Nagroda Nobla z fizyki w 2016 roku, czyli o przejściach fazowych i zjawiskach krytycznych nowego typu
|
|
- Martyna Wróbel
- 8 lat temu
- Przeglądów:
Transkrypt
1 FOTON 135, Zima Nagroda Nobla z fizyki w 2016 roku, czyli o przejściach fazowych i zjawiskach krytycznych nowego typu Józef Spałek, Danuta Goc-Jagło Instytut Fizyki UJ Nagrodę Nobla z fizyki w 2016 roku otrzymało trzech fizyków pochodzenia brytyjskiego, pracujących w Stanach Zjednoczonych: David J. Thouless z University of Washington w Seattle (połowę nagrody), a drugą połowę otrzymali wspólnie J. Michael Kosterlitz z Brown University w Providence oraz Duncan M. Haldane z Princeton University (fot. 1), za odkrycia teoretyczne topologicznych przejść fazowych oraz topologicznych faz materii. Nagroda wynosi 8 mln koron szwedzkich (około 3,7 mln złotych). Zapytajmy się więc, na czym polegają te odkrycia i jak mieszczą się one w całości fizyki. David J. Thouless J. Michael Kosterlitz F. Duncan M. Haldane Fot. 1. Laureaci Nagrody Nobla w dziedzinie fizyki w 2016 roku 1. Wstęp: koncepcja złamania symetrii i parametru porządku W fizyce materii skondensowanej (i nie tylko) podstawowymi koncepcjami są przejścia fazowe (z towarzyszącymi im zjawiskami krytycznymi, czyli osobliwościami mierzalnych wielkości fizycznych) oraz tzw. spontaniczne złamanie symetrii. Przejście fazowe ciągłe polega bowiem na pojawieniu się w sposób spontaniczny uporządkowania (np. przy obniżaniu temperatury czy zwiększaniu ciśnienia wywieranego na układ). Koronnym przykładem jest tu układ oddziałujących między sobą atomowych momentów magnetycznych (spinów), które przy ochładzaniu układu porządkują się spontanicznie (bez zewnętrznego pola magnetycznego) w tzw. temperaturze krytycznej (Curie) T c. Co najistotniejsze, przy podejściu do tej temperatury T c, zarówno od dołu jak i od góry, fizyczne własności układu, takie jak np. ciepło właściwe, wykazują istotne osobliwe
2 14 FOTON 135, Zima 2016 zachowanie, czyli że nie jest to w żadnym przypadku ewolucja ciągła układu ze zmianą temperatury. Na rys. 1 przedstawiono takie osobliwe zachowanie ciepła właściwego dla innego przypadku, ciekłego helu-4 ( 4 He), przy przejściu do stanu nadciekłego. Zauważmy, że charakter logarytmiczny (~ ln T T c ) rozbieżności ciepła właściwego w punkcie T c ma miejsce na wszystkich dostępnych skalach temperatur (od kelwinów do mikrokelwinów). To przejście fazowe ma taki sam charakter w przypadku układu spinów, a na rys. 2 przedstawiono dwa najprostsze typy uporządkowania spinowego dla T < T c : ferromagnetycznego (ze spinami równoległymi) oraz antyferromagnetycznego (ze spinami na przemian antyrównoległymi). Oczywiście, dla T > T c spiny są nieuporządkowane i rozmrożone, tj. każdy z nich może się obracać prawie swobodnie, czyli przyjmować dowolną orientację. To zamrożenie spinów dla temperatur niższych, począwszy od T c, to właśnie tajemnicze spontaniczne złamanie ich symetrii względem ich dowolnych obrotów, czyli przyjmowanie ściśle określonej orientacji w ich własnej przestrzeni. Rys. 1. Ciepło właściwe dla ciekłego 4 He w funkcji różnicy temperatury (względem temperatury krytycznej Tc T ) przy przejściu do nadciekłości (fazy bez lepkości), na trzech skalach: kelwinowej, milikelwinowej i mikrokelwinowej. Krzywa ciągła to z dobrym przybliżeniem krzywa logarytmiczna C ~ ln T T. To przejście fazowe nosi nazwę przejścia λ ze względu na kształt tych krzywych (zob. J. Spałek, Postępy Fizyki, t. 63, nr 1, s. 10 (2010) i prace tam cytowane)
3 FOTON 135, Zima Rys. 2. Podstawowe dwa typy uporządkowania spinów dla T < T c : ferromagnetyczne (lewy rysunek) i antyferromagnetyczne (po prawej stronie) na dwuwymiarowej sieci kwadratowej Podstawową koncepcją teoretyczną opisu przejść fazowych jest pojęcie parametru uporządkowania wprowadzone przez L.D. Landaua, rozwijane szczególnie w latach 60. i 70. XX wieku, w wyniku których powstała teoria zjawisk krytycznych (osobliwości przy przejściach fazowych), które to osiągnięcie zostało ukoronowane Nagrodami Nobla dla Landaua (1962) oraz Kennetha G. Wilsona (1982). W wyniku tych i wielu prac innych autorów powstała kompletna teoria klasycznych przejść fazowych ciągłych (dla których T c > 0) w układach z uporządkowaniem dalekiego zasięgu (por. rys. 2). Typowe przykłady zależności jednorodnego przestrzennie parametru uporządkowania od temperatury dla metali magnetycznych Fe oraz Ni pokazano na rys. 3. Do klasy tych przejść fazowych należy bardzo obszerny zbiór materiałów magnetycznych, ferroelektrycznych, nadprzewodzących, nadciekłych i innych. Rys. 3. Zależność względnego momentu magnetycznego od temperatury dla metalicznych ferromagnetyków niklu (Ni) i żelaza (Fe). Jest to przykład tzw. klasycznego ciągłego przejścia fazowego, bo parametr porządku zmienia się od jedności dla T = 0 do zera dla T = T c w sposób ciągły i z temperaturą T c względnie wysoką (obszar praktycznie klasyczny)
4 16 FOTON 135, Zima Uporządkowanie topologiczne: stany spontaniczne z wirami i ich parami Przedmiotem zainteresowania Thoulessa oraz Kosterlitza, począwszy od zasadniczej pracy opublikowanej w 1973 roku w brytyjskim czasopiśmie specjalistycznym Journal of Physics: Solid State Physics, była kwestia uporządkowania spinowego w przypadku układów (sieci) dwuwymiarowych. Dlaczego? Wcześniej N.D. Mermin i H. Wagner (1966) wykazali, że uporządkowanie długozasięgowe typu pokazanego na rys. 2 nie może w tym przypadku mieć miejsca. Jednakże H.E. Stanley i T.A. Kaplan pokazali, że mimo tego braku długozasięgowego uporządkowania taki układ spinów wykazuje osobliwości podatności magnetycznej (tj. łatwości polaryzowania się przy przyłożeniu nawet bardzo małego pola zewnętrznego). Kosterlitz i Thouless rozwiązali ten problem wprowadzając uporządkowanie w postaci związanych par wirów (par worteksów). Pojedynczy wir oraz parę dwóch związanych wirów przedstawiono na rys. 4. Zauważmy, że strzałki oznaczają orientację spinów na płaszczyźnie. Jest to ewidentny przykład uporządkowania niejednorodnego z osobliwością w środku wiru (spin w środku ma nieokreśloną orientację). Rys. 4. Konfiguracja spinów na płaszczyźnie dla pojedynczego worteksu (lewa część) i pary worteks-antyworteks (prawa część). Zaznaczone koła oznaczają symbolicznie tzw. obszar jądra worteksu. Ładunki topologiczne tych obiektów wynoszą odpowiednio n = 1 oraz n n 1 + n 2 = 0 Najbardziej zadziwiającą cechą stanów (faz) z worteksami jest to, że dla pojedynczego worteksu rozkład pola elektrycznego na płaszczyźnie jest analogiczny do rozkładu statycznego pola elektrycznego wokół ładunku umieszczonego w punkcie środkowym wiru. Jaki zatem jest to ładunek w przypadku takiego ułożenia spinów? Jest to tzw. ładunek topologiczny i jego wartość jest skwantowana, podobnie jak dowolnego ładunku elektrycznego (równego wielokrotności ładunku elektronu czy protonu), i równa w tym przypadku liczbie n całkowitych obrotów (o 360 ) spinów przy zakreślaniu okręgu wokół środka. Dla normalnego uporządkowania długozasięgowego n = 0, natomiast dla topo-
5 FOTON 135, Zima logicznego n = ±1, ±2,... Wartość tego ładunku jest niezależna od wyboru kształtu konturu, byleby obejmował on punkt osobliwości. Co więcej, podobna sytuacja ma miejsce dla par worteksów. Jeśli taki ładunek topologiczny wewnątrz konturów obejmujących oba wiry wynosi zero, to mówimy, że mamy do czynienia ze związaną parą worteks-antyworteks. I właśnie układ takich par wypełniających płaszczyznę z charakterystyczną odległością ξ, zwaną długością korelacji, jest stanem uporządkowania topologicznego poniżej temperatury krytycznej T c = T KT, zwanej temperaturą Kosterlitza-Thoulessa. W pobliżu T KT wielkość ξ wykazuje zachowanie osobliwe. Ta piękna historia zawiera też jeden wątek smutny. Dotyczy ona radzieckiego fizyka Vadima Berezinskiego ( ) (fot. 2), który napisał pionierskie prace dwa lata przed pracami Kosterlitza i Thoulessa, ale zmarł przedwcześnie. Zwykle upływa co najmniej lat zanim prace zostaną docenione, a ich autorzy uhonorowani tą zaszczytną Nagrodą. Pocieszeniem jest fakt, iż to przejście fazowe nosi obecnie nazwę przejścia Berezinskiego-Kosterlitza-Thoulessa (BKT). Nie można się oprzeć wrażeniu, że V. Berezinskii byłby tutaj właściwym laureatem tej Nagrody, ale to już zupełnie inna sprawa. Fot. 2. Vadim Berezinskii ( ) pracował w Instytucie Fizyki Teoretycznej im. Landaua w Akademii Nauk ZSRR Uwaga druga: uważny czytelnik dostrzeże, że pominąłem tutaj wkład Haldane a, bowiem w dużej mierze dotyczy on nieco innych zagadnień, w tym własności układów spinowych jednowymiarowych, np. występowania tzw. przerwy spinowej. Haldane ma także duże zasługi przy wprowadzeniu uogólnionych statystyk kwantowych. Są to zagadnienia bardzo ważne, ale zbyt specjalistyczne, żeby je przedstawiać w ramach tego eseju. 3. Co dalej? Stany uporządkowane topologicznie są uporządkowaniem wyższego rzędu, przejście BKT jest uważane za przejście nieskończonego rzędu. Bowiem, upo-
6 18 FOTON 135, Zima 2016 rządkowanie to nie jest takie samo jak w przypadku spontanicznego złamania symetrii globalnej. I to jest następna cecha oryginalna w tej tematyce. Jednakże zachowana została koncepcja parametru porządku w formie orientacji polaryzacji spinowej w danym punkcie przestrzeni (płaszczyzny w tym przypadku). Prace Kosterlitza i Thoulessa zostały pięknie potwierdzone doświadczalnie przez D.J. Bishopa i J.D. Reppy ego w 1978 roku, którzy badali zachowanie monowarstwy 4 He na powierzchni ciała stałego przy różnych temperaturach i gęstościach helu. Co więcej, bardzo ciekawe zastosowania koncepcji Haldane a (1988) zaproponowano do konstrukcji sztucznych spinów topologicznych materii (Bloch 2014, Esslinger 2014). Tak więc, koncepcje regularnego uporządkowania sieci spinowych zostały uogólnione na przypadek uporządkowania niejednorodnego (topologicznego), a to z kolei jest badane pod kątem wytworzenia nowych stanów nieobserwowanych w Przyrodzie. Tempora mutantur! Należy też nadmienić, iż obecnie intensywnie badane są tzw. kwantowe przejścia fazowe, dla których T c 0. Występują wtedy osobliwości mierzalnych wielkości fizycznych przy T 0, czyli natura stanu podstawowego układu wielu cząstek kwantowych jest w takim przypadku znacznie bardziej złożona, aniżeli wyobrażali to sobie twórcy mechaniki kwantowej prawie 100 lat temu. No i dobrze, jest co robić. P.S. Czytelnikowi zainteresowanemu tą tematyką (i literaturą oryginalną) można polecić stronę internetową Fundacji Nobla:
Paul Adrien Maurice Dirac ( )
Paul Adrien Maurice Dirac (1902 1984) Paul Dirac w 1907 roku Słynne zdjęcie: Paul Dirac i Richard Feynman na konferencji relatywistów w Warszawie w 1962 roku FOTON 135, Zima 2016 1 O konkursach i potrzebie
Atomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
Od stanów skupienia materii do faz topologicznych Nobel 2016
Zapytaj fizyczkę, 19 stycznia 2017 Wydział Fizyki Uniwersytet Warszawski Od stanów skupienia materii do faz topologicznych Nobel 2016 Pokazy: Mgr Urszula Dzienisiuk Dr hab. Aneta Drabińska Prof. Andrzej
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Oddziaływania w magnetykach
9 Oddziaływania w magnetykach Zjawiska dia- i paramagnetyzmu są odpowiedzią indywidualnych (nieskorelowanych) jonów dia- i paramagnetycznych na działanie pola magnetycznego. Z drugiej strony spontaniczne
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię
Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO
WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO Moment magnetyczny atomu Polaryzacja magnetyczna Podatność magnetyczna i namagnesowanie Klasyfikacja materiałów magnetycznych Diamagnetyzm, paramagnetyzm, ferromagnetyzm
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia
Własności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.
Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra
Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3
Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy
Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
MAGNETYCZNY REZONANS JĄDROWY - podstawy
1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie
Wykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Własności magnetyczne materii
Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo Biota-Savarta Autorzy: Zbigniew Kąkol Piotr Morawski 2018 Prawo Biota-Savarta Autorzy: Zbigniew Kąkol, Piotr Morawski Istnieje równanie, zwane prawem Biota-Savarta, które pozwala obliczyć pole B
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
Wariacyjna teoria grupy renormalizacji w opisie uczenia głębokiego czyli Deep
Wariacyjna teoria grupy renormalizacji w opisie uczenia głębokiego czyli Deep Learning oczami fizyka statystycznego Zakład Algebry i Kombinatoryki Wydział Matematyki i Nauk Informacyjnych 18 kwietnia 2018
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących
Przestrzenne układy oporników
Przestrzenne układy oporników Bartosz Marchlewicz Tomasz Sokołowski Mateusz Zych Pod opieką prof. dr. hab. Janusza Kempy Liceum Ogólnokształcące im. marsz. S. Małachowskiego w Płocku 2 Wstęp Do podjęcia
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Odgłosy z jaskini (11) Siatka odbiciowa
64 FOTON 103, Zima 2008 Odgłosy z jaskini (11) Siatka odbiciowa Adam Smólski Tym razem będą to raczej odblaski z jaskini. Przed opuszczeniem lwiątkowej piwniczki na Bednarskiej postanowiłem przebadać jeszcze
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych
Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych
Właściwości magnetyczne materii. dr inż. Romuald Kędzierski
Właściwości magnetyczne materii dr inż. Romuald Kędzierski Kryteria podziału materii ze względu na jej właściwości magnetyczne - względna przenikalność magnetyczna - podatność magnetyczna Wielkości niemianowane!
Pole magnetyczne w ośrodku materialnym
Pole magnetyczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pole magnetyczne w materii
Paramagnetyki i ferromagnetyki
Wykład VI Przejścia fazowe 1 Paramagnetyki i ferromagnetyki Różne substancje znalazłszy się w polu magnetycznym wykazują zróżnicowane własności, które, co więcej, istotnie się zmieniają wraz z temperaturą.
Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych
Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość
II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych: sprzężenie LS i
Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium
Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1
Pole elektryczne w ośrodku materialnym
Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych
Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:
Specyficzne własności helu w temperaturach kriogenicznych
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Specyficzne własności helu w temperaturach kriogenicznych Opracowała: Joanna Pałdyna W ramach przedmiotu: Techniki niskotemperaturowe w medycynie Kierunek studiów:
Siła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych
Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Badanie właściwości magnetycznych
Ćwiczenie 20 Badanie właściwości magnetycznych ciał stałych Filip A. Sala Spis treści 1 Cel ćwiczenia 2 2 Wstęp teoretyczny 2 2.1 Zagadnienia z teorii atomu............................ 2 2.2 Magnetyzm....................................
Podstawy fizyki wykład 2
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Model uogólniony jądra atomowego
Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna
Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e
POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW
Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
16 Jednowymiarowy model Isinga
16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He
Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1
Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Henryk Szymczak Instytut Fizyki PAN
NNnnNowe kwazicząstki w magnetykach Henryk Szymczak Instytut Fizyki PAN Zjazd Fizyków 2015 1 Enrico Fermi: nigdy nie należy lekceważyć przyjemności, jaką każdy z nas odczuwa, słysząc coś, o czym już wie
6 Podatność magnetyczna
Laboratorium Metod Badania Własności Fizycznych 6 Podatność magnetyczna Wydział: Kierunek: Rok: Zespół w składzie: Data wykonania: Data oddania: Ocena: Cel ćwiczenia Pomiar podatności magnetycznej i jej
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.
Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna
Cząstka w pudle potencjału Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna 1 Plan prezentacji Czym jest cząstka w pudle potencjału? Czym się różni od piłki w pudle kartonowym? Teoria jednowymiarowego
Wprowadzenie do ekscytonów
Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Termodynamika materiałów
Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Atomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Rozdział 4. Pole magnetyczne przewodników z prądem
Rozdział 4. Pole magnetyczne przewodników z prądem 2018 Spis treści Prawo Ampere'a Zastosowanie prawa Ampere'a - prostoliniowy przewodnik Zastosowanie prawa Ampere'a - cewka Oddziaływanie równoległych
1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy
Nadprzewodniki Nadprzewodnictwo Nadprzewodnictwo stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze. Nadprzewodnictwo zostało wykryte w 1911
Ocena rozprawy doktorskiej mgra Jana Kaczmarczyka
Kraków, 26 maja 2011 dr hab. Adam Rycerz Uniwersytet Jagielloński w Krakowie Instytut Fizyki im. Mariana Smoluchowskiego Zakład Teorii Materii Skondensowanej i Nanofizyki Ocena rozprawy doktorskiej mgra
Wprowadzenie do struktur niskowymiarowych
Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie