Grafika Komputerowa. Algorytmy rastrowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grafika Komputerowa. Algorytmy rastrowe"

Transkrypt

1 Grafika Komputerowa. Algorytmy rastrowe Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 23

2 Algorytmy rastrowe Najnowsza wersja tego dokumentu dostępna jest pod adresem ØØÔ»»Ù Ö ºÔ º ÙºÔл Ò Ù 2 / 23

3 3 / 23

4 Założenia (x,y) współrzędne abstrakcyjne, liczby rzeczywiste (i,j) współrzędne ekranowe, liczby całkowite x 2 > x 1,y 2 y 1 y 2 y 1 x 2 x 1 Zaokr aglenie:i 1 = round(x 1 ),i 2 = round(x 2 ),j 1 = round(y 1 ), j 2 = round(y 2 ) 4 / 23

5 Algorytm y(i) = j 1 + i i 1 i 2 i 1 (j 2 j 1 ) j = round(y) Kod: Wejście: (i 1,j 1 ) poczatek odcinka,(i 2,j 2 ) koniec odcinka, i 2 > i 1,j 2 j 1,j 2 j 1 i 2 i 1 Wynik: Odcinek został wyświetlony m j 2 j 1 i 2 i 1 writepixel(i 1,j 1 ) y j 1 fori = i 1 +1toi 2 do y y +m j round(y) writepixel(i,j) end for 5 / 23

6 Kumulacja przyrostuy na każdym kroku do przyrostuy dodaje sięm przechodzimy o jeden piksel w górę, jejeżi przyrost przekroczy1/2 6 / 23

7 Algorytm 2 Wejście: (i 1,j 1 ) poczatek odcinka,(i 2,j 2 ) koniec odcinka, i 2 > i 1,j 2 j 1,j 2 j 1 i 2 i 1 Wynik: Odcinek został wyświetlony m j 2 j 1 i 2 i 1 b 0 writepixel(i 1,j 1 ) j j 1 fori = i 1 +1toi 2 do b b+m ifb > 1 2 then j j +1 b b 1 end if writepixel(i,j) end for 7 / 23

8 Eliminacja liczb rzeczywistych przyrost jest wielokrotnościam = j 2 j 1 i 2 i : 1 b = k j 2 j 1 i 2 i 1 b < 1 2 2k(j 2 j 1 ) < i 2 i 1 zamieniamy przyrost na przyrost całkowity przyrost całkowity na każdym kroku zwiększa się o2 j = 2(j 2 j 1 ) przechodzimy na wyższy poziom wj, jeżeli przyrost całkowity przekroczy(i 2 i 1 ) 8 / 23

9 Algorytm Bresenhama Wejście: (i 1,j 1 ) poczatek odcinka,(i 2,j 2 ) koniec odcinka, i 2 > i 1,j 2 j 1,j 2 j 1 i 2 i 1 Wynik: Odcinek został wyświetlony m 2(j 2 j 1 ) b 0 writepixel(i 1,j 1 ) j j 1 P i 2 i 1 fori = i 1 +1toi 2 do b b+m ifb > P then j j +1 b b 2P end if writepixel(i,j) end for 9 / 23

10 Osiem symetrii okręgu x 2 +y 2 = R 2 jeżeli(x,y) leży na okręgu, to (y,x),(x, y),(y, x),( x,y),( y,x),( x, y), ( y, x) też leża na okręgu 10 / 23

11 Wybór następnego piksela Zaczynamy od wierzchołka(0,r) Analizujemyf(x,y) = 4 ( (x+1) 2 +(y 1 2 )2 R 2) jeżelif(x,y) > 0 to przechodzimy w prawo i w dół jeżelif(x,y) < 0 to przechodzimy tylko w prawo f(x+1,y) = f(x,y)+8x+12 f(x+1,y 1) = f(x,y)+8x 8y +20 f(0,r) = 5 4R 11 / 23

12 Algorytm Wejście: Środek okręgu jest w(0,0), promieńr N Wynik: Okrag został wyświetlony i 0,j R,f 5 4R writepixel(i,j) whilei j do iff > 0 then f f +8i 8j +20 j j 1 else f f +8i+12 end if i i+1 writepixel(i,j) end while 12 / 23

13 x 2 a 2 + y2 b 2 = 1 Zaczynamy od wierzchołka(0,b) ( Analizujemyf(x,y) = 4a 2 b 2 (x+1) 2 + (y 1 a 2 2 )2 b 2 ) 1 jeżelif(x,y) > 0 to przechodzimy w prawo i w dół jeżelif(x,y) < 0 to przechodzimy tylko w prawo f(x+1,y) = f(x,y)+8b 2 x+12b 2 f(x+1,y 1) = f(x,y)+8b 2 x 8a 2 y +12b 2 +8a 2 f(0,b) = 4b 2 4a 2 b+a 2 13 / 23

14 Zmiana kierunku Jeżelib 2 x > a 2 y, to zmienia się ( kierunek ratserizacji Analizujemyg(x,y) = 4a 2 b 2 (x+ 1 ) 2 )2 + (y 1)2 1 a 2 b 2 jeżelig(x,y) > 0 to przechodzimy w prawo i w dół jeżelig(x,y) < 0 to przechodzimy tylko w dół g(x,y) = f(x,y) 4b 2 x 3b 2 4a 2 y +3a 2 g(x,y 1) = g(x,y) 8a 2 y +12a 2 g(x+1,y 1) = g(x,y)+8b 2 x 8a 2 y +8b 2 +12a 2 14 / 23

15 Algorytm Wejście: Środek elipsy jest w(0,0), promieniea,b N Wynik: Elipsa została wyświetlona i 0,j b,f 4b 2 4a 2 b+a 2 writepixel(i,j) whileb 2 i a 2 j do iff > 0 then f f +8b 2 i 8a 2 j +12b 2 +8a 2 j j 1 else f f +8b 2 i+12b 2 end if i i+1 writepixel(i,j) end while 15 / 23

16 Algorytm. Zmiana kierunku g f 4b 2 i 3b 2 4a 2 j +3a 2 whilej 0 do ifg 0 then g g +8b 2 i 8a 2 j +8b 2 +12a 2 i i+1 else g g 8a 2 j +12a 2 end if j j 1 writepixel(i,j) end while 16 / 23

17 Przybliżenie przez łamana Metoda Eulera dla równania ẋ = f 1 (x,y), ẏ = f 2 (x,y), x(0) = x 0, y(0) = y / 23

18 Wypełnienie wieloboku 18 / 23

19 Przegladanie liniami poziomymi (Scanline interpolation) Wejście: lista krawędzi wieloboku{ [ (x i,y i ),(x i+1,y i+1 ) ] }, i = 0,...,n,x n = x 0,y n = y 0 Wynik: wypełniono wnętrze wieloboku uporzadkuj wierzchołki w krawędziach abyy i < y i+1, usuń krawędzie poziome uporzadkuj krawędzie w kolejności rosn TAK (Tabela Aktywnych Krawęzi) y y i pierwszej krawędzi acychy i repeat TAK TAK {krawędzie, których pierwszy koniec jest na linii y} Opracowanie poziomuy y ++; TAK TAK \{krawędzie, których drugi koniec jest na liniiy} untiltak = 19 / 23

20 Opracowanie poziomuy Wejście: TAK (zawiera parzysta ilość elementów) Wynik: wypełniony poziomy for all krawędzi ztka do Oblicz współrzędnaxpunktu przecięcia z linia poziom end for PosortujTKA w kolejności rosnacych współrzędnychxpunktów przecięcia for all kolejnych par krawędzi ztka do rysuj odcinek poziomy na liniiy, między ich punktami przecięcia z liniay; end for ay 20 / 23

21 Wypełnianie przez zalewanie obszar jest czterospójny brzeg obszaru jest ośmiospójny 21 / 23

22 Procedura rekurencyjna Wejście: punkt(i,j) zawiera się w obszarze Wynik: zamalowany cały obszar if niezamalowany wewnętrzny piksel(i,j) then Zamaluj(i,j) Wypełnij poczynaj Wypełnij poczynaj Wypełnij poczynaj Wypełnij poczynaj end if ac z(i 1,j) ac z(i,j 1) ac z(i+1,j) ac z(i,j +1) 22 / 23

23 Stos zawieszonych zadań Wejście: punkt(i,j) zawiera się w obszarze Wynik: zamalowany cały obszar StosS zamaluj(i,j);s S (i,j) whiles do S S \(i,j) if niezamalowany wewnętrzny piksel(i 1,j) then zamaluj(i 1,j);S S (i 1,j) end if if niezamalowany wewnętrzny piksel(i,j 1) then zamaluj(i,j 1);S S (i,j 1) end if if niezamalowany wewnętrzny piksel(i+1,j) then zamaluj(i 1,j); StosS S (i+1,j) end if if niezamalowany wewnętrzny piksel(i,j +1) then zamaluj(i 1,j);S S (i,j +1) end if end while 23 / 23

Grafika komputerowa Wykład 2 Algorytmy rastrowe

Grafika komputerowa Wykład 2 Algorytmy rastrowe Grafika komputerowa Wykład 2 Algorytmy rastrowe Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Algorytm Bresenhama

Bardziej szczegółowo

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Segmentacja

Przetwarzanie i Kompresja Obrazów. Segmentacja Przetwarzanie i Kompresja Obrazów. Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 5 czerwca 2016 1/27

Bardziej szczegółowo

Grafika Komputerowa. Metoda śledzenia promieni

Grafika Komputerowa. Metoda śledzenia promieni Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30 Metoda śledzenia

Bardziej szczegółowo

Wprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania

Wprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania Wprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 22 Wprowadzenie

Bardziej szczegółowo

Analiza Matematyczna. Teoria Liczb Rzeczywistych

Analiza Matematyczna. Teoria Liczb Rzeczywistych Analiza Matematyczna. Teoria Liczb Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 12 marca 2017

Bardziej szczegółowo

Grafika Komputerowa. Teksturowanie

Grafika Komputerowa. Teksturowanie Grafika Komputerowa. Teksturowanie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 19 Teksturowanie Najnowsza

Bardziej szczegółowo

Grafika Komputerowa. Wprowadzenie

Grafika Komputerowa. Wprowadzenie Grafika Komputerowa. Wprowadzenie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 17 Wprowadzenie Najnowsza

Bardziej szczegółowo

Analiza Matematyczna. Pochodne wyższych rzędów. Wzór Taylora

Analiza Matematyczna. Pochodne wyższych rzędów. Wzór Taylora Analiza Matematyczna. Pochodne wyższych Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 23 kwietnia

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna

Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk

Bardziej szczegółowo

Krzywe stożkowe. Algebra. Aleksander Denisiuk

Krzywe stożkowe. Algebra. Aleksander Denisiuk Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do 0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi

Bardziej szczegółowo

Algorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej

Algorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej Algorytmy grafiki rastrowej Mirosław Głowacki Wykład z Grafiki Komputerowej Wypełnianie prymitywów Mirosław Głowacki Wykład z Grafiki Komputerowej Wypełnianie prymitywów Zadanie wypełniania prymitywów

Bardziej szczegółowo

Grafika 2D. Rasteryzacja elementów wektorowych. opracowanie: Jacek Kęsik

Grafika 2D. Rasteryzacja elementów wektorowych. opracowanie: Jacek Kęsik Grafika 2D Rasteryzacja elementów wektorowych opracowanie: Jacek Kęsik Wykład obejmuje operacje rastrowe związane z wyświetleniem kształtów o ciągłych krawędziach za pomocą skończenie gęstej siatki pikseli

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Analiza Matematyczna. Własności funkcji różniczkowalnych

Analiza Matematyczna. Własności funkcji różniczkowalnych Analiza Matematyczna. Własności funkcji Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 5 kwietnia

Bardziej szczegółowo

Algorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej

Algorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej Algorytmy grafiki rastrowej Mirosław Głowacki Wykład z Grafiki Komputerowej Konwersja odcinków Mirosław Głowacki Wykład z Grafiki Komputerowej Konwersja odcinków Algorytmy konwersji odcinków obliczają

Bardziej szczegółowo

Analiza Matematyczna. Właściwości funkcji ciagłych

Analiza Matematyczna. Właściwości funkcji ciagłych Analiza Matematyczna. Właściwości funkcji Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 24 marca

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y

Bardziej szczegółowo

Wstęp do programowania. Procedury i funkcje. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Procedury i funkcje. Piotr Chrząstowski-Wachtel Wstęp do programowania Procedury i funkcje Piotr Chrząstowski-Wachtel Po co procedury i funkcje? Gdyby jakis tyran zabronił korzystać z procedur lub funkcji, to informatyka by upadła! Procedury i funkcje

Bardziej szczegółowo

Obcinanie grafiki do prostokąta

Obcinanie grafiki do prostokąta Obcinanie grafiki do prostokąta Tworząc różnego rodzaju grafikę komputerową bardzo szybko natrafisz na sytuację, gdy rysowane obiekty "wychodzą" poza obszar ekranu. W takim przypadku kontynuowanie rysowania

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Pozostała algebra w pigułce

Pozostała algebra w pigułce Algebra Pozostała algebra w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1

Bardziej szczegółowo

W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.

W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne

Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne Przetwarzanie i Kompresja Obrazów. geometryczne Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 1 kwietnia

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Grafika komputerowa Wykład 9 Algorytmy wyznaczania obiektów zasłonietych

Grafika komputerowa Wykład 9 Algorytmy wyznaczania obiektów zasłonietych Grafika komputerowa Wykład 9 Algorytmy wyznaczania obiektów zasłonietych Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści

Bardziej szczegółowo

Algebra linowa w pigułce

Algebra linowa w pigułce Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra

Bardziej szczegółowo

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego

WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający

1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający Instrukcja laboratoryjna 3 Grafika komputerowa 2D Temat: Obcinanie odcinków do prostokąta Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1

Bardziej szczegółowo

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY GR- Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od

Bardziej szczegółowo

Utworzenie funkcji użytkownika w Visual Basic

Utworzenie funkcji użytkownika w Visual Basic Utworzenie funkcji użytkownika w Visual Basic Po co? Potrzebna jest nam funkcja, która nie występuje w Excelu. Zadanie 1. Utwórz funkcję użytkownika kotek, która będzie funkcją dwóch zmiennych b i h i

Bardziej szczegółowo

if (wyrażenie ) instrukcja

if (wyrażenie ) instrukcja if (wyrażenie ) instrukcja Jeśli wartość wyrażenia jest różna od zera, to jest wykonywana instrukcja, jeśli wartość wyrażenia jest równa 0, to dana instrukcja nie jest wykonywana Wyrażenie testowe podajemy

Bardziej szczegółowo

Analiza Matematyczna. Przeglad własności funkcji elementarnych

Analiza Matematyczna. Przeglad własności funkcji elementarnych Analiza Matematyczna. Przeglad własności Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 4 marca

Bardziej szczegółowo

Wykresy i interfejsy użytkownika

Wykresy i interfejsy użytkownika Wrocław, 07.11.2017 Wstęp do informatyki i programowania: Wykresy i interfejsy użytkownika Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Instrukcje sterujące Biblioteka

Bardziej szczegółowo

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW MASZYNY O DOSTEPIE SWOBODNYM (RAM) Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 INSTRUKCJE MASZYNY RAM Instrukcja Argument Znaczenie READ

Bardziej szczegółowo

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.

Bardziej szczegółowo

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 obiektów

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka-poziom ROZSZERZONY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Visual Basic dla AutoCAD

Visual Basic dla AutoCAD Visual Basic dla AutoCAD 1. Programowanie Język programowania to sztuczny język przeznaczony do zapisu algorytmów, w taki sposób, aby mogły one być wykonywane przez komputer. Język programowania charakteryzuje

Bardziej szczegółowo

FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;

FUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end; Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl

Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl Modelowanie i wizualizowanie 3W-grafiki Transformacje Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki ul. Słoneczna 54 10-561

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i

Bardziej szczegółowo

Reprezentacja i analiza obszaru

Reprezentacja i analiza obszaru Reprezentacja i analiza obszaru Cechy kształtu Topologiczne Geometryczne I Geometryczne II spójność liczba Eulera liczba otworów szkielet obwód pole powierzchni promienie max-min kołowość symetria środek

Bardziej szczegółowo

Troszkę przypomnienia

Troszkę przypomnienia Troszkę przypomnienia Przesunięcie o wektor Przesunięcie funkcji o wektor polega na przesunięciu jej w układzie współrzędnych o określoną ilośc jednostek w poziomie oraz w pionie. Pierwsza współrzędna

Bardziej szczegółowo

1 Wprowadzenie do algorytmiki

1 Wprowadzenie do algorytmiki Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 010 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

Maxima i Visual Basic w Excelu

Maxima i Visual Basic w Excelu 12 marca 2013 Maxima - zapoznanie z programem Maxima to program - system algebry komputerowej. Podstawowa różnica w stosunku do klasycznych programów obliczeniowych jest możliwość wykonywania obliczeń

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Kontrola przebiegu programu

Kontrola przebiegu programu Kontrola przebiegu programu Wykład 9 Instrukcje sterujące: pętle rozgałęzienia skoki PRZYPOMINAJKA Zadanie : Zaprojektuj rekurencyjny przepis na wyznaczenie największej takiej liczby m, że 2 m jest podzielnikiem

Bardziej szczegółowo

Technologie Informatyczne Wykład VII

Technologie Informatyczne Wykład VII Technologie Informatyczne Wykład VII A. Matuszak (1) 22 listopada 2007 A. Matuszak (1) Technologie Informatyczne Wykład VII A. Matuszak (2) Technologie Informatyczne Wykład VII (Rekursja) albo rekursja

Bardziej szczegółowo

Grafika komputerowa I. Przemyslaw Kiciak przemek@mimuw.edu.pl http://www.mimuw.edu.pl/~przemek

Grafika komputerowa I. Przemyslaw Kiciak przemek@mimuw.edu.pl http://www.mimuw.edu.pl/~przemek Grafika komputerowa I Przemyslaw Kiciak przemek@mimuw.edu.pl http://www.mimuw.edu.pl/~przemek 5 października 2011 2 Streszczenie. Treścią wykładu są podstawy teoretyczne grafiki komputerowej oraz wykorzystywane

Bardziej szczegółowo

Podstawy Programowania Algorytmy i programowanie

Podstawy Programowania Algorytmy i programowanie Podstawy Programowania Algorytmy i programowanie Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Algorytm Algorytm w matematyce, informatyce, fizyce, itp. lub innej dziedzinie życia,

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela

Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa Rados!aw Mantiuk Wydzia! Informatyki Zachodniopomorski Uniwersytet Technologiczny Zamiana ci!g"ej funkcji 2D na funkcj# dyskretn! (np.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 LUTEGO 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba x jest przybliżeniem

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 KWIETNIA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 7 48 jest równa

Bardziej szczegółowo

Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków

Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków Algorytmy 1. Metoda pierwsza wzory Gaussa - dla każdego punktu mnożymy współrzędną przez różnicę drugich współrzędnych punktu następnego

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna

Bardziej szczegółowo

Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle.

Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle. Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle. Sub Hasla1() Dim wzor_hasla As String Dim haslo As String Dim adres

Bardziej szczegółowo

INSTRUKCJA ITERACYJNA REPEAT. repeat Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE

INSTRUKCJA ITERACYJNA REPEAT. repeat Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE INSTRUKCJA ITERACYJNA REPEAT Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE while wyr do Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; M.P. «PASCAL» (P04) 1

Bardziej szczegółowo