapisuję i odczytuję liczby naturalne dodatnie w systemie rzymskim w zakresie do 3000. 2. Rozpoznaję liczby podzielne przez: 2, 3, 4, 5, 9, 10,
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
Wymagania na poszczególne oceny szkolne Klasa 8
1 Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
podstawowe (ocena dostateczna) rozszerzające (ocena dobra) wyrażenia tekstowe dotyczące kwadratowych
Wymagania na poszczególne oceny szkolne Klasa 8 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
PLAN WYNIKOWY (zakres rozszerzony) klasa 3.
PLAN WYNIKOWY (zakres rozszerzony) klasa 3. Spis treści 1. Funkcja wykładnicza i funkcja logarytmiczna 4 2. Elementy analizy matematycznej.... 8 3. Geometria analityczna.... 13 4. Kombinatoryka i rachunek
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017
SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 Ocenę dopuszczającą otrzymuje uczeń, który: (Symetrie) zna pojęcie punktów symetrycznych względem prostej, umie rozpoznawać figury
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.
MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi