Tematy prac licencjackich dla studentów indywidualnych Katedra Metod Matematycznych Fizyki
|
|
- Danuta Maj
- 8 lat temu
- Przeglądów:
Transkrypt
1 Tematy prac licencjackich dla studentów indywidualnych Katedra Metod Matematycznych Fizyki Struktury Riemmannowskie w równaniach różniczkowych Zbadamy uk lady równań różniczkowych nieautonomicznych za pomoc a algebr Liego pól wektorowych Killinga wzglȩdem pewnej metryki Riemmanowskiej. W ten sposób skalar i tensor krzywizny Ricciego i tensor metryczny pozwalaj a nam obliczyć ca lki ruchu i symetrie tych uk ladów. Zastosujemy nasze metody w równaniach różniczkowych pojawiaj acych siȩ w fizyce i matematyce, np. w równaniach Schrödingera i Riccatiego i wymyślimy nowe techniki aby przeanalizować w laściwości równań różniczkowych. Metody z geometrii symplektycznej w równaniach różniczkowych Pewne uk lady równań różniczkowych, np. oscylatory Winternitza Smorodynkiego, można określić jako pola wektorowe Hamiltonowskie zależne od czasu na rozmaitościach symplektycznych. Pierwszym celem tej pracy jest zastosowanie znanych metod z geometrii symplektycznej, żeby zbadać równania różniczkowe pojawiaj ace siȩ w fizyce. Drugim celem jest znalezienie uogólnień pewnych wyników z geometrii symplektycznej dla uk ladów zależnych od czasu. Ewentualnie, zastosujemy też inne uogólnienia struktur symplektycznych. Metody rozwi azywania równań Schrodingera zależnych od czasu Geometryczne podejście do mechaniki kwantowej, tzn geometryczna mechanika kwantowa, pozwala nam określić równanie Schrödingera zależne od czasu jako równanie krzywych ca lkowalnych pewnego pola wektorowego zależnego od czasu. Badaj ac geometryczne w laściwości tego pola wektorowego można znaleźć metody ca lkowania równań Schrödingera, np. metodȩ Wei Normana. W tej pracy mamy zamiar korzystać z tej i innych metod, aby znaleźć nowe rozwi azania i metody ca lkowania różnych równań Schrödingera. Analiza i zastosowania uk ladów Liego i ich uogólnień Uk lad Liego to uk lad równań różniczkowych. Te uk lady pojawiaj a siȩ w wielu dziedzinach nauki, posiadaj a wiele geometrycznych w laściwości i można przeanalizować je za pomoc a wielu technik z geometrii symplektycznej, Poissona, Diraca, Riemmanowskiej, itd. Ponadto, uk lady Liego maj a zastosowania w geometrycznej mechanice kwantowej i klasycznej, teorii równań różniczkowych, itd. To nowe podejście do znanych i nowych tematów 1
2 czȩsto pozwala nam znaleźć nowe cechy znanych problemów oraz nowe wyniki. Celem pracy jest przeanalizowanie uk ladów Liego lub ich uogólnień za pomoc a technik z geometrii różniczkowej i zastosowanie naszych wyników w mechanice klasycznej, kwantowej i/lub teorii równań różniczkowych. W laściwości równań różniczkowych Celem tej pracy jest badanie podstawowych w laściwości geometrycznych równań różniczkowych, np. stabilność, środki, pary Laxa, symetrie Liego, czynniki ca lkowalności, itd. Te techniki zostan a wykorzystane, aby zbadać w laściwości problemów fizycznych. Geometryczna kwantyzacja Celem tej pracy jest badanie podstawowych w laściwości geometrycznych i algebraicznych kilku podejść do geometrycznej kwantyzacji. W tym, mamy zamiar analizować geometryczne metody, żeby rozwi azać równania Schrödingera problemu kwantowego za pomoc a rozwi azań klasycznych tego samego problemu. To pozwoli nam podać bardziej geometryczny opis metody WKB. Dodatkowo, planujemy zbadać kwantyzacjȩ Diraca, tj. problem zbudowania morfizmu algebr Liego z zbioru funkcji g ladkich na rozmaitości symplektycznej do algebry operatorów przestrzeni Hilberta. Uogólnienia redukcji Marsdena-Weinsteina Celem tej pracy jest badanie uogólnień teorii redukcji Marsdena Weinsteina dla różnych typów geometrii: k-symplektycznej, multisymplektycznej, (twisted) Diraca, Jacobiego, itp. Planujȩ zbudować now a teoriȩ redukcji, aby uogólnić i uprościć poprzednie prace w tym temacie. Na przyk lad, istniej aca redukcja k-symplektyczna jest oparta na za lożeniu, że obciȩcia do pewnej podrozmaitości wszystkich form presymplektycznych struktury k-symplektycznej maj a przeciȩcie j ader równe zeru. Poszukamy jak stworzyć teoriȩ redukcji bez tego za lożenia. Struktury k-symplektyczne, multisymplektyczne i równania różniczkowe zwyczajne Zamiast zbadać uk lady równań różniczkowych cz astkowych, mamy zamiar skorzystać ze struktur k-symplektycznych, żeby zbadać równania różniczkowe zwyczajne nieautonomiczne. To podejście jest bardziej naturalne niż badanie uk ladów równań różniczkowych cz astkowych, które nie zawsze można zbadać strukturami multisymplektycznymi i k symplektycznymi. Mamy zamiar zastosować nasze metody do uk ladów równań różniczkowych pojawiaj acych siȩ w fizyce i matematyce, np. w hydrodynamice. W lasności krytyczne modeli: Isinga, XY i Heisenberga: metoda Monte Carlo 2
3 Zastosowana byaby metoda Monte Carlo, tzn. (losowe próbkowanie przestrzeni stanów i na tej podstawie wnioskowanie o wasnociach ukadu). Metoda Monte Carlo jest jedn z najbardziej uniwersalnych metod w mechanice statystycznej, majcych szereg zastosowa take w innych ga lȩziach wiedzy (ekonofizyka, rynki finansowe). Od licencjata oczekuj znajomoci podstaw mechaniki statystycznej oraz znajomości jzyka programowania C lub C++. Model XY przez transformacj Jordana-Wignera, i eksploracja termodynamiki tegoż modelu Opiekun dr hab. Jacek Wojtkiewicz Kwantowy lańcuch XY jest ściśle rozwi azywalny przez transformacj Jordana-Wignera, pozwalajcej na zapisanie hamiltonianu w jzyku nieoddziaywujcych fermionw. Celem licencjatu jest zreprodukowanie znanych faktw oraz przymiarka do rozwizania otwartych problemw: Hamiltonian w jȩzyku nieoddz. fermionów, widmo, diagram fazowy, funkcje korelacji (znane), funkcje skalujce (znane czȩściowo). Termodynamika modelu Hubbarda Pocztek pracy to poznanie modelu Hubbarda i zasadniczych faktów go dotyczcych. Nastpny krok to wypisanie jawnego wyraenia na macierz hamiltonianu modelu i numeryczna implementacja tejźe, a nastpnie numeryczna diagonalizacja macierzy i na tej podstawie liczenie funkcji termodynamicznych. W ten sposób planuje zbadanie ukadw do 10, moe kilkunastu wȩ lów sieci. W zależności od zaangażowania licencjata, możliwa jest kontynuacja tematu badanie dokadnoci niedawno wyprowadzonych oszacowań na energie swobodna modelu Hubbarda przez funkcje termodynamiczne modelu Falicova-Kimballa, i w przypadku pozytywnym badanie w ten sposb wikszych uk ladów. Od licencjata oczekuje znajomoci podstaw mechaniki kwantowej i statystycznej oraz znajomoci jzyka programowania C lub C++. Zmienne grassmanowskie w dwuwymiarowym modelu Isinga Technika ca lkowania po zmiennych grassmanowskich jest jedna z fundamentalnych w (fermionowej) teorii pola; jest te bardzo użyteczna w przypadku sieciowych modeli spinowych. Celem pracy bdzie zaznajomienie si z t a technik a i otrzymanie przy jej życiu cisego rozwizania dwuwymiarowego modelu Isinga. W przypadku duego zaangaowania licencjata, moliwa jest kontynuacja tematyki: poznanie cisej metody grupy renormalizacyjnej dla modeli spinowych, gdzie cakowanie po zmiennych grassmanowskich jest podstawa. Oczekiwane umiejtnoci: Dobre opanowanie kursw algebry i analizy oraz elementw mechaniki statystycznej. Technika odbiciowej dodatniosci w wersji spinowej ( spin reflection positivity ) w zastosowaniu do modeli Hubbarda 3
4 Relacja pomiedzy kwantowymi uk ladami dwymiarowymi a (d+1) wymiarowymi uk ladami klasycznymi poprzez zwizek Lie-Trottera-Suzukiego Transformacja fundamentalna dla równań różniczkowych i różnicowych Opiekun: dr hab. Maciej Nieszporski W 1915 Hans Jonas poda transformacjȩ, która znajduje dziś szerokie zastosowanie w rozwi azywaniu pewnych nieliniowych równań różniczkowych cz astkowych. Zapoznanie siȩ z t a transformacj a, poznanie jej pewnych uogólnień i/lub konstrukcja tej transformacji dla pewnej klasy równań różnicowych bȩd a celami tej pracy licencjackiej. Zachȩcam szczególnie studentów zainteresowanych nieliniowymi aspektami modeli fizycznych. Unitarność w teorii rozpraszania Opiekun: prof.dr hab. Jan Dereziński Podstawowe pojcia i rezultaty w teorii rozpraszania wielu cia w mechanice kwantowej Harmoniki sferyczne w 4 wymiarach i wielomiany Jacobiego Opiekun: prof.dr hab. Jan Dereziński Uoglnienie formalizmu harmonik sferycznych z 3 wymiarw na 4 wymiary przy uyciu podwjnych wsprzdnych sferycznych. Konforemne tensory Yano-Killinga a) KerrNUTAdS i CYK tensory (np. licencjat: CYKi dla AdS w wyższych wymiarach 3-formy dla D=5 i 6) b) Strong asymptotic flatness warunki dostateczne na istnienie ACYK tensorów dla metryk stacjonarnych. ad. CYK tensory s a uogólnieniem pól Killinga i maj a wiele zastosowań. Matematyczne aspekty fal grawitacyjnych w zlinearyzowanej teorii Einsteina a) Cechowanie niezmiennika pod lużnego i jego peeling b) Uogólnić niezmienniki Regge- Wheeler-Zerilli na dowoln a metrykȩ sferycznie symetryczn a. ad. Badania nad opisem fal grawitacyjnych w sposób niezależny od cechowania wciaż siȩ rozwijaj a. W lasności geometryczne horyzontu ekstremalnego Kerra. Ekstremalne czarne dziury (ze zdegenerowanymi horyzontami) wci aż s a niezbadane do końca. Twierdzenie o dodatniości energii (dowód przy pomocy 2-par. rodziny krzywych) Nowy dowód ważnego twierdzenia w OTW. Uk lady jednorodne i zasada Jacobiego. 4
5 Transformacja Legendre a dla uk ladów nieregularnych Zasady wariacyjne i kontrola dysypatywnych uk ladów statycznych. Równanie Hamiltona-Jacobiego i metoda Jacobiego jako czȩść mechaniki lagranżowskiej. Formy i gestosci w elektrodynamice. Unitarne formy reprezentacji nieprzywiedlnych kwantowej grupy SU(2) Opiekun: dr hab. Piotr So ltan Niezmienniki ergodycznych dzia lań SqU(2) na skończenie wymiarowych algebrach Opiekun: dr hab. Piotr So ltan Skończenie wymiarowe koreprezentacje warkoczowych algebr Hopfa Opiekun: dr hab. Piotr So ltan Sk ladowa spójna jedności grupy kwantowej. Opiekun: dr P. Kasprzak. Podgrupy paraboliczne grup Liego i separacja równań typu Weia-Normana Istnieje klasa równań różniczkowych zwyczajnych, dla których można szukać rozwi azania w postaci Weia-Normana. S a to równania na krzyw a na grupie Liego. Przyk ladem równania, które należy do tej klasy jest równanie Schrödingera (z hamiltonianem zależnym od czasu). Okazuje siȩ, że dla pewnego szczególnego wyboru wspó lrzȩdnych na grupie równania Weia- Normana istotnie siȩ upraszczaj a i separuj a - otrzymuje siȩ hierarchiȩ równań Riccatiego i ca lek. Wynik ten można również uzasadnić korzystaj ac z w lasności pewnej klasy podgrup parabolicznych. Celem pracy bȩdzie porównanie tych dwóch podejść do problemu, analiza konkretnych przyk ladów i zastosowań fizycznych. Uk lady równań różniczkowych z nieliniow a zasad a superpozycji i ich zastosowania Badanie w lasności równań i uk ladów równań posiadaj acych nieliniow a zasadȩ superpozycji, czyli posiadaj acych tȩ w lasność, że ogólne rozwi azanie równania daje siȩ przedstawić 5
6 jako funkcjona l od pewnej skończonej liczby rozwi azań szczególnych. Zastosowanie metod geometrycznych i algebraicznych. Wykorzystanie metody Weia-Normana. Zastosowania fizyczne, takie jak np. znajdowanie rozwi azań równania Schrödingera zależnego od czasu. Modelowanie numeryczne w teorii wzglȩdności Ostatnie kilka lat to intensywny rozwój metod numerycznych w OTW. Istnieje ogólnodostȩpne oprogramowanie pozwalaj ace na numeryczne rozwi azywanie równań Einsteina. Celem pracy jest wykorzystanie istniej acego oprogramowania do wykonania nowych interesuj acych z fizycznego punktu widzenia symulacji oraz ewentualny wk lad w rozwijanie istniej acego oprogramowania. Przyk ladem takiej symulacji to zlewanie siȩ dwóch czarnych dziur dla różnych konfiguracji mas i momentów pȩdu elementów zlewaj acego siȩ uk ladu podwójnego i analiza pochodz acego z takiego procesu promieniowania grawitacyjnego. Analiza stabilności numerycznej i różne sposoby wizualizacji otrzymanych rozwi azań bedla również istotnym elementem pracy. Modele akrecji na czarn a dziurȩ Celem pracy bȩdzie wykonanie porównania znanych analitycznych (przybliżonych lub ścis lych) modeli akrecji na czarn a dziurȩ, takich jak na przyk lad akrecja Bondiego, z wynikami symulacji numerycznych. Drugim ewentualnie celem bȩdzie modelowanie akrecji nie maj acych swojego odpowiednika analitycznego. Ważnym elementem bȩdzie analiza w lasności otrzymanych rozwi azań i ich wizualizacja. 6
Katedra Metod Matematycznych Fizyki
Katedra Metod Matematycznych Fizyki 1. Własności stanów podstawowych kwantowego modelu Heisenberga Początek pracy to zapoznanie sie z kwantowym modelem Heisenberga i zasadniczymi znanymi faktami na jego
Temat 3. Całki po trajektoriach ze ścisłego punktu widzenia Opis: Całkowanie po trajektoriach jako ścisłe narzędzie matematyczne.
TEMATY PRAC LICENCJACKICH PRACOWNIKÓW KMMF Wszystkie tematy dla studentów kierunku Fizyka Jan Dereziński Temat 1. Harmoniki sferyczne w 4 wymiarach i wielomiany Jacobiego Opis: Uogólnienie formalizmu harmonik
CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm
CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu
MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Struktury Geometryczne Mechaniki
Struktury Geometryczne Mechaniki Paweł Urbański u rb a n ski@fuw.ed u.p l Kat edra Met od Mat ematycznych Fizyki Uniwersyt et Warszawski Sympozjum IFT, 08.12.2007 p. 1/23 MOTYWACJE Dlaczego mechanika (analityczna)?
Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc
Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści
Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej
Równania różniczkowe cz astkowe rzȩdu pierwszego
Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,
Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT
Zajęcia wyrównawcze z matematyki Zajęcia wyrównawcze z fizyki Analiza matematyczna I, II MS Analiza matematyczna I, II MT Podstawy fizyki: Budowa materii Podstawy fizyki: Mechanika MS Podstawy fizyki:
y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =
Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,
Cia la i wielomiany Javier de Lucas
Cia la i wielomiany Javier de Lucas Ćwiczenie 1. Za lóż, że (F, +,, 1, 0) jest cia lem i α, β F. w laściwości s a prawd a? Które z nastȩpuj acych 1. 0 α = 0. 2. ( 1) α = α. 3. Każdy element zbioru F ma
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE
Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Równania różniczkowe Differential equations Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia
TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l
TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
MECHANIKA STOSOWANA Cele kursu
MECHANIKA STOSOWANA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 9 października 2014 Karol Kołodziej Mechanika stosowana 1/6 Cele kursu Podstawowe cele zaprezentowanego
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna
Dwuletnie studia indywidualne II stopnia na kierunku fizyka, specjalność Fizyka matematyczna 1. CHARAKTERYSTYKA STUDIÓW Specjalność Fizyka matematyczna ma charakter interdyscyplinarny. Obejmuje wiedzę
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów
Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: GEOMETRIA I TOPOLOGIA RÓŻNICZKOWA Nazwa w języku angielskim: DIFFERENTIAL GEOMETRY AND TOPOLOGY Kierunek studiów (jeśli dotyczy): MATEMATYKA
Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym.
Synteza optymalnego regulatora stanu. Uk lady z czasem ci ag lym. Po wyznaczeniu optymalnego nominalnego) procesu sterowania x o, u o nasuwa siȩ kwestia podtrzymywania tego procesu w warunkach ma lych
Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30
Zał. nr do ZW 33/01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Podstawy fizyki kwantowej Nazwa w języku angielskim Fundamental of Quantum Physics Kierunek studiów (jeśli
ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO
ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy
Modele kp wprowadzenie
Modele kp wprowadzenie Komórka elementarna i komórka sieci odwrotnej Funkcje falowe elektronu w krysztale Struktura pasmowa Przybliżenie masy efektywnej Naprężenia: potencjał deformacyjny, prawo Hooka
Sterowalność liniowych uk ladów sterowania
Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,
STUDIA I STOPNIA NA KIERUNKU FIZYKA UW
STUDIA I STOPNIA NA KIERUNKU FIZYKA UW I. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat akademicki). II. SYLWETKA
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm
CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW
STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW Ι.CHARAKTERYSTYKA STUDIÓW Studia indywidualne pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I
WYDZIAŁ MECHANICZNY (w j. angielskim) Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim FIZYKA OGÓLNA Nazwa w języku angielskim GENERAL PHYSICS Kierunek studiów (jeśli dotyczy) MiBM Specjalność
w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak
Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS WIEDZA
WYKAZ KIERUNKOWYCH EFEKTÓW KSZTAŁCENIA KIERUNEK: MATEMATYKA, SPS Symbol kierunkowego efektu kształcenia Efekty kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA K1_W01 K1_W02
Elektrodynamika #
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW
STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW I.CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata. II.SYLWETKA ABSOLWENTA
STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU ASTRONOMIA UW
STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU ASTRONOMIA UW I.CHARAKTERYSTYKA STUDIÓW Studia indywidualne pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata
ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?
Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y
Liniowe uk lady sterowania.
Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2
Efekty kształcenia dla kierunku studiów Studia Przyrodnicze i Technologiczne (z językiem wykładowym angielskim) - studia I stopnia, stacjonarne, profil ogólnoakademicki - i ich odniesienia do efektów kształcenia
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY
OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW. Efekty kształcenia dla kierunku studiów Matematyka
OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW Nazwa wydziału: Wydział Matematyki i Informatyki Nazwa kierunku studiów: Matematyka Obszar w zakresie: nauki ścisłe Dziedzina : matematyka Dyscyplina
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
WIEDZA. X1A_W04 X1A_W05 zna podstawowe modele zjawisk przyrodniczych opisywanych przez równania różniczkowe
Załącznik nr 1 do uchwały Nr 32/2016 Senatu UWr z dnia 24 lutego 2016 r. Nazwa wydziału: Wydział Matematyki i Informatyki Nazwa kierunku studiów: matematyka Obszar w zakresie: nauk ścisłych Dziedzina nauki:
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW
1. CHARAKTERYSTYKA STUDIÓW STUDIA INDYWIDUALNE I STOPNIA NA KIERUNKU FIZYKA UW Studia indywidualne pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat
zakładane efekty kształcenia
Załącznik nr 1 do uchwały nr 41/2018 Senatu Politechniki Śląskiej z dnia 28 maja 2018 r. Efekty kształcenia dla kierunku: INFORMATYKA WYDZIAŁ AUTOMATYKI, ELEKTRONIKI I INFORMATYKI WYDZIAŁ ELEKTRYCZNY nazwa
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
STUDIA I STOPNIA NA KIERUNKU FIZYKA UW
STUDIA I STOPNIA NA KIERUNKU FIZYKA UW 1. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku fizyka UW trwają trzy lata i kończą się nadaniem tytułu licencjata (licencjat akademicki). 2. SYLWETKA
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
Wykład Ćwiczeni a 15 30
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:
Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr do ZW WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym
TEMATY PRAC MAGISTERSKICH Z EKONOFIZYKI Rok akademicki 2013/14 Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym Opiekun: dr Tomasz Gubiec Email: Tomasz.Gubiec@fuw.edu.pl Błądzenie
WIEDZA. Ma podstawową wiedzę niezbędną do rozumienia ekonomicznych i innych pozatechnicznych uwarunkowań działalności inżynierskiej.
Efekty kształcenia dla kierunku: LOGISTYKA Wydział: ORGANIZACJI I ZARZĄDZANIA nazwa kierunku studiów: Logistyka poziom kształcenia: studia I stopnia profil kształcenia: ogólnoakademicki symbol K1A_W01
SPIS TREŚCI PRZEDMOWA... 13
SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Równania różniczkowe (RRO020) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 / 30
Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.
Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model
w = w i ξ i. (1) i=1 w 1 w 2 :
S. D. G lazek, www.fuw.edu.pl/ stglazek, 11.III.2005 1 I. MACIERZ LINIOWEGO ODWZOROWANIA PRZESTRZENI WEKTOROWYCH Wyobraźmy sobie, że przestrzeń wektorowa W jest zbudowana z kombinacji liniowych n liniowo
Unitarne formy reprezentacji nieprzywiedlnych kwantowej grupy SU(2)
Uniwersytet Warszawski Wydział Fizyki Michał Łasica Nr albumu: 262457 Unitarne formy reprezentacji nieprzywiedlnych kwantowej grupy SU(2) Praca licencjacka na kierunku FIZYKA w ramach MISMaP Praca wykonana
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
PRINCIPIA I ELEMENTY
P R I N C I P I A N E W TO N A - C Z Y D Z I Ś TO T Y L K O H I S TO R I A? PRINCIPIA I ELEMENTY ELEMENTY 80 wydań w 20 językach 1500 nowe wydanie co 6 lat 1900 PRINCIPIA 2 przekłady 1687 w ciągu 200 lat
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
Rodzaj zajęć dydaktycznych * O/F ** Forma
5a. 5b. Zajęcia wyrównawcze z matematyki Załącznik nr 3 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Plan studiów na kierunku studiów wyższych: astronomia, studia pierwszego stopnia profil ogólnoakademicki
STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW
STUDIA I STOPNIA NA KIERUNKU ASTRONOMIA UW 1. CHARAKTERYSTYKA STUDIÓW Studia pierwszego stopnia na kierunku astronomia UW trwają trzy lata i kończą się nadaniem tytułu licencjata. 2. SYLWETKA ABSOLWENTA
PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH
PROGRAM KSZTAŁCENIA NA KIERUNKU STUDIÓW WYŻSZYCH od semestru letniego 2014/2015 w cyklach, które rozpoczęły studia od roku akademickiego 2012/2013 NAZWA WYDZIAŁU: WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI
Matryca efektów kształcenia dla programu kształcenia na studiach wyższych kierunek astronomia, studia I stopnia. Moduły kształcenia
Zajęcia wyrównawcze z matematyki Zajęcia wyrównawcze z fizyki Analiza matematyczna I, II MS Analiza matematyczna I, II MT Podstawy fizyki: Budowa materii Podstawy fizyki: Mechanika MS Podstawy fizyki:
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: Ma 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów Mechatronicznych
Algebra i jej zastosowania ćwiczenia
Algebra i jej zastosowania ćwiczenia 14 stycznia 2013 1 Kraty 1. Pokazać, że każda klasa kongruencji kraty (K, +, ) jest podkrata kraty (K, +, ). 2. Znaleźć wszystkie kongruencje kraty 2 3, gdzie 2 jest
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )