... Rozprawa doktorska. Detekcja sygnału i technika obrazowania w skaningowym mikroskopie elektronowym w zakresie niskiej próżni.
|
|
- Daria Jarosz
- 10 lat temu
- Przeglądów:
Transkrypt
1 Wydział Elektroniki Mikrosystemów i Fotoniki Rozprawa doktorska... Detekcja sygnału i technika obrazowania w skaningowym mikroskopie elektronowym w zakresie niskiej próżni Michał Krysztof Promotor prof. dr hab. inż. Witold Słówko Wrocław 2010
2
3 Serdecznie dziękuję promotorowi prof. dr hab. inż. Witoldowi Słówko za życzliwą pomoc i cenne uwagi w czasie wykonywania tej pracy Autor 3
4 4
5 Spis treści: WYKAZ WAŻNIEJSZYCH OZNACZEŃ I AKRONIMÓW: WSTĘP SKANINGOWA MIKROSKOPIA ELEKTRONOWA WPROWADZENIE MIKROSKOPIA WYSOKOPRÓŻNIOWA Budowa klasycznego skaningowego mikroskopu elektronowego Podstawowe sygnały skaningowej w mikroskopii elektronowej Detekcja elektronów wtórnych Detekcja elektronów wstecznie rozproszonych MIKROSKOPIA ŚRODOWISKOWA MIKROSKOPIA O ZMIENNYM CIŚNIENIU MECHANIZMY PRZEPŁYWU ELEKTRONÓW W NISKIEJ PRÓŻNI WPŁYW OBECNOŚCI GAZU NA SYGNAŁY W MIKROSKOPII ELEKTRONOWEJ Oddziaływanie wiązka-gaz Oddziaływanie wiązka-próbka Oddziaływanie próbka-sygnał Oddziaływanie sygnał-gaz Oddziaływanie gaz-próbka Oddziaływanie wiązka-sygnał OGNISKOWANIE WIĄZKI PIERWOTNEJ W ESEM WYŁADOWANIE TOWNSENDA Wzmocnienie gazowe sygnału elektronów Powielanie lawinowe elektronów STANDARDY DETEKCJI ELEKTRONÓW WTÓRNYCH W NISKIEJ PRÓŻNI Detektor jonizacyjny Detektor poświaty wyładowania PROGRAM KOMPUTEROWY DO BADANIA PRZEPŁYWU CZĄSTEK NAŁADOWANYCH W GAZIE WSTĘP OPIS ŚRODOWISKA SIMION 3D
6 4.3. OPIS PROGRAMU MC-SIMION ZASADA DETEKCJI Z TRANSPORTEM PRZEZ PRZESŁONY DŁAWIĄCE DETEKTOR DWUSTOPNIOWY Koncepcja transportu elektronów wtórnych przez dwie przesłony dławiące Budowa systemu detekcyjnego DETEKTOR JEDNOSTOPNIOWY BADANIE MECHANIZMÓW PRZEPŁYWU ELEKTRONÓW W UKŁADZIE WEJŚCIOWYM DETEKTORA PRZEPŁYW ELEKTRONÓW W POLU JEDNORODNYM Koncepcja pomiarów Rozpraszanie wsteczne elektronów na granicy próbka-gaz Wpływ rozpraszania wstecznego elektronów na emisję wtórną Ogniskowanie elektronów w obszarze wejściowym w polu jednorodnym Wzmocnienie elektronów w obszarze wejściowym w polu jednorodnym Jednoznaczność parametrów przepływu będących funkcją U λ PRZEPŁYW ELEKTRONÓW W POLU OGNISKUJĄCYM WNIOSKI BADANIE MECHANIZMÓW PRZEPŁYWU ELEKTRONÓW W WIELOELEKTRODOWYM UKŁADZIE WEJŚCIOWYM MODELU LABORATORYJNEGO PRZESŁANKI WSTĘPNE I KONFIGURACJA ELEKTROD UKŁADU WEJŚCIOWEGO PARAMETRY TRANSPORTU ELEKTRONÓW PRZEZ DOLNĄ PRZESŁONĘ DŁAWIĄCĄ WNIOSKI PARAMETRY UKŁADU DETEKCJI KOŃCOWEJ W OBSZARZE POŚREDNIM KONCEPCJA DETEKTORA KOŃCOWEGO O SYMETRII OSIOWEJ PRZECHWYT POLA ELEKTRYCZNEGO ANODY BŁĘDY ODWZOROWANIA POŁOŻENIE PUNKTU OGNISKOWANIA SOCZEWKI OBIEKTYWOWEJ Z I PAKIET PROGRAMÓW ELD WŁAŚCIWOŚCI UKŁADÓW DETEKCYJNYCH
7 8.7. WNIOSKI BADANIA DOŚWIADCZALNE UTRZYMANIE ŚRODOWISKA GAZOWEGO PRÓBKI Środowisko gazowe w warunkach chłodzenia próbki Dozowanie gazu OBRAZOWANIE PREPARATÓW DIELEKTRYCZNYCH OBRAZOWANIE PREPARATÓW ZAWIERAJĄCYCH WODĘ WNIOSKI PODSUMOWANIE LITERATURA:
8 8
9 Wykaz ważniejszych oznaczeń i akronimów: Oznaczenia: a H promień atomu Bohra C c współczynnik aberracji chromatycznej odniesiony do obrazu C s współczynnik aberracji sferycznej odniesiony do obrazu d odległość robocza, w modelu teoretycznym powielania elektronów D 0 minimalna odległość między atomami w cząsteczce D 1, D 2 średnica otworu w przesłonie dławiącej dolnej i górnej (w opisie detektora) D a średnica anody; współczynnik przechwytu pola elektrycznego anody d BSE /d współczynnik wydłużenia drogi elektronów wstecznie rozproszonych D h średnica połówkowa rozkładu prądu elektronowego na powierzchni anody D i współczynnik przechwytu pola elektrycznego od i-tej elektrody D p średnica płytki mikroporowatej D SE średnica otworu w przesłonie ekranującej D TA średnica otworu w przesłonie dławiącej dσ/dω różnicowy przekrój czynny na zderzenie dσ e /dω różnicowy przekrój czynny na zderzenie sprężyste dσ j /dω różnicowy przekrój czynny na zderzenie niesprężyste e ładunek elementarny e elektron e elektron środowiskowy ESE E energia wiązki pierwotnej E 0 energia spoczynkowa elektronu E e = U a /l a natężenie pola ekstrakcyjnego E i natężenie pola elektrycznego generowanego przez i-tą elektrodę na powierzchni stolika przedmiotowego ev jon energia potencjalna jonu gazu f e (θ) amplituda rozproszenia elektronów G cząstka gazu G + jon gazu 9
10 g współczynnik wzmocnienia gazowego H SE odległość stolik przesłona ekranująca hν energia fotonu I BSE prąd elektronów wstecznie rozproszonych I BSEg prąd środowiskowych elektronów wtórnych powstałych w lawinie powielania, których źródłem są elektrony wstecznie rozproszone I ESE prąd środowiskowych elektronów wtórnych powstałych w lawinie powielania I jon prąd jonowy powstały w lawinie powielania I P prąd znamionowy zasilający soczewkę magnetyczną I PE prąd wiązki pierwotnej I PE0 prąd wiązki pierwotnej emitowanej z wyrzutni elektronowej I PEg prąd środowiskowych elektronów wtórnych powstałych w lawinie powielania, których źródłem są elektrony wiązki pierwotnej I SE (0) prąd elektronów wtórnych I SE (d) prąd elektronów docierających do anody I SEg prąd środowiskowych elektronów wtórnych powstałych w lawinie powielania, których źródłem są elektrony wtórne J energia jonizacji atomów gazu j(r) gęstości prądu wiązki w odległości r od osi wiązki j 0 gęstość prądu wiązki nierozproszonej k stała Boltzmana k f współczynnik sprzężenia zwrotnego k b,k B współczynniki szumu ( k ) B = kb ISE k Bg współczynnik wzmocnienia elektronowego nie uwzględniający efektu rozpraszania wstecznego elektronów, wyraża stosunek liczby elektronów docierających do anody do liczby elektronów startujących z katody k eg współczynnik wzmocnienia elektronowego uwzględniający efekt rozpraszania wstecznego elektronów, wyraża stosunek liczby elektronów docierających do anody do liczby elektronów ekstrahowanych z katody K c wzmocnienie całkowite K i wzmocnienie sygnału w i-tym sektorze K jon energia kinetyczna jonu gazu 10
11 K t stopień tłumienia współczynnika emisji wtórnej elektronów ze względu na efekt rozpraszania wstecznego elektronów w gazie k λ współczynnik drogi swobodnej l odległość między przesłoną dławiącą a tuleją ekranującą l a odległość anody od stolika przedmiotowego m średnia liczba zderzeń elektronu z cząsteczkami gazu na drodze od dolnej przesłony dławiącej do stolika przedmiotowego (d); szerokość anody cylindrycznej M el powiększenie liniowe n koncentracja gazu w komorze przedmiotowej N 0,i liczba elektronów na wejściu danego sektora, dla pierwszego sektora jest to liczba elektronów startujących z powierzchni stolika N Z,i liczba elektronów po przejściu górnej granicy danego sektora, dla trzeciego sektora jest liczbą elektronów, które dotrą do anody N A liczba elektronów docierających do anody zastępczej N SE liczba elektronów startujących ze stolika przedmiotowego N eg (0) liczba elektronów emitowanych z próbki N eg (d) liczba elektronów docierających do anody N eg (z) liczba elektronów w punkcie o współrzędnej z między stolikiem przedmiotowym a anodą N jg (d) liczba jonów wygenerowanych w lawinie powielania N kat liczba elektronów generowanych na katodzie przez zjawiska wtórne w pierwszej lawinie powielania 2 N kat liczba elektronów generowanych na katodzie przez zjawiska wtórne w drugiej lawinie powielania 3 N kat liczba elektronów generowanych na katodzie przez zjawiska wtórne w trzeciej lawinie powielania n N kat liczba elektronów generowanych na katodzie przez zjawiska wtórne w n- tej lawinie powielania p ciśnienie gazu (ogólnie w teorii) P(1) prawdopodobieństwo zderzenia elektronu P(x) prawdopodobieństwo x-krotnego rozproszenia elektronu p 1 ciśnienie w komorze przedmiotowej 11
12 p 2 ciśnienie w komorze pośredniej p 3 ciśnienie w kolumnie elektronooptycznej RAN liczba losowa z przedziału <0;1> R promień atomu gazu r promień w płaszczyźnie próbki r m maksymalny zasięg oddziaływania cząstki z przelatującym elektronem r nj odległość między n-tym i j-tym atomem s odległość między anodą stożkową a przesłoną dławiącą S g wysunięcie anody pierścieniowej poza krawędź tulei ekranującej S BSE efektywność jonizacji gazu przez elektronu wstecznie rozproszone S PE efektywność jonizacji gazu przez elektrony wiązki pierwotnej t odległość między anodą pierścieniową a przesłoną dławiącą T temperatura bezwzględna gazu U a napięcie anody U A napięcie przyspieszające wiązkę elektronową U SE napięcie przesłony ekranującej U i napięcie polaryzacji i-tej elektrody U P napięcie znamionowe przyspieszające wiązkę lub zasilające soczewkę elektryczną U TA napięcie przesłony dławiącej U λ napięcie na drodze swobodnej, tj. napięcie odpowiadające energii jaką uzyska elektron po przebyciu drogi równej drodze swobodnej. Droga swobodna wyliczana jest dla energii początkowej elektronu V(r) rozkład prawdopodobieństwa rozproszenia elektronu V jon potencjał jonizacji W 0 energia początkowa elektronów wtórnych, startowych x przebyta droga przez cząstkę naładowaną Z liczba atomowa pierwiastka z odległość wzdłuż osi wiązki od przesłony dławiącej Z i punkt ogniskowania soczewki obiektywowej α 0 kąt aperturowy (połowa kąta rozwarcia wiązki) α jon pierwszy współczynnik Townsenda β kąt rotacji podczas rozproszenia 12
13 γ drugi współczynnik Townsenda γ fot ułamek zjawisk wtórnych wywołanych fotonami γ jon ułamek zjawisk wtórnych wywołanych jonami γ met ułamek zjawisk wtórnych wywołanych metastabilami γ term ułamek zjawisk wtórnych wywołanych zderzeniami cząstek obojętnych gazu δ współczynnik emisji elektronów wtórnych δ c promień krążka rozproszenia aberracji chromatycznej δ sf promień krążka rozproszenia aberracji sferycznej U, I odpowiednio odchylenia napięcia i prądu od wartości znamionowych ε natężenie pola elektrycznego η współczynnik emisji elektronów wstecznie rozproszonych θ kąt rozproszenia elektronu λ el długość fali elektronu λ średnia droga swobodna elektronów wtórnych w gazie µ wartość średnia σ odchylenie standardowe od wartości średniej σ i przekrój czynny na zderzenie (i określa charakter zderzenia) σ jon przekrój czynny na zderzenie jonizujące (argon i woda) σ spr przekrój czynny na zderzenie sprężyste (argon i woda) σ T całkowity przekrój czynny na zderzenie σ wib przekrój czynny na zderzenie wibracyjne (woda) σ wzb przekrój czynny na zderzenie wzbudzające (woda) σ wzb1 przekrój czynny na zderzenie wzbudzające I rodzaju (argon) σ wzb2 przekrój czynny na zderzenie wzbudzające II rodzaju (argon) τ e = N e (W 0 )/N SE współczynnik ekstrakcji elektronów ułamek elektronów o energii W 0 ekstrahowanych z powierzchni próbki φ w wewnętrzna średnica anody stożkowej φ z zewnętrzna średnica anody stożkowej φ d średnica anody pierścieniowej Φ potencjał wyjścia Ω kąt bryłowy 13
14 Akronimy: BSE elektrony wstecznie rozproszone, z ang. BackScattered Electrons ESD detektor elektronów środowiskowych, z ang. Environmental Secondary Detector ESE środowiskowe elektrony wtórne, z ang. Environmental Secondary Electron ESEM Środowiskowa Skaningowa Mikroskopia Elektronowa, z ang. Environmental Scanning Electron Microscopy GDD gazowe urządzenie detekcyjne, z ang. Gaseous Detector Device GSED gazowy detektor elektronów wtórnych, z ang. Gaseous Secondary Electron Detector ISED jednostopniowy detektor elektronów wtórnych, z ang. Intermediate Secondary Electron Detector LV SEM Niskonapięciowa Skaningowa Mikroskopia Elektronowa, z ang. Low Voltage Scanning Electron Microscopy; Niskopróżniowa Skaningowa Mikroskopia Elektronowa, z ang. Low Vacuum SEM MCP płytka mikrokanalikowa, z ang. MicroChannel Plate MSP płytka mikrosferoidalna, z ang. MicroSphere Plate PLA przesłona dławiąca, z ang. Pressure Limiting Aperture SE elektrony wtórne, z ang. Secondary Electrons SE 1, SE 2 elektrony wtórne pierwszego i drugiego rodzaju powstałe przez wybicie elektronów odpowiednio: przez elektrony wiązki pierwotnej, przez powracające do powierzchni elektrony wstecznie rozproszone SEM Skaningowa Mikroskopia Elektronowa, z ang. Scanning Electron Microscopy TEM Transmisyjna Mikroskopia Elektronowa, z ang. Transmission Electron Microscopy TSSEd dwustopniowy detektor elektronów wtórnych, z ang. Two Stage Secondary Electron detector VP SEM Skaningowa Mikroskopia Elektronowa o zmiennym ciśnieniu, z ang. Variable Pressure SEM 14
15 1. Wstęp Mikroskopia elektronowa w ciągu ponad 70-ciu lat swego rozwoju stała się podstawowym narzędziem poznania materii na poziomie nano- i subnanorozmiarów. Pozycja ta wynika zarówno z szerokiej gamy dostarczanych informacji jak i wysokiej rozdzielczości metody (0,05 nm dla mikroskopii transmisyjnej). Skaningowy mikroskop elektronowy SEM jest nieco młodszym wynalazkiem, którego podstawową zaletą jest możliwość badania powierzchni obiektów bez preparowania, jednak kosztem niższej rozdzielczości (ok. 1 nm). Koncepcję SEM zaproponował Knoll w 1935r. Jednak dopiero w 1965 roku zbudowano pierwszy komercyjny aparat tego typu, po wynalezieniu przez Everharta i Thornleya detektora scyntylacyjnego. Od tego czasu mikroskop elektronowy stał się powszechnie stosowanym instrumentem badawczym zarówno w sferze naukowej jak i technicznej. Możliwości badawcze SEM wynikają z parametrów wiązki elektronowej oraz z właściwości systemu detekcyjnego. Niestety SEM w swojej klasycznej wersji wysoko-próżniowej ma swoje ograniczenia. Wysoka próżnia utrzymywana w kolumnie elektronooptycznej i komorze przedmiotowej wyklucza obecność preparatów o wysokiej prężności par. Jednocześnie powierzchnia próbki powinna być przewodząca, aby nie nastąpiło gromadzenie się na powierzchni ładunków elektrycznych, zaburzających obraz. Dążenie do pokonania tych ograniczeń, obserwowane już z początkiem lat 80-tych XX wieku, zaowocowało opracowaniem szeregu nowych typów SEM, w różnym stopniu spełniających oczekiwania użytkowników. Podstawową modyfikacją tych mikroskopów jest możliwość wprowadzenia gazu o odpowiednim ciśnieniu do komory przedmiotowej mikroskopu, jednak nadal wymagane jest utrzymanie wysokiej próżni w obszarze kolumny elektronooptycznej. Takie rozwiązanie wymaga niezależnego pompowania obu obszarów. Oddzielone są one od siebie tzw. komorą pośrednią obszarem próżni pośredniej rzędu 10-2 hpa, zawartym pomiędzy dwiema przesłonami dławiącymi zarówno przepływ gazu jak i elektronów, z komory przedmiotowej do obszaru wysokiej próżni. Umożliwia to utrzymanie wokół preparatów atmosfery odpowiadającej ciśnieniom parcjalnym zawartych w nim składników lotnych, przez co nie zachodzi potrzeba suszenia, bądź mrożenia tych preparatów. Z drugiej strony jony dodatnie, powstające przy zderzeniach elektronów z atomami gazu wypełniającego komorę przedmiotową, mają możliwość kompensacji ładunku nagromadzonego na preparatach dielektrycznych. Dzięki temu nie jest wymagane pokrywanie ich warstwami przewodzącymi, stosowane w konwencjonalnej mikroskopii elektronowej. 15
16 Najbardziej zaawansowanym rozwiązaniem są mikroskopy wysokociśnieniowe, umożliwiające pracę przy ciśnieniu w komorze przedmiotowej do 30 hpa, co odpowiada prężności par wody w temperaturze pokojowej. Tego typu mikroskopy nazywane są środowiskowymi (ESEM Environmental SEM nazwa zastrzeżona przez firmę Philips), bądź HPSEM (High Pressure SEM). W mikroskopach tych możliwe jest obserwowanie obiektów biologicznych w ich naturalnym środowisku. Komercyjne aparaty tego typu są jednak bardzo złożone i drogie, dlatego dla celów obrazowania materiałów, które nie wymagają tak wysokich ciśnień opracowano technikę mikroskopii niskiej próżni LVSEM (LV Low Vacuum SEM), w której graniczne ciśnienia w komorze przedmiotowej są o rząd niższe (< 3 hpa). Mikroskop elektronowy jest narzędziem uniwersalnym, ze względu na dużą liczbę informacji o obiekcie, otrzymywanych na podstawie różnego typu sygnałów, których detekcja jest możliwa w jednym aparacie. Podstawowymi dla tej metody badawczej są sygnały elektronów wtórnych i elektronów wstecznie rozproszonych. One dostarczają najważniejszych informacji o obiekcie, w formie tzw. kontrastu materiałowego i kontrastu topograficznego. W standardowym mikroskopie elektronowym najczęściej używanym detektorem elektronów wtórnych jest detektor scyntylacyjny Everharta-Thornleya, w którym elektrony wtórne generują światło, padając na scyntylator spolaryzowany wysokim napięciem przyśpieszającym. Sygnał świetlny jest następnie przetwarzany na sygnał elektryczny w powielaczu elektronowym. W rozwiązaniach wykorzystujących gaz w komorze przedmiotowej nie jest możliwe wykorzystanie detektora scyntylacyjnego Everharta-Thornleya ze względu na możliwość wyładowania elektrycznego. Obecnie do detekcji elektronów wtórnych w tych urządzeniach wykorzystuje się tzw. detektory jonizacyjne. Stanowią je kolektory umieszczone w komorze przedmiotowej, spolaryzowane napięciem rzędu kilkuset Voltów, przechwytujące prąd elektronów wtórnych zwielokrotniony dzięki jonizacji zderzeniowej z molekułami gazu wypełniającego komorę przedmiotową. Wspomniane detektory pozwalają uzyskać wzmocnienie prądowe sygnału dochodzące do 10 3, lecz mimo to wymagają stosowania wzmacniaczy elektronicznych o bardzo dużym wzmocnieniu, co wiąże się z ograniczeniem ich pasma przenoszenia, uniemożliwiającym stosowanie trybu szybkiego skanowania. Poza tym, duże wartości wzmocnienia jonowego uzyskuje się przy odpowiednio dużych wartościach iloczynu pd (ciśnienia i odległości kolektora od próbki). Ponieważ średnia droga swobodna elektronów w gazie maleje wraz ze zmniejszaniem ich energii i wzrostem ciśnienia gazu, należy się liczyć nie tylko z intensywnym rozpraszaniem elektronów wtórnych lecz 16
17 także wiązki pierwotnej, jeśli iloczyn drogi wiązki w gazie i jego ciśnienia pd g jest zbyt duży. Rozpraszanie wiązki elektronowej powoduje pogorszenie rozdzielczości i kontrastu, a nawet całkowitą utratę możliwości obrazowania. Na przykład, w wypadku wody i azotu, całkowite rozproszenie wiązki elektronowej o energii 2 kev występuje przy pd g = 7,4 hpa mm, podczas gdy krytyczna wartość pd g wzrasta do 900 hpa mm jeśli energia wiązki wynosi 30 kev. Jednak obniżenie energii wiązki elektronowej poprawia kontrast i przestrzenną rozdzielczość obrazu, szczególnie w wypadku preparatów biologicznych, o małej gęstości i zawierających wodę, a więc wymagających stosowania relatywnie wysokich ciśnień, by nie dopuścić do jej wyparowania. Realną drogą pogodzenia tych wzajemnie sprzecznych postulatów jest minimalizacja drogi wiązki d g w gazie o podwyższonym ciśnieniu (nawet do wartości poniżej 1 mm), tj. odległości stolika przedmiotowego od dolnej przesłony dławiącej, oddzielającej komorę pośrednią od komory przedmiotowej. W tej przestrzeni jednak jest już zbyt mało miejsca na klasyczny detektor jonizacyjny, co sugeruje detekcję przez otwór w dolnej przesłonie dławiącej. Oczywistą niedogodnością transportu sygnału elektronowego przez przesłonę dławiącą są straty prądu elektronowego na tej przesłonie, spowodowane rozpraszaniem elektronów w gazie. Jest to zasadniczy powód, dla którego wspomniana koncepcja nie była dotychczas rozwijana. Jednak możliwości jakie oferuje stały się bodźcem do podjęcia niniejszej pracy, której celem było zbadanie mechanizmów działania i optymalizacja parametrów nowych rozwiązań układów detekcji elektronów wtórnych, wkomponowanych w system pompowania różnicowego, a także opracowanie metodyki obrazowania różnych obiektów z zastosowaniem tych układów. Realizacja tego celu została oparta na głównej tezie, wg której możliwy jest efektywny transport elektronów wtórnych przez dolną przesłonę dławiącą do komory pośredniej układu pompowania różnicowego, gdzie nastąpi detekcja końcowa. Dodatkowo autor zakłada również, że możliwe jest przeprowadzenie w komorze pośredniej detekcji końcowej techniką scyntylacyjną, tj. z przetwarzaniem sygnału elektronowego na świetlny i z powrotem na elektryczny w fotopowielaczu. Nowe systemy detekcji powstały w Laboratorium Urządzeń Elektronooptycznych WEMiF na początku bieżącej dekady. We wstępnej fazie rozwoju były one badane i optymalizowane wyłącznie doświadczalnie, nie dysponowano bowiem narzędziami umożliwiającymi numeryczną analizę przepływu elektronów w złożonych układach elektrod wypełnionych gazem. Dlatego istotnym elementem pracy doktorskiej było opracowanie metody numerycznej typu Monte Carlo i oprogramowania komputerowego umożliwiającego zbadanie mechanizmów przepływu elektronów w modelach testowych i użytkowych 17
18 detektorów. Program został oparty na bazie pakietu SIMION 3D v.7.0, który umożliwia wyznaczanie torów elektronów w polu elektrycznym i magnetycznym. Umożliwia również korzystanie z dodatkowych programów użytkownika napisanych we własnym, wewnętrznym języku programowania. Oba programy zostały zintegrowane. SIMION wyznacza tor elektronu między zderzeniami, zaś MC określa warunki początkowe ruchu elektronu po zderzeniu. Model numeryczny obejmuje zderzenia elektronów z atomami gazu: zderzenia elastyczne, jonizujące, oraz wzbudzenia, a także emisję wtórną elektronów stymulowaną bombardowaniem jonowym. Struktura programu została zaprezentowana w rozdziale 4, jednak pełny opis poszczególnych algorytmów został pominięty ze względu na strukturę i objętość pracy. Generalna idea i pierwsze systemy detekcyjne, oparte na transporcie elektronów przez przesłonę dławiącą zostały opisane w rozdziale 5. Wspomniane opracowania uwzględniały ważne aspekty praktyczne i zostały wykonane m.in. w formie wyposażenia dodatkowego do klasycznego, wysoko-próżniowego SEM i umożliwiają jego pracę zarówno w zakresie wysokiej próżni jak i podwyższonych ciśnień powietrza oraz pary wodnej, przekraczających 10 hpa. W wyniku badań powstały dwa typy detektorów, zespolonych z komorą pośrednią układu pompowania różnicowego. Pierwszym rozwiązaniem jest tzw. dwustopniowy detektor elektronów wtórnych, który zakłada końcową detekcję w obszarze wysokiej próżni wykorzystującą standardowy detektor Everharta-Thornleya. Drugim rozwiązaniem jest pośredni (lub jednostopniowy) detektor elektronów wtórnych, w którym detektor finalny w dowolnej postaci, np. kolektora elektronów w wypadku detekcji elektronów, bądź światłowodu z fotopowielaczem w wypadku detekcji fotonów, umieszczony jest w komorze pośredniej mikroskopu. Umiejscowienie detektora w próżni pośredniej umożliwia pracę w stabilnym środowisku, gdyż w komorze pośredniej można utrzymywać optymalne ciśnienie gazu, mimo zmian ciśnienia w komorze przedmiotowej dokonywanych w szerokim zakresie. Detekcji sygnału elektronów wtórnych w komorze pośredniej dotyczy wspominana już druga teza niniejszej pracy, którą sformułowano w sposób następujący: możliwe jest dokonanie detekcji końcowej elektronów w komorze pośredniej, z wykorzystaniem techniki scyntylacyjnej. Wspomnianą technikę zrealizowano przy zastosowaniu dwóch typów scyntylatorów: scyntylatora proszkowego w formie luminoforu o krótkim czasie poświaty oraz scyntylatora gazowego, który stanowił gaz roboczy wypełniający komorę pośrednią Badania numeryczne mechanizmów przepływu elektronów wtórnych prowadzono wstępnie w modelach testowych kondensatora płaskiego i w układzie trójelektrodowym 18
19 (podobnym do soczewki katodowej). Wyniki tych analiz przedstawione są w rozdziale 6. Opierając się na nich opisano w sposób ilościowy liczne zjawiska zachodzące na trasie elektronów wtórnych, ze stolika przedmiotowego do komory pośredniej. Przedstawiono m. in. efekt rozpraszania wstecznego elektronów. Jest to kluczowe zjawisko, powodujące zanikanie sygnału elektronów wtórnych tuż po jego emisji, na które należy zwrócić szczególną uwagę projektując ostateczne rozwiązanie systemu detekcyjnego. Powielanie elektronów w obszarze wejściowym detektora i ich skupianie w otworze przesłony dławiącej może zapewnić efektywny transport elektronów do komory pośredniej, zgodnie z tezą główną postawioną przez autora. Dalsze wyniki symulacji komputerowych, dotyczące przepływu elektronów wtórnych w modelu użytkowym detektora zostały przedstawione w rozdziale 7. Również one potwierdzają tezę o możliwości sprawnego transferu sygnału przez przesłonę dławiącą. Ważnym zespołem systemu detekcyjnego jest detektor końcowy, typu scyntylacyjnego, umieszczony w komorze pośredniej systemu pompowania różnicowego. W pierwszych rozwiązaniach zastosowano układy o strukturze asymetrycznej, które jednak powodowały takie niedogodności jak zniekształcenia astygmatyczne wiązki pierwotnej, wynikające z bocznego usytuowania anody (scyntylatora) oraz stosunkowo mały przechwyt pola elektrycznego anody na stoliku przedmiotowym. Odpowiedzią na te problemy jest koncepcja osiowosymetrycznego układu detekcyjnego stanowiącego rodzaj soczewki katodowej dla elektronów wtórnych i soczewki pojedynczej dla wiązki pierwotnej. Taki układ detekcyjny można realizować w wielu wariantach, różniących się właściwościami elektronooptycznymi, dostosowanymi do przewidywanych zastosowań. Przeanalizowano trzy najbardziej obiecujące konfiguracje geometryczne osiowosymetrycznego układu detekcyjnego, biorąc pod uwagę ich najważniejsze aberracje elektronooptyczne, tj. aberrację sferyczną i chromatyczną, które mogą pogorszyć rozdzielczość mikroskopu skaningowego. Zbadano również inne parametry elektronooptyczne, takie jak przesunięcie punktu ogniskowania wiązki elektronowej i przechwyt pola elektrycznego na stoliku przedmiotowym. Badania prowadzono metodami numerycznymi, korzystając z programów do projektowania soczewek elektrycznych ELD i EPROP. Obliczenia przedstawione w rozdz. 8 wykazały, że współczynniki aberracji we wszystkich trzech konfiguracjach elektrod są wielokrotnie mniejsze niż wartości typowe dla soczewek obiektywowych stosowanych w SEM. Badane systemy detekcyjne mogą więc zostać zastosowane w mikroskopach bez obawy pogorszenia ich rozdzielczości, zgodnie z drugą z postawionych tez. 19
20 Kolejnym krokiem w realizacji pracy, zmierzającym do ostatecznego potwierdzenia postawionych na wstępie tez, było zbudowanie jednostopniowego detektora elektronów wtórnych i eksperymentalne przetestowanie jego działania w mikroskopie elektronowym. Do badań wykorzystano mikroskop MR-11. Badania zmierzały do określenia ogólnych właściwości detektora tego typu oraz do dobrania właściwych warunków jego pracy, tj. napięć polaryzacji elektrod i ciśnień w komorze pośredniej, umożliwiających obrazowanie różnorodnych obiektów przy różnych ciśnieniach i rodzajach gazu (powietrze i woda) w komorze przedmiotowej. Dodatkowo należało określić procedury utrzymywania odpowiedniej atmosfery w komorze przedmiotowej dla różnych typów preparatów. Opracowano modyfikacje systemów chłodzenia próbek umożliwiające obniżenie progu równowagi termodynamicznej gazu i cieczy. Dzięki temu praktycznym efektem prezentowanej pracy doktorskiej stał się samodzielny system próżniowo-detekcyjny wraz z uzupełniającym osprzętem, który pozwolił na rozszerzenie pracy standardowego skaningowego mikroskopu elektronowego na zakres mikroskopii VP/E SEM. Liczne przykłady obrazowania różnorodnych obiektów, stanowią eksperymentalne potwierdzenie postawionych tez. Pracę zamyka spis pozycji literaturowych wykorzystanych przez autora przy realizacji pracy, w którym można znaleźć siedem prac opublikowanych już przez autora z udziałem promotora i dwie skierowane do druku (w tym cztery z tzw. listy filadelfijskiej) oraz trzy raporty. 20
21 2. Skaningowa mikroskopia elektronowa 2.1. Wprowadzenie Skaningowa mikroskopia elektronowa (SEM ang. Scanning Electron Microscopy) jest jedną z podstawowych metod badania ciała stałego w mikro- i nanoskali. Wysoka rozdzielczość sięgająca 1 nm, wraz z krótkim czasem reakcji urządzenia, umożliwia pracę nawet w standardzie telewizyjnym, dając ogromne możliwości inspekcji szerokiej gamy obiektów. Twórcami tej techniki obrazowania są Knoll i Ruska [99]. W 1931 roku, zbudowali oni swój pierwszy mikroskop elektronowy (rys. 2.1). Był to aparat przypominający w działaniu mikroskopy świetlne. Wiązka elektronów prześwietlała preparat tworząc jego obraz po drugiej stronie, dzięki odpowiednio skonstruowanym soczewkom elektrycznym i magnetycznym. Ten typ mikroskopu nazywany jest Transmisyjnym Mikroskopem Elektronowym (TEM z ang. Transmission Electron Microscope). Kilka lat później, w 1935 roku, wspomniani twórcy skonstruowali prototyp pierwszego Skaningowego Mikroskopu Elektronowego, w którym obraz tworzony jest techniką rastrową podobną do telewizyjnej, z modulacją sygnałem uzyskiwanym za pomocą różnego rodzaju detektorów efektów fizycznych, generowanych przez wiązkę elektronową [53, 84, 139]. Obie techniki badawcze rozwijały się równocześnie, jednak przez długi czas ze względu na niedoskonałość systemów detekcji elektronów emitowanych z powierzchni próbki (do dziś stanowiących podstawowe źródło informacji o powierzchni), rozwój SEM był znacząco ograniczony. Rys Pierwszy transmisyjny mikroskop elektronowy z 1931 r. 21
22 Dopiero w latach 60 tych ubiegłego wieku prace nad rozwojem tej dziedziny przyniosły przełom, po wynalezieniu przez Everharta i Thornleya detektora scyntylacyjnego [34]. W 1965 roku na Wydziale Inżynierii Uniwersytetu w Cambridge wytworzony został pierwszy, produkowany później komercyjnie, skaningowy mikroskop elektronowy o nazwie Stereoscan (rys. 2.2). Został on wyposażony właśnie w detektor Everharta-Thornleya, który stał się standardem i do dziś używany jest jako podstawowy detektor elektronów wtórnych. Rys Stereoscan pierwszy komercyjnie produkowany skaningowy mikroskop elektronowy. Klasyczna skaningowa mikroskopia elektronowa wykazuje jednak wiele ograniczeń dotyczących rodzaju badanych preparatów, uzyskiwanych o nich informacji i skutecznej metodyki badań. Do pracy tego urządzenia wymagana jest wysoka próżnia w jego wnętrzu. Zapobiega ona rozpraszaniu wiązki elektronowej przez molekuły gazu jak również eliminuje zagrożenie zniszczeniem katody przez wyładowanie elektryczne, bombardowanie jonowe lub reakcje chemiczne. Wysokie wymagania próżniowe uniemożliwiają jednak badanie preparatów zawierających składniki o podwyższonym ciśnieniu par, m.in. obiektów biologicznych zawierających wodę, bez wcześniejszego ich przygotowania, np. mrożenia. Z drugiej strony, wiązka elektronowa, wymaga preparatów przewodzących, które mogą odprowadzać nadmiar ładunku dostarczanego przez nią do próbki. W związku z tym preparaty nieprzewodzące muszą wcześniej zostać pokryte warstwami przewodzącymi, 22
h λ= mv h - stała Plancka (4.14x10-15 ev s)
Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Próżnia w badaniach materiałów
Próżnia w badaniach materiałów Pomiary ciśnień parcjalnych Konstanty Marszałek Kraków 2011 Analiza składu masowego gazów znajduje coraz większe zastosowanie ze względu na liczne zastosowania zarówno w
Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM
Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena
Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz
Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH
Załącznik Nr 2 WYMAGANIA BEZWZGLĘDNE: FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Przedmiotem zamówienia jest dostawa i instalacja fabrycznie nowego skaningowego mikroskopu elektronowego (SEM) ze zintegrowanym
Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści
Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Ćw.6. Badanie własności soczewek elektronowych
Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki
MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach
Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów
1 Skaningowy Mikroskop Elektronowy (SEM) jako narzędzie do oceny morfologii powierzchni materiałów Cel ćwiczenia Celem ćwiczenia są badania morfologiczne powierzchni materiałów oraz analiza chemiczna obszarów
Łukowe platerowanie jonowe
Łukowe platerowanie jonowe Typy wyładowania łukowego w zależności od rodzaju emisji elektronów z grzaną katodą z termoemisyjną katodą z katodą wnękową łuk rozłożony łuk z wędrującą plamką katodową dr K.Marszałek
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X
X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu
METODY BADAŃ BIOMATERIAŁÓW
METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku
Układ stabilizacji natężenia prądu termoemisji elektronowej i napięcia przyspieszającego elektrony zwłaszcza dla wysokich energii elektronów
PL 219991 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219991 (13) B1 (21) Numer zgłoszenia: 398424 (51) Int.Cl. G05F 1/56 (2006.01) H01J 49/26 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Elektrostatyka, część pierwsza
Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.
Akademickie Centrum Czystej Energii. Ogniwo paliwowe
Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.
Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Skaningowy mikroskop elektronowy - Ilość: 1 kpl.
Zamówienie publiczne w trybie przetargu nieograniczonego nr ZP/PN/15/2014 Przedmiot postępowania: Dostawa skaningowego mikroskopu elektronowego ARKUSZ INFORMACJI TECHNICZNEJ Wszystkie parametry podane
Rozpraszanie nieelastyczne
Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
UMO-2011/01/B/ST7/06234
Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE
X3 DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE Tematyka ćwiczenia Promieniowanie X wykazuje właściwości jonizujące. W związku z tym powietrze naświetlane promieniowaniem X jest elektrycznie
Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
Budowa. Metoda wytwarzania
Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.
Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM
Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Zjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
Czy atomy mogą być piękne?
Krzysztof Matus Doktorant w Instytucie Materiałów Inżynierskich i Biomedycznych Wydział Mechaniczny Technologiczny Politechnika Śląska Czy atomy mogą być piękne? W czasach, gdy ciągły rozwój nauki połączony
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Wszechświat czastek elementarnych
Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek
Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)
Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic
J6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.
Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,
Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
39 DUALIZM KORPUSKULARNO FALOWY.
Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)
Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie
Politechnika Politechnika Koszalińska
Politechnika Politechnika Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych NOWE MATERIAŁY NOWE TECHNOLOGIE W PRZEMYŚLE OKRĘTOWYM I MASZYNOWYM IIM ZUT Szczecin, 28 31 maja 2012, Międzyzdroje
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego
Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
PL B1. Mechanizm regulacyjny położenia anody odporny na temperaturę i oddziaływanie próżni
PL 220256 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220256 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 402066 (22) Data zgłoszenia: 15.12.2012 (51) Int.Cl.
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE
J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
Korpuskularna natura światła i materii
Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Lekcja 80. Budowa oscyloskopu
Lekcja 80. Budowa oscyloskopu Oscyloskop, przyrząd elektroniczny służący do badania przebiegów czasowych dla na ogół szybkozmiennych impulsów elektrycznych. Oscyloskop został wynaleziony przez Thomasa
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
26 Okresowy układ pierwiastków
26 Okresowy układ pierwiastków Przyjmując procedurę Hartree ego otrzymujemy poziomy numerowane, jak w atomie wodoru, liczbami kwantowymi (n, l, m) z tym, że degeneracja ze względu na l na ogół już nie
SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA STANOWIĄCY JEDNOCZEŚNIE DRUK POTWIERDZENIE ZGODNOŚCI TECHNICZNEJ OFERTY
Załącznik nr 2 do SIWZ Załacznik nr 2 do umowy SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA STANOWIĄCY JEDNOCZEŚNIE DRUK POTWIERDZENIE ZGODNOŚCI TECHNICZNEJ OFERTY Przedmiot oferty: Wysokorozdzielczy skaningowy
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Elektronowa mikroskopia skaningowa ze zmienną próżnią
Elektronowa mikroskopia skaningowa ze zmienną próżnią Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy Debbie Stokes, John Wiley &Sons, 2008 LV-SEM Low Vacuum Scanning
Pasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Spektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Rys. 1. Schemat budowy elektronowego mikroskopu skaningowego (SEM).
Ewa Teper PODSTAWY MIKROSKOPII SKANINGOWEJ Podstawowe zasady działania mikroskopu skaningowego. W mikroskopach skaningowych wiązka elektronów bombarduje próbkę, skanując jej powierzchnię linia po linii.
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej
Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Wzmacniacz wizji. Kineskop. Trafopowielacz Działo elektronowe. Cewki
Monitory CRT Nazwa i początki CRT- (ang. Cathode-Ray Tube) to przyjęte w języku polskim potoczne oznaczenie dla modeli monitorów komputerowych, których ekran oparty jest na kineskopie. W monitorach tego
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Źródło typu Thonnemena dostarcza jony: H, D, He, N, O, Ar, Xe, oraz J i Hg.
ZFP dysponuje obecnie unowocześnioną aparaturą, której skompletowanie, uruchomienie i utrzymanie w sprawności wymagało wysiłku zarówno merytorycznego jak i organizacyjnego oraz finansowego. Unowocześnienia
Natężenie prądu elektrycznego
Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków
Metody liniowe wielkiej częstotliwości
Metody liniowe wielkiej częstotliwości Streszczenie Artykuł ten przedstawia trzy najważniejsze metody liniowe wielkiej częstotliwości do przyśpieszania cząstek. Uwzględniono w nim budowę układów przyśpieszających,
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę mikroskopu elektronowego - numer Zp/pn/76/2015
Dęblin, dnia 16.09.2015 r. Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę mikroskopu elektronowego - numer Zp/pn/76/2015 NA PYTANIE DO SPECYFIKACJI ISTOTNYCH
Elektronowa mikroskopia skaningowa ze zmienną próżnią
Elektronowa mikroskopia skaningowa ze zmienną próżnią Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy Debbie Stokes, John Wiley &Sons, 2008 LV-SEM Low Vacuum Scanning
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Badanie licznika Geigera- Mullera
Badanie licznika Geigera- Mullera Cel ćwiczenia Celem ćwiczenia jest zbadanie charakterystyki napięciowej licznika Geigera-Müllera oraz wyznaczenie szczególnych napięć detektora Wstęp Licznik G-M jest
Słowniczek pojęć fizyki jądrowej
Słowniczek pojęć fizyki jądrowej atom - najmniejsza ilość pierwiastka jaka może istnieć. Atomy składają się z małego, gęstego jądra, zbudowanego z protonów i neutronów (nazywanych inaczej nukleonami),
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Tranzystory bipolarne elementarne układy pracy i polaryzacji
Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego