Parasejsmiczne obciążenia vs. stateczność obiektów.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Parasejsmiczne obciążenia vs. stateczność obiektów."

Transkrypt

1 Piotr Jermołowicz Inżynieria Środowiska Szczecin Parasejsmiczne obciążenia vs. stateczność obiektów. W ujęciu fizycznym falami są rozprzestrzeniające się w ośrodku materialnym lub polu, zaburzenia pewnej wielkości fizycznej charakteryzującej stan tego ośrodka (lub pola). Wyróżniane w teorii fal, fale sprężyste to mechaniczne zaburzenia (przemieszczenia lub ich pochodne) rozprzestrzeniające się w ośrodku sprężystym. Obszary początkowych zaburzeń powodowanych różnymi przyczynami nazywa się źródłami fal. Fale powstają w wyniku wychylenia jakiegoś fragmentu ośrodka sprężystego z normalnego położenia, będącego położeniem równowagi, co w następstwie powoduje drgania fragmentu wokół tego położenia. Dzięki sprężystym właściwościom ośrodka drgania te są przekazywane kolejno do coraz dalszych jego części. Sam ośrodek jako całość nie przesuwa się wraz z falą, różne jego części wykonują jedynie drgania w ograniczonych, obszarach przestrzeni. Cechą charakterystyczną fal mechanicznych jest to, że przenoszą one energię poprzez materię dzięki przesuwaniu się zaburzenia w tej materii, a nie na skutek postępowego ruchu samej materii. Najważniejszą cechą odróżniającą fale sprężyste od dowolnego innego uporządkowanego ruchu cząstek ośrodka jest to, że w przypadku małych zaburzeń (w przybliżeniu liniowym) rozchodzenie się fal nie jest związane z przenoszeniem substancji. Podczas silnych zaburzeń występuje przenoszenie się substancji i drgania cząstek ośrodka mają wówczas nieliniowy charakter. Fale sejsmiczne wywołane trzęsieniami ziemi i parasejsmiczne spowodowane eksplozjami, wbijaniem pali fundamentowych, przejazdem ciężkich pojazdów (drogowych i kolejowych) są złożone. Problem prędkości propagowania się tych złożonych drgań wymaga przeprowadzenia wielu analiz. Fale sprężyste, powstające podczas trzęsienia lub drgań parasejsmicznych ziemi, nadają ośrodkowi gruntowemu pewne przyśpieszenie. Wynikiem działania tych fal są siły sejsmiczne, równe iloczynowi przyśpieszenia i masy ciała. We wszystkich obiektach położonych na powierzchni ziemi powstają przy tym siły bezwładności, równe co do wielkości siłom sejsmicznym lecz skierowane przeciwnie do kierunku ich działania. W ten sposób trzęsienie ziemi wywołują w zboczach dodatkowe obciążenia, których czas działania jest równie krótki, jak czas trwania drgań sejsmicznych. Te dodatkowe obciążenia zmieniają układ sił, działających na masyw potencjalnego osuwiska, a tym samym wpływają na zmianę zapasu bezpieczeństwa w zboczu. W praktyce inżynierskiej zakłada się, że siły te działają poziomo w kierunku do skarpy, co oznacza pogorszenie stateczności zbocza. Prostą metodę uwzględniania wpływu drgań sejsmicznych na stateczność zboczy zaproponował Terzaghi. Dodatkowa siła pozioma, działająca na masyw osuwiska, jest zaczepiona w jego środku ciężkości, jak to pokazano na rysunku 1. Wartość tej siły jest proporcjonalna do masy osuwiska i do przyśpieszenia sejsmicznego. Współczynnik stateczności zbocza w warunkach trzęsienia ziemi wyznacza się dowolną metodą obliczeń. W zależności od wymaganego stopnia dokładności wyników można stosować klasyczną metodę koła tarcia, oraz uproszczone lub dokładne rozwiązania metody pasków. Współczynnik sejsmiczny k

2 przyjmuje się najczęściej w postaci stosunku przyśpieszenia sejsmicznego do przyśpieszenia ziemskiego g. Przy takim założeniu pozioma siła wywołana trzęsieniem ziemi jest równa iloczynowi współczynnika sejsmicznego k i siły od ciężaru gruntu W. Rys.1. Układ sił w zboczu w warunkach drgań sejsmicznych [1] Zgodnie z raportem Międzynarodowego Stowarzyszenia Wielkich Zapór, wartości współczynnika sejsmicznego, przyjmowane w obliczeniach stateczności zapór ziemnych w różnych krajach, zmieniają się w granicach k = 0,l 0,2. Podobne kryteria projektowania są podane przez Seeda, który zaleca przyjęcie wartości k = 0,1 dla trzęsienia ziemi stopnia 6,5 oraz k = 0,25 dla trzęsienia ziemi stopnia 8,25 (wg skali Richtera) pod warunkiem, że współczynnik stateczności będzie większy niż 1,5. Według normy GOST 52 współczynnik sejsmiczny zależy od siły trzęsienia ziemi, podanej w skali 12-stopniowej. Wartości tego współczynnika zmieniają się od k = 0,005 (dla stopnia 5) do k = 0,5 (dla stopnia 11). Uwzględnianie wpływu drgań sejsmicznych w postaci dodatkowej siły poziomej, działającej w sposób statyczny, daje dobre wyniki w tych przypadkach, gdy zbocze i jego podłoże jest zbudowane z gruntów mało wrażliwych na zjawiska sejsmiczne, towarzyszące trzęsieniu ziemi. Do tej grupy należą grunty spoiste (iły, gliny zwięzłe i gliny) oraz zagęszczone grunty niespoiste. Natomiast w przypadkach gruntów mało spoistych (zwłaszcza pyłów) oraz gruntów niespoistych w stanie średnio zagęszczonym i luźnym, charakteryzujących się ponadto dużą wilgotnością, stosowanie uprzednio opisanej metody sprawdzania stateczności nie gwarantuje zachowania stateczności zbocza w warunkach trzęsienia ziemi. Drgania sejsmiczne powodują bowiem w tych gruntach przede wszystkim wzrost ciśnienia wody w porach, a w konsekwencji zmniejszenie ich wytrzymałości, prowadzące do upłynnienia gruntu w pewnych obszarach zbocza. Dlatego też w drugiej grupie gruntów (mało spoistych i niespoistych), lepsze wyniki daje oszacowanie odkształceń i przemieszczeń gruntu wywołanych drganiami sejsmicznymi lub ocena stateczności przy uwzględnieniu zmian naprężeń w gruncie i jego wytrzymałości. Proces rozchodzenia się fal sprężystych w podłożu gruntowym należy do zagadnień bardzo skomplikowanych.

3 Obciążenie dynamiczne w pseudostatycznej analizie stateczności skarp budowli ziemnych można uwzględnić poprzez przyjęcie dodatkowego stałego obciążenia, które jest proporcjonalne do masy potencjalnie niestatecznej bryły klina odłamu. W przypadku trzęsień ziemi praktyka inżynierska najczęściej ogranicza się do przyjęcia tylko dodatkowej składowej poziomej, której wielkość w każdym z bloków obliczeniowych określa się za pomocą współczynnika dynamicznego. W omawianym przypadku przeprowadza się pełną analizę, uwzględniając wpływ dodatkowych dwóch sił składowych, poziomej i pionowej. Wartości siły poziomej F H oraz pionowej F V określają wzory: gdzie: a Hmax, a Vmax - maksymalne wartości składowej poziomej i pionowej przyspieszenia drgań parasejsmicznych [m/s 2 ], g - przyspieszenie ziemskie [m/s 2 ], k H, k V - poziomy i pionowy współczynnik sejsmiczny, W - ciężar osuwającego się bloku gruntowego lub skalnego [kn]. Wartość współczynników sejsmicznych zalecanych do obliczeń w świetle danych literaturowych jest bardzo zmienna, nie zależy wyłącznie od wartości szczytowej przyspieszenia drgań, ale również od m.in. skali wstrząsów, rodzaju obiektu, niejednorodności masywu gruntowego lub skalnego itd. Wg tych danych współczynnik sejsmiczny opisuje wzór : k = κ a max g gdzie: κ - współczynnik redukcyjny, wg literatury 0,33 1,00. W przypadku pseudostatycznej analizy stateczności skarp w warunkach trzęsień ziemi wartość współczynnika sejsmicznego jest na ogół stała dla całego analizowanego przekroju masywu gruntowego lub skalnego. Natomiast w przypadku niewielkiego, punktowego źródła, energia wstrząsu szybko maleje z odległością.

4 Dla tak sformułowanego zagadnienia modyfikacja formuły wskaźnika stateczności metody szwedzkiej z uwzględnieniem obu składowych sił parasejsmicznych wywołanych drganiami opisuje wzór: gdzie: Wi ciężar i-tego bloku klina osuwu, Ø i, c i parametry wytrzymałości gruntu w podstawie bloku i-tego, l i, α i długość i nachylenie powierzchni poślizgu w i-tym bloku. Schemat obliczeniowy układu sił w klinie odłamu przedstawiono na rys. 2. Rys.2. Schemat do analizy stateczności skarpy z uwzględnieniem obciążeń parasejsmicznych. [2]

5 Przykład liczbowy : A A a. Obliczenie współczynnika bezpieczeństwa skarpy bez zbrojenia geosyntetykami, b. Obliczenie współczynnika bezpieczeństwa skarpy z geosyntetykiem o dopuszczalnej wytrzymałości na rozciąganie F k = 40 kn/m (sumaryczny współczynnik redukcji = 3 ), c. Obliczenie współczynnika bezpieczeństwa z 10 warstwami tego samego materiału umieszczonymi w rozstawie co 1m licząc od podstawy nasypu w górę. Przyjęto, że zakotwienie geosyntetyków jest wystarczające aby zmobilizować pełną wytrzymałość na rozciąganie. We wszystkich 3 podpunktach przykładu potrzebne będą następujące dane : W abed = 60 x 19 = 1140 kn/m W defg = 55 x 20 = 1100 kn/m L ad = 2 x 21 x Π (34/360 ) = 12,5 m L df = 2 x 21 x Π ( 70/360 ) = 25,7 m a. Skarpa bez zbrojenia geosyntetykami : f s R r ad p df 1512, ,7 c W L abed 12,5 c L W defg , , warunek nie spełniony b. Skarpa z geosyntetykiem wzdłuż powierzchni ed przy odpowiednim zakotwieniu za punktem d : f s ,01 warunek nie spełniony c. Skarpa z 10 warstwami geosyntetyków w rozstawie co 1m od powierzchni ed w górę, z których wszystkie mają odpowiednie zakotwienie za powierzchnią poślizgu :

6 f s ,31 warunkowo spełniony. Literatura : 1. Madej J.: Metody sprawdzania stateczności zboczy. WKiŁ, W-wa 1981 r., 2. Batog A., Hawrysz M.: Projektowanie budowli ziemnych w skomplikowanych i złożonych warunkach geotechnicznych. Geoinżynieria 3/2013 r., 3. Ciesielski R., Gumiński A.: O przekazywaniu się drgań na budynki przez podłoże i sposobach zmniejszania tych drgań. Konf. nt. Ocena szkodliwości wpływów dynamicznych. Kraków 1971 r., 4. Ciesielski R., Maciąg E.: Drgania drogowe i ich wpływ na budynki. WKiŁ, W-wa 1990 r.,

Ocena stateczności skarp i zboczy.

Ocena stateczności skarp i zboczy. Piotr Jermołowicz Inżynieria Środowiska Ocena stateczności skarp i zboczy. Problem zabezpieczenia przed osuwiskami można rozpatrywać w dwóch różnych stanach : gdy osuwisko się uaktywniło, osuwisko nie

Bardziej szczegółowo

Drgania drogowe vs. nośność i stateczność konstrukcji.

Drgania drogowe vs. nośność i stateczność konstrukcji. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Drgania drogowe vs. nośność i stateczność konstrukcji. Przy wszelkiego typu analizach numerycznych stateczności i nośności nie powinno się zapominać o

Bardziej szczegółowo

Dynamiczna równowaga skarp.

Dynamiczna równowaga skarp. Piotr Jermołowicz Inżynieria Środowiska Dynamiczna równowaga skarp. Problem szkodliwego wpływu wody na stateczność ziemnych budowli komunikacyjnych jest równoważny z problemami dynamicznej równowagi skarp

Bardziej szczegółowo

Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą.

Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą. Piotr Jermołowicz Inżynieria Środowiska Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą. W przypadkach występowania

Bardziej szczegółowo

Konstrukcje oporowe - nowoczesne rozwiązania.

Konstrukcje oporowe - nowoczesne rozwiązania. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Konstrukcje oporowe - nowoczesne rozwiązania. Konstrukcje oporowe stanowią niezbędny element każdego projektu w dziedzinie drogownictwa. Stosowane są

Bardziej szczegółowo

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Poradnik Inżyniera Nr 18 Aktualizacja: 09/2016 Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Program: Plik powiązany: Grupa pali Demo_manual_18.gsp Celem niniejszego przewodnika jest przedstawienie

Bardziej szczegółowo

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

Zakres wiadomości na II sprawdzian z mechaniki gruntów: Zakres wiadomości na II sprawdzian z mechaniki gruntów: Wytrzymałość gruntów: równanie Coulomba, parametry wytrzymałościowe, zależność parametrów wytrzymałościowych od wiodących cech geotechnicznych gruntów

Bardziej szczegółowo

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego

Bardziej szczegółowo

Awarie skarp nasypów i wykopów.

Awarie skarp nasypów i wykopów. Piotr Jermołowicz Inżynieria Środowiska Awarie skarp nasypów i wykopów. Samoczynne ruchy mas gruntu na zboczach i skarpach zwane osuwiskami uważa się za jeden z istotnych procesów w inżynierii geotechnicznej.

Bardziej szczegółowo

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Egzamin z MGIF, I termin, 2006 Imię i nazwisko 1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość

Bardziej szczegółowo

Metody wzmacniania wgłębnego podłoży gruntowych.

Metody wzmacniania wgłębnego podłoży gruntowych. Piotr Jermołowicz Inżynieria Środowiska Szczecin Metody wzmacniania wgłębnego podłoży gruntowych. W dobie zintensyfikowanych działań inwestycyjnych wiele posadowień drogowych wykonywanych jest obecnie

Bardziej szczegółowo

Stateczność dna wykopu fundamentowego

Stateczność dna wykopu fundamentowego Piotr Jermołowicz Inżynieria Środowiska Szczecin Stateczność dna wykopu fundamentowego W pobliżu projektowanej budowli mogą występować warstwy gruntu z wodą pod ciśnieniem, oddzielone od dna wykopu fundamentowego

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Drgania drogowe i obciążenia cykliczne.

Drgania drogowe i obciążenia cykliczne. Piotr Jermołowicz Inżynieria Środowiska Szczecin Drgania drogowe i obciążenia cykliczne. Efekty te są pochodzenia użytkowego wynikające z przejazdu sprzętu kołowego, kolejowego, budowlanego, pracy maszyn

Bardziej szczegółowo

Podłoże warstwowe z przypowierzchniową warstwą słabonośną.

Podłoże warstwowe z przypowierzchniową warstwą słabonośną. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Podłoże warstwowe z przypowierzchniową warstwą słabonośną. W przypadkach występowania bezpośrednio pod fundamentami słabych gruntów spoistych w stanie

Bardziej szczegółowo

Projektowanie umocnienia brzegowego.

Projektowanie umocnienia brzegowego. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Projektowanie umocnienia brzegowego. Przedstawiony sposób projektowania odnosi się zasadniczo do gruntów podłoża najbardziej wrażliwych na erozję piasków

Bardziej szczegółowo

NOŚNOŚĆ PALI POJEDYNCZYCH

NOŚNOŚĆ PALI POJEDYNCZYCH NOŚNOŚĆ PALI POJEDYNCZYCH Obliczenia wykonuje się według PN-83/B-02482 Fundamenty budowlane. Nośność pali i fundamentów palowych oraz Komentarza do normy PN-83/B-02482, autorstwa M. Kosseckiego (PZIiTB,

Bardziej szczegółowo

NOŚNOŚĆ PALI POJEDYNCZYCH

NOŚNOŚĆ PALI POJEDYNCZYCH NOŚNOŚĆ PALI POJEDYNCZYCH Obliczenia wykonuje się według PN-83/B-02482 Fundamenty budowlane. Nośność pali i fundamentów palowych oraz Komentarza do normy PN-83/B-02482, autorstwa M. Kosseckiego (PZIiTB,

Bardziej szczegółowo

Stateczność zbocza skalnego ściana skalna

Stateczność zbocza skalnego ściana skalna Przewodnik Inżyniera Nr 29 Aktualizacja: 06/2017 Stateczność zbocza skalnego ściana skalna Program: Stateczność zbocza skalnego Plik powiązany: Demo_manual_29.gsk Niniejszy Przewodnik Inżyniera przedstawia

Bardziej szczegółowo

Analiza ściany żelbetowej Dane wejściowe

Analiza ściany żelbetowej Dane wejściowe Analiza ściany żelbetowej Dane wejściowe Projekt Data : 0..05 Ustawienia (definiowanie dla bieżącego zadania) Materiały i normy Konstrukcje betonowe : Współczynniki EN 99-- : Mur zbrojony : Konstrukcje

Bardziej szczegółowo

, u. sposób wyznaczania: x r = m. x n, Zgodnie z [1] stosuje się następujące metody ustalania parametrów geotechnicznych:

, u. sposób wyznaczania: x r = m. x n, Zgodnie z [1] stosuje się następujące metody ustalania parametrów geotechnicznych: Wybrane zagadnienia do projektu fundamentu bezpośredniego według PN-B-03020:1981 1. Wartości charakterystyczne i obliczeniowe parametrów geotechnicznych oraz obciążeń Wartości charakterystyczne średnie

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

PROJEKT STOPY FUNDAMENTOWEJ

PROJEKT STOPY FUNDAMENTOWEJ TOK POSTĘPOWANIA PRZY PROJEKTOWANIU STOPY FUNDAMENTOWEJ OBCIĄŻONEJ MIMOŚRODOWO WEDŁUG WYTYCZNYCH PN-EN 1997-1 Eurokod 7 Przyjęte do obliczeń dane i założenia: V, H, M wartości charakterystyczne obciążeń

Bardziej szczegółowo

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Projektowanie ściany kątowej

Projektowanie ściany kątowej Przewodnik Inżyniera Nr 2 Aktualizacja: 02/2016 Projektowanie ściany kątowej Program powiązany: Ściana kątowa Plik powiązany: Demo_manual_02.guz Niniejszy rozdział przedstawia problematykę projektowania

Bardziej szczegółowo

Spis treści. Przedmowa... 13

Spis treści. Przedmowa... 13 Przedmowa........................................... 13 1. Wiadomości wstępne.................................. 15 1.1. Określenie gruntoznawstwa inżynierskiego................... 15 1.2. Pojęcie gruntu

Bardziej szczegółowo

Praktyczne aspekty w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym.

Praktyczne aspekty w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym. Piotr Jermołowicz, Inżynieria Środowiska Szczecin Praktyczne aspekty w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym. Stateczność skarp wykopów i nasypów pod

Bardziej szczegółowo

OBLICZENIA STATYCZNE

OBLICZENIA STATYCZNE Rok III, sem. VI 14 1.0. Ustalenie parametrów geotechnicznych Przelot [m] Rodzaj gruntu WARIANT II (Posadowienie na palach) OBLICZENIA STATYCZNE Metoda B ρ [g/cm 3 ] Stan gruntu Geneza (n) φ u (n) c u

Bardziej szczegółowo

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt. PYTANIA I ZADANIA v.1.3 26.01.12 ZADANIA za 2pkt. ZADANIA Podać wartości zredukowanych wymiarów fundamentu dla następujących danych: B = 2,00 m, L = 2,40 m, e L = -0,31 m, e B = +0,11 m. Obliczyć wartość

Bardziej szczegółowo

Analiza gabionów Dane wejściowe

Analiza gabionów Dane wejściowe Analiza gabionów Dane wejściowe Projekt Data : 8.0.0 Ustawienia (definiowanie dla bieżącego zadania) Konstrukcje oporowe Obliczenie parcia czynnego : Obliczenie parcia biernego : Obliczenia wpływu obciążeń

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Praktyczne aspekty w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym.

Praktyczne aspekty w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym. ŚWIĘTOKRZYSKA OKRĘGOWA I Z B A INŻYNIERÓW BUDOWNICTWA Praktyczne aspekty w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym. (Materiały szkoleniowe) Opracował :

Bardziej szczegółowo

Ostrożne podejście do stosowania

Ostrożne podejście do stosowania Ostrożne podejście do stosowania Eurokodów przy modernizacji nasypów kolejowych Andrzej Batog, Maciej Hawrysz Artykuł dotyczy istotnego problemu zapewnienia bezpieczeństwa eksploatacji nasypów modernizowanych

Bardziej szczegółowo

Pale fundamentowe wprowadzenie

Pale fundamentowe wprowadzenie Poradnik Inżyniera Nr 12 Aktualizacja: 09/2016 Pale fundamentowe wprowadzenie Celem niniejszego przewodnika jest przedstawienie problematyki stosowania oprogramowania pakietu GEO5 do obliczania fundamentów

Bardziej szczegółowo

WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp

WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp WYZNACZANIE KSZTAŁTU PROFILU STATECZNEGO METODA MASŁOWA Fp Metoda Masłowa Fp, zwana równieŝ metodą jednakowej stateczności słuŝy do wyznaczania kształtu profilu zboczy statecznych w gruntach spoistych.

Bardziej szczegółowo

Obliczenia ściany oporowej Dane wejściowe

Obliczenia ściany oporowej Dane wejściowe Obliczenia ściany oporowej Dane wejściowe Projekt Data : 8.0.005 Ustawienia (definiowanie dla bieżącego zadania) Materiały i normy Konstrukcje betonowe : Współczynniki EN 99 : Ściana murowana (kamienna)

Bardziej szczegółowo

Praktyczne aspekty. w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym

Praktyczne aspekty. w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym Piotr Jermołowicz, Inżynieria środowiska Praktyczne aspekty w określaniu stateczności skarp wykopów i nasypów pod obciążeniem statycznym i dynamicznym Stateczność skarp wykopów i nasypów pod obciążeniem

Bardziej szczegółowo

Wytrzymałość gruntów organicznych ściśliwych i podmokłych.

Wytrzymałość gruntów organicznych ściśliwych i podmokłych. Piotr Jermołowicz Inżynieria Środowiska Wytrzymałość gruntów organicznych ściśliwych i podmokłych. Każda zmiana naprężenia w ośrodku gruntowym wywołuje zmianę jego porowatości. W przypadku mało ściśliwych

Bardziej szczegółowo

Pracownia specjalistyczna z Geoinżynierii. Studia stacjonarne II stopnia semestr I

Pracownia specjalistyczna z Geoinżynierii. Studia stacjonarne II stopnia semestr I Pracownia specjalistyczna z Geoinżynierii Studia stacjonarne II stopnia semestr I UWAGA!!! AUTOR OPRACOWANIA NIE WYRAŻA ZGODY NA ZAMIESZCZANIE PLIKU NA RÓŻNEGO RODZAJU STRONACH INTERNETOWYCH TYLKO I WYŁĄCZNIE

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

Analiza stateczności stoku w Ropie

Analiza stateczności stoku w Ropie Zał. 9 Analiza stateczności stoku w Ropie Wykonał: dr inż. Włodzimierz Grzywacz... Kraków, listopad 2012 2 Obliczenia przeprowadzono przy pomocy programu numerycznego PROGEO opracowanego w Instytucie Techniki

Bardziej szczegółowo

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni

Bardziej szczegółowo

Projektowanie budowli ziemnych w skomplikowanych i złożonych warunkach geotechnicznych

Projektowanie budowli ziemnych w skomplikowanych i złożonych warunkach geotechnicznych Geoinżynieria GEOINŻYNIERIA Projektowanie budowli ziemnych w skomplikowanych i złożonych warunkach geotechnicznych dr inż. Andrzej Batog, dr inż. Maciej Hawrysz Politechnika Wrocławska Stopień skomplikowania

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Fundamentem nazywamy tę część konstrukcji budowlanej lub inżynierskiej, która wsparta jest bezpośrednio na gruncie i znajduje się najczęściej poniżej

Fundamentem nazywamy tę część konstrukcji budowlanej lub inżynierskiej, która wsparta jest bezpośrednio na gruncie i znajduje się najczęściej poniżej Fundamentowanie 1 Fundamentem nazywamy tę część konstrukcji budowlanej lub inżynierskiej, która wsparta jest bezpośrednio na gruncie i znajduje się najczęściej poniżej powierzchni terenu. Fundament ma

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Zagęszczanie gruntów uwagi praktyczne.

Zagęszczanie gruntów uwagi praktyczne. Piotr Jermołowicz Inżynieria Środowiska Zagęszczanie gruntów uwagi praktyczne. 1) Wpływ różnoziarnistości gruntu Skład ziarnowy mieszanki gruntowej i stąd wynikający wskaźnik różnoziarnistości U ma zasadniczy

Bardziej szczegółowo

Warunki techniczne wykonywania nasypów.

Warunki techniczne wykonywania nasypów. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Warunki techniczne wykonywania nasypów. 1. Przygotowanie podłoża. Nasyp powinien być układany na przygotowanej i odwodnionej powierzchni podłoża. Przed

Bardziej szczegółowo

Uwagi dotyczące mechanizmu zniszczenia Grunty zagęszczone zapadają się gwałtownie po dobrze zdefiniowanych powierzchniach poślizgu według ogólnego

Uwagi dotyczące mechanizmu zniszczenia Grunty zagęszczone zapadają się gwałtownie po dobrze zdefiniowanych powierzchniach poślizgu według ogólnego Uwagi dotyczące mechanizmu zniszczenia Grunty zagęszczone zapadają się gwałtownie po dobrze zdefiniowanych powierzchniach poślizgu według ogólnego mechanizmu ścinania. Grunty luźne nie tracą nośności gwałtownie

Bardziej szczegółowo

Zarys geotechniki. Zenon Wiłun. Spis treści: Przedmowa/10 Do Czytelnika/12

Zarys geotechniki. Zenon Wiłun. Spis treści: Przedmowa/10 Do Czytelnika/12 Zarys geotechniki. Zenon Wiłun Spis treści: Przedmowa/10 Do Czytelnika/12 ROZDZIAŁ 1 Wstęp/l 3 1.1 Krótki rys historyczny/13 1.2 Przegląd zagadnień geotechnicznych/17 ROZDZIAŁ 2 Wiadomości ogólne o gruntach

Bardziej szczegółowo

Analiza fundamentu na mikropalach

Analiza fundamentu na mikropalach Przewodnik Inżyniera Nr 36 Aktualizacja: 09/2017 Analiza fundamentu na mikropalach Program: Plik powiązany: Grupa pali Demo_manual_en_36.gsp Celem niniejszego przewodnika jest przedstawienie wykorzystania

Bardziej szczegółowo

Projekt ciężkiego muru oporowego

Projekt ciężkiego muru oporowego Projekt ciężkiego muru oporowego Nazwa wydziału: Górnictwa i Geoinżynierii Nazwa katedry: Geomechaniki, Budownictwa i Geotechniki Zaprojektować ciężki pionowy mur oporowy oraz sprawdzić jego stateczność

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Zabezpieczenia skarp przed sufozją.

Zabezpieczenia skarp przed sufozją. Piotr Jermołowicz Inżynieria Środowiska Zabezpieczenia skarp przed sufozją. Skarpy wykopów i nasypów, powinny być poddane szerokiej analizie wstępnej, dobremu rozpoznaniu podłoża w ich rejonie, prawidłowemu

Bardziej szczegółowo

1 9% dla belek Strata w wyniku poślizgu w zakotwieniu Psl 1 3% Strata od odkształceń sprężystych betonu i stali Pc 3 5% Przyjęto łącznie: %

1 9% dla belek Strata w wyniku poślizgu w zakotwieniu Psl 1 3% Strata od odkształceń sprężystych betonu i stali Pc 3 5% Przyjęto łącznie: % 1.7. Maksymalne siły sprężające - początkowa siła sprężająca po chwilowym przeciążeniu stosowanym w celu zmniejszenia strat spowodowanych tarciem oraz poślizgiem w zakotwieniu maxp0 = 0,8 fpk Ap - wstępna

Bardziej szczegółowo

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe), Fale mechaniczne Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Ruch falowy jest bardzo rozpowszechniony w przyrodzie. Na co dzień doświadczamy obecności fal dźwiękowych i fal świetlnych. Powszechnie też wykorzystujemy

Bardziej szczegółowo

W artykule przedstawiono propozycję procedury analizy stateczności skarp nasypów kolejowych podlegających takim obciążeniom.

W artykule przedstawiono propozycję procedury analizy stateczności skarp nasypów kolejowych podlegających takim obciążeniom. Górnictwo i Geoinżynieria Rok 32 Zeszyt 2 2008 Andrzej Batog*, Maciej Hawrysz* PROBLEMY ANALIZY STATECZNOŚCI SKARP NASYPÓW KOLEJOWYCH 1. Wstęp Modernizacja istniejących kolejowych linii magistralnych wymaga

Bardziej szczegółowo

gruntów Ściśliwość Wytrzymałość na ścinanie

gruntów Ściśliwość Wytrzymałość na ścinanie Właściwości mechaniczne gruntów Ściśliwość Wytrzymałość na ścinanie Ściśliwość gruntów definicja, podstawowe informacje o zjawisku, podstawowe informacje z teorii sprężystości, parametry ściśliwości, laboratoryjne

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Geotechniczne aspekty Projektowanie i konstrukcja bazy kontenerowej Terminal G w Porcie Long Beach, Kalifornia

Geotechniczne aspekty Projektowanie i konstrukcja bazy kontenerowej Terminal G w Porcie Long Beach, Kalifornia Geotechniczne aspekty Projektowanie i konstrukcja bazy kontenerowej Terminal G w Porcie Long Beach, Kalifornia Dr inż. Mariusz P. Sieradzki Kleinfelder, Inc., Long Beach, California Port w Long Beach zbudowano

Bardziej szczegółowo

Analiza ściany oporowej

Analiza ściany oporowej Przewodnik Inżyniera Nr 3 Aktualizacja: 02/2016 Analiza ściany oporowej Program powiązany: Plik powiązany: Ściana oporowa Demo_manual_03.gtz Niniejszy rozdział przedstawia przykład obliczania istniejącej

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

mr1 Klasa betonu Klasa stali Otulina [cm] 4.00 Średnica prętów zbrojeniowych ściany φ 1 [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2

mr1 Klasa betonu Klasa stali Otulina [cm] 4.00 Średnica prętów zbrojeniowych ściany φ 1 [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2 4. mur oporowy Geometria mr1 Wysokość ściany H [m] 2.50 Szerokość ściany B [m] 2.00 Długość ściany L [m] 10.00 Grubość górna ściany B 5 [m] 0.20 Grubość dolna ściany B 2 [m] 0.24 Minimalna głębokość posadowienia

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Rozmieszczanie i głębokość punktów badawczych

Rozmieszczanie i głębokość punktów badawczych Piotr Jermołowicz Inżynieria Środowiska Rozmieszczanie i głębokość punktów badawczych Rozmieszczenie punktów badawczych i głębokości prac badawczych należy wybrać w oparciu o badania wstępne jako funkcję

Bardziej szczegółowo

Kategoria geotechniczna vs rodzaj dokumentacji.

Kategoria geotechniczna vs rodzaj dokumentacji. Piotr Jermołowicz Inżynieria Środowiska Kategoria vs rodzaj dokumentacji. Wszystkie ostatnio dokonane działania związane ze zmianami legislacyjnymi w zakresie geotechniki, podporządkowane są dążeniu do

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr.

EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr. EGZAMIN Z FUNDAMENTOWANIA, Wydział BLiW IIIr. Pyt. 1 (ok. 5min, max. 4p.) Pyt. 2 (ok. 5min, max. 4p.) Pyt. 3 (ok. 5min, max. 4p.) Pyt. 4 (ok. 5min, max. 4p.) Pyt. 5 (ok. 5min, max. 4p.) Zad. 1. (ok. 15min,

Bardziej szczegółowo

Kolokwium z mechaniki gruntów

Kolokwium z mechaniki gruntów Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Grupy nośności vs obliczanie nośności podłoża.

Grupy nośności vs obliczanie nośności podłoża. Piotr Jermołowicz Inżynieria Środowiska Szczecin Grupy nośności vs obliczanie nośności podłoża. Nadrzędnym celem wzmacniania podłoża jest dostosowanie jego parametrów do wymogów eksploatacyjnych posadawianych

Bardziej szczegółowo

Mechanika gruntów - opis przedmiotu

Mechanika gruntów - opis przedmiotu Mechanika gruntów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Mechanika gruntów Kod przedmiotu 06.4-WI-BUDP-Mechgr-S16 Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Zasady wymiarowania nasypów ze zbrojeniem w podstawie.

Zasady wymiarowania nasypów ze zbrojeniem w podstawie. Piotr Jermołowicz Zasady wymiarowania nasypów ze zbrojeniem w podstawie. Dla tego typu konstrukcji i rodzajów zbrojenia, w ramach pierwszego stanu granicznego, sprawdza się stateczność zewnętrzną i wewnętrzną

Bardziej szczegółowo

1. Połączenia spawane

1. Połączenia spawane 1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

II. WIBROIZOLACJA FUNDAMENTÓW POD MASZYNY

II. WIBROIZOLACJA FUNDAMENTÓW POD MASZYNY II. WIBROIZOLACJA FUNDAMENTÓW POD MASZYNY 1. WSTĘP... 2 2. TECHNICZNE ŚRODKI WIBROIZOLACYJNE... 2 2.1. GUMA... 5 2.2. KOREK... 5 1. WSTĘP Stosowanie wibroizolacji do fundamentów pod maszyny ma na celu:

Bardziej szczegółowo

OPTYMALIZACJA SZEROKOŚCI PASÓW OCHRONNYCH PRZY ODKRYWKOWEJ EKSPLOATACJI KOPALIN POSPOLITYCH

OPTYMALIZACJA SZEROKOŚCI PASÓW OCHRONNYCH PRZY ODKRYWKOWEJ EKSPLOATACJI KOPALIN POSPOLITYCH Górnictwo i Geoinżynieria Rok 33 Zeszyt 1 2009 Andrzej Batog*, Maciej Hawrysz* OPTYMALIZACJA SZEROKOŚCI PASÓW OCHRONNYCH PRZY ODKRYWKOWEJ EKSPLOATACJI KOPALIN POSPOLITYCH 1. Wstęp W ciągu ostatnich, co

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

Nasypy projektowanie.

Nasypy projektowanie. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Nasypy projektowanie. 1. Dokumentacja projektowa 1.1. Wymagania ogólne Nasypy należy wykonywać na podstawie dokumentacji projektowej. Projekty stanowiące

Bardziej szczegółowo

Nasyp budowlany i makroniwelacja.

Nasyp budowlany i makroniwelacja. Piotr Jermołowicz - Inżynieria Środowiska Szczecin Nasyp budowlany i makroniwelacja. Nasypem nazywamy warstwę lub zaprojektowaną budowlę ziemną z materiału gruntowego, która powstała w wyniku działalności

Bardziej szczegółowo

Warszawa, 22 luty 2016 r.

Warszawa, 22 luty 2016 r. tel.: 022/ 380 12 12; fax.: 0 22 380 12 11 e-mail: biuro.warszawa@grontmij.pl 02-703 Warszawa, ul. Bukowińska 22B INWESTOR: Wodociągi Białostockie Sp. z o. o. ul. Młynowa 52/1, 15-404 Białystok UMOWA:

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

STATECZNOŚĆ SKARP I ZBOCZY W UJĘCIU EUROKODU Wprowadzenie. 2. Charakterystyka Eurokodu 7. Halina Konderla*

STATECZNOŚĆ SKARP I ZBOCZY W UJĘCIU EUROKODU Wprowadzenie. 2. Charakterystyka Eurokodu 7. Halina Konderla* Górnictwo i Geoinżynieria Rok 32 Zeszyt 2 2008 Halina Konderla* STATECZNOŚĆ SKARP I ZBOCZY W UJĘCIU EUROKODU 7 1. Wprowadzenie Od wielu lat trwają w Polsce prace nad wdrożeniem europejskiej normy dotyczącej

Bardziej szczegółowo

Obliczanie i dobieranie ścianek szczelnych.

Obliczanie i dobieranie ścianek szczelnych. Piotr Jermołowicz Inżynieria Środowiska Szczecin Obliczanie i dobieranie ścianek szczelnych. Ścianka szczelna jest obudową tymczasową lub stałą z grodzic stalowych stosowana najczęściej do obudowy wykopu

Bardziej szczegółowo

Systemy odwadniające - rowy

Systemy odwadniające - rowy Piotr Jermołowicz Inżynieria Środowiska Systemy odwadniające - rowy Ze względu na to, że drenaż pionowy realizowany w postaci taśm drenujących lub drenów piaskowych, przyspiesza odpływ wody wyciskanej

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Stateczność prętów prostych Równowaga, utrata stateczności, siła krytyczna, wyboczenie w zakresie liniowo sprężystym i poza liniowo sprężystym, projektowanie elementów konstrukcyjnych

Bardziej szczegółowo

Wody gruntowe i zjawiska towarzyszące.

Wody gruntowe i zjawiska towarzyszące. Piotr Jermołowicz Inżynieria Środowiska Wody gruntowe i zjawiska towarzyszące. Z trzech rodzajów wody występującej w gruncie ( woda związana, kapilarna, gruntowa), to woda gruntowa ma najbardziej istotny

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Parcie i odpór gruntu. oddziaływanie gruntu na konstrukcje oporowe

Parcie i odpór gruntu. oddziaływanie gruntu na konstrukcje oporowe Parcie i odpór gruntu oddziaływanie gruntu na konstrukcje oporowe Parcie i odpór gruntu oddziaływanie gruntu na konstrukcje oporowe Mur oporowy, Wybrzeże Wyspiańskiego (przy moście Grunwaldzkim), maj 2006

Bardziej szczegółowo

ODPOWIEDŹ NASYPU ZBROJONEGO GEOSYNTETYKAMI NA OBCIĄŻENIA PARASEJSMICZNE

ODPOWIEDŹ NASYPU ZBROJONEGO GEOSYNTETYKAMI NA OBCIĄŻENIA PARASEJSMICZNE Górnictwo i Geoinżynieria Rok 32 Zeszyt 2 2008 Bogumił Wrana*, Michał Kowalski* ODPOWIEDŹ NASYPU ZBROJONEGO GEOSYNTETYKAMI NA OBCIĄŻENIA PARASEJSMICZNE 1. Wstęp W artykule rozważane jest zagadnienie metody

Bardziej szczegółowo