Grafika Komputerowa. Algorytmy rastrowe
|
|
- Leszek Klimek
- 5 lat temu
- Przeglądów:
Transkrypt
1 Grafika Komputerowa. Algorytmy rastrowe Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 23
2 Algorytmy rastrowe Najnowsza wersja tego dokumentu dostępna jest pod adresem ØØÔ»»Ù Ö ºÔ º ÙºÔл Ò Ù 2 / 23
3 3 / 23
4 Założenia (x,y) współrzędne abstrakcyjne, liczby rzeczywiste (i,j) współrzędne ekranowe, liczby całkowite x 2 > x 1,y 2 y 1 y 2 y 1 x 2 x 1 Zaokr aglenie:i 1 = round(x 1 ),i 2 = round(x 2 ),j 1 = round(y 1 ), j 2 = round(y 2 ) 4 / 23
5 Algorytm y(i) = j 1 + i i 1 i 2 i 1 (j 2 j 1 ) j = round(y) Kod: Wejście: (i 1,j 1 ) poczatek odcinka,(i 2,j 2 ) koniec odcinka, i 2 > i 1,j 2 j 1,j 2 j 1 i 2 i 1 Wynik: Odcinek został wyświetlony m j 2 j 1 i 2 i 1 writepixel(i 1,j 1 ) y j 1 fori = i 1 +1toi 2 do y y +m j round(y) writepixel(i,j) end for 5 / 23
6 Kumulacja przyrostuy na każdym kroku do przyrostuy dodaje sięm przechodzimy o jeden piksel w górę, jejeżi przyrost przekroczy1/2 6 / 23
7 Algorytm 2 Wejście: (i 1,j 1 ) poczatek odcinka,(i 2,j 2 ) koniec odcinka, i 2 > i 1,j 2 j 1,j 2 j 1 i 2 i 1 Wynik: Odcinek został wyświetlony m j 2 j 1 i 2 i 1 b 0 writepixel(i 1,j 1 ) j j 1 fori = i 1 +1toi 2 do b b+m ifb > 1 2 then j j +1 b b 1 end if writepixel(i,j) end for 7 / 23
8 Eliminacja liczb rzeczywistych przyrost jest wielokrotnościam = j 2 j 1 i 2 i : 1 b = k j 2 j 1 i 2 i 1 b < 1 2 2k(j 2 j 1 ) < i 2 i 1 zamieniamy przyrost na przyrost całkowity przyrost całkowity na każdym kroku zwiększa się o2 j = 2(j 2 j 1 ) przechodzimy na wyższy poziom wj, jeżeli przyrost całkowity przekroczy(i 2 i 1 ) 8 / 23
9 Algorytm Bresenhama Wejście: (i 1,j 1 ) poczatek odcinka,(i 2,j 2 ) koniec odcinka, i 2 > i 1,j 2 j 1,j 2 j 1 i 2 i 1 Wynik: Odcinek został wyświetlony m 2(j 2 j 1 ) b 0 writepixel(i 1,j 1 ) j j 1 P i 2 i 1 fori = i 1 +1toi 2 do b b+m ifb > P then j j +1 b b 2P end if writepixel(i,j) end for 9 / 23
10 Osiem symetrii okręgu x 2 +y 2 = R 2 jeżeli(x,y) leży na okręgu, to (y,x),(x, y),(y, x),( x,y),( y,x),( x, y), ( y, x) też leża na okręgu 10 / 23
11 Wybór następnego piksela Zaczynamy od wierzchołka(0,r) Analizujemyf(x,y) = 4 ( (x+1) 2 +(y 1 2 )2 R 2) jeżelif(x,y) > 0 to przechodzimy w prawo i w dół jeżelif(x,y) < 0 to przechodzimy tylko w prawo f(x+1,y) = f(x,y)+8x+12 f(x+1,y 1) = f(x,y)+8x 8y +20 f(0,r) = 5 4R 11 / 23
12 Algorytm Wejście: Środek okręgu jest w(0,0), promieńr N Wynik: Okrag został wyświetlony i 0,j R,f 5 4R writepixel(i,j) whilei j do iff > 0 then f f +8i 8j +20 j j 1 else f f +8i+12 end if i i+1 writepixel(i,j) end while 12 / 23
13 x 2 a 2 + y2 b 2 = 1 Zaczynamy od wierzchołka(0,b) ( Analizujemyf(x,y) = 4a 2 b 2 (x+1) 2 + (y 1 a 2 2 )2 b 2 ) 1 jeżelif(x,y) > 0 to przechodzimy w prawo i w dół jeżelif(x,y) < 0 to przechodzimy tylko w prawo f(x+1,y) = f(x,y)+8b 2 x+12b 2 f(x+1,y 1) = f(x,y)+8b 2 x 8a 2 y +12b 2 +8a 2 f(0,b) = 4b 2 4a 2 b+a 2 13 / 23
14 Zmiana kierunku Jeżelib 2 x > a 2 y, to zmienia się ( kierunek ratserizacji Analizujemyg(x,y) = 4a 2 b 2 (x+ 1 ) 2 )2 + (y 1)2 1 a 2 b 2 jeżelig(x,y) > 0 to przechodzimy w prawo i w dół jeżelig(x,y) < 0 to przechodzimy tylko w dół g(x,y) = f(x,y) 4b 2 x 3b 2 4a 2 y +3a 2 g(x,y 1) = g(x,y) 8a 2 y +12a 2 g(x+1,y 1) = g(x,y)+8b 2 x 8a 2 y +8b 2 +12a 2 14 / 23
15 Algorytm Wejście: Środek elipsy jest w(0,0), promieniea,b N Wynik: Elipsa została wyświetlona i 0,j b,f 4b 2 4a 2 b+a 2 writepixel(i,j) whileb 2 i a 2 j do iff > 0 then f f +8b 2 i 8a 2 j +12b 2 +8a 2 j j 1 else f f +8b 2 i+12b 2 end if i i+1 writepixel(i,j) end while 15 / 23
16 Algorytm. Zmiana kierunku g f 4b 2 i 3b 2 4a 2 j +3a 2 whilej 0 do ifg 0 then g g +8b 2 i 8a 2 j +8b 2 +12a 2 i i+1 else g g 8a 2 j +12a 2 end if j j 1 writepixel(i,j) end while 16 / 23
17 Przybliżenie przez łamana Metoda Eulera dla równania ẋ = f 1 (x,y), ẏ = f 2 (x,y), x(0) = x 0, y(0) = y / 23
18 Wypełnienie wieloboku 18 / 23
19 Przegladanie liniami poziomymi (Scanline interpolation) Wejście: lista krawędzi wieloboku{ [ (x i,y i ),(x i+1,y i+1 ) ] }, i = 0,...,n,x n = x 0,y n = y 0 Wynik: wypełniono wnętrze wieloboku uporzadkuj wierzchołki w krawędziach abyy i < y i+1, usuń krawędzie poziome uporzadkuj krawędzie w kolejności rosn TAK (Tabela Aktywnych Krawęzi) y y i pierwszej krawędzi acychy i repeat TAK TAK {krawędzie, których pierwszy koniec jest na linii y} Opracowanie poziomuy y ++; TAK TAK \{krawędzie, których drugi koniec jest na liniiy} untiltak = 19 / 23
20 Opracowanie poziomuy Wejście: TAK (zawiera parzysta ilość elementów) Wynik: wypełniony poziomy for all krawędzi ztka do Oblicz współrzędnaxpunktu przecięcia z linia poziom end for PosortujTKA w kolejności rosnacych współrzędnychxpunktów przecięcia for all kolejnych par krawędzi ztka do rysuj odcinek poziomy na liniiy, między ich punktami przecięcia z liniay; end for ay 20 / 23
21 Wypełnianie przez zalewanie obszar jest czterospójny brzeg obszaru jest ośmiospójny 21 / 23
22 Procedura rekurencyjna Wejście: punkt(i,j) zawiera się w obszarze Wynik: zamalowany cały obszar if niezamalowany wewnętrzny piksel(i,j) then Zamaluj(i,j) Wypełnij poczynaj Wypełnij poczynaj Wypełnij poczynaj Wypełnij poczynaj end if ac z(i 1,j) ac z(i,j 1) ac z(i+1,j) ac z(i,j +1) 22 / 23
23 Stos zawieszonych zadań Wejście: punkt(i,j) zawiera się w obszarze Wynik: zamalowany cały obszar StosS zamaluj(i,j);s S (i,j) whiles do S S \(i,j) if niezamalowany wewnętrzny piksel(i 1,j) then zamaluj(i 1,j);S S (i 1,j) end if if niezamalowany wewnętrzny piksel(i,j 1) then zamaluj(i,j 1);S S (i,j 1) end if if niezamalowany wewnętrzny piksel(i+1,j) then zamaluj(i 1,j); StosS S (i+1,j) end if if niezamalowany wewnętrzny piksel(i,j +1) then zamaluj(i 1,j);S S (i,j +1) end if end while 23 / 23
Grafika komputerowa Wykład 2 Algorytmy rastrowe
Grafika komputerowa Wykład 2 Algorytmy rastrowe Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Algorytm Bresenhama
Bardziej szczegółowoWYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Bardziej szczegółowoPrzetwarzanie i Kompresja Obrazów. Segmentacja
Przetwarzanie i Kompresja Obrazów. Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 5 czerwca 2016 1/27
Bardziej szczegółowoGrafika Komputerowa. Metoda śledzenia promieni
Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30 Metoda śledzenia
Bardziej szczegółowoWprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania
Wprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 22 Wprowadzenie
Bardziej szczegółowoAnaliza Matematyczna. Teoria Liczb Rzeczywistych
Analiza Matematyczna. Teoria Liczb Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 12 marca 2017
Bardziej szczegółowoGrafika Komputerowa. Teksturowanie
Grafika Komputerowa. Teksturowanie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 19 Teksturowanie Najnowsza
Bardziej szczegółowoGrafika Komputerowa. Wprowadzenie
Grafika Komputerowa. Wprowadzenie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 17 Wprowadzenie Najnowsza
Bardziej szczegółowoAnaliza Matematyczna. Pochodne wyższych rzędów. Wzór Taylora
Analiza Matematyczna. Pochodne wyższych Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 23 kwietnia
Bardziej szczegółowoAnaliza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
Bardziej szczegółowoPrzetwarzanie i Kompresja Obrazów. Morfologia matematyczna
Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk
Bardziej szczegółowoKrzywe stożkowe. Algebra. Aleksander Denisiuk
Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe
Bardziej szczegółowoGeometria Analityczna w Przestrzeni
Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045
Bardziej szczegółowo0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Bardziej szczegółowoAlgorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej
Algorytmy grafiki rastrowej Mirosław Głowacki Wykład z Grafiki Komputerowej Wypełnianie prymitywów Mirosław Głowacki Wykład z Grafiki Komputerowej Wypełnianie prymitywów Zadanie wypełniania prymitywów
Bardziej szczegółowoGrafika 2D. Rasteryzacja elementów wektorowych. opracowanie: Jacek Kęsik
Grafika 2D Rasteryzacja elementów wektorowych opracowanie: Jacek Kęsik Wykład obejmuje operacje rastrowe związane z wyświetleniem kształtów o ciągłych krawędziach za pomocą skończenie gęstej siatki pikseli
Bardziej szczegółowoGrafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Bardziej szczegółowoAnaliza Matematyczna. Własności funkcji różniczkowalnych
Analiza Matematyczna. Własności funkcji Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 5 kwietnia
Bardziej szczegółowoAlgorytmy grafiki rastrowej. Mirosław Głowacki Wykład z Grafiki Komputerowej
Algorytmy grafiki rastrowej Mirosław Głowacki Wykład z Grafiki Komputerowej Konwersja odcinków Mirosław Głowacki Wykład z Grafiki Komputerowej Konwersja odcinków Algorytmy konwersji odcinków obliczają
Bardziej szczegółowoAnaliza Matematyczna. Właściwości funkcji ciagłych
Analiza Matematyczna. Właściwości funkcji Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 24 marca
Bardziej szczegółowoG i m n a z j a l i s t ó w
Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y
Bardziej szczegółowoWstęp do programowania. Procedury i funkcje. Piotr Chrząstowski-Wachtel
Wstęp do programowania Procedury i funkcje Piotr Chrząstowski-Wachtel Po co procedury i funkcje? Gdyby jakis tyran zabronił korzystać z procedur lub funkcji, to informatyka by upadła! Procedury i funkcje
Bardziej szczegółowoObcinanie grafiki do prostokąta
Obcinanie grafiki do prostokąta Tworząc różnego rodzaju grafikę komputerową bardzo szybko natrafisz na sytuację, gdy rysowane obiekty "wychodzą" poza obszar ekranu. W takim przypadku kontynuowanie rysowania
Bardziej szczegółowoFUNKCJA LINIOWA, OKRĘGI
FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o
Bardziej szczegółowoPodstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Bardziej szczegółowoPozostała algebra w pigułce
Algebra Pozostała algebra w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1
Bardziej szczegółowoW wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny
Bardziej szczegółowoKGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012
Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować
Bardziej szczegółowoPrzetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne
Przetwarzanie i Kompresja Obrazów. geometryczne Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 1 kwietnia
Bardziej szczegółowoEgzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Bardziej szczegółowoGrafika komputerowa Wykład 9 Algorytmy wyznaczania obiektów zasłonietych
Grafika komputerowa Wykład 9 Algorytmy wyznaczania obiektów zasłonietych Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści
Bardziej szczegółowoAlgebra linowa w pigułce
Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra
Bardziej szczegółowoWektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Bardziej szczegółowoRysowanie precyzyjne. Polecenie:
7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Bardziej szczegółowoWYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Bardziej szczegółowoZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH
ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki
Bardziej szczegółowo1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający
Instrukcja laboratoryjna 3 Grafika komputerowa 2D Temat: Obcinanie odcinków do prostokąta Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1
Bardziej szczegółowoMatematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoPróbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ
POZIOM PODSTAWOWY GR- Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od
Bardziej szczegółowoUtworzenie funkcji użytkownika w Visual Basic
Utworzenie funkcji użytkownika w Visual Basic Po co? Potrzebna jest nam funkcja, która nie występuje w Excelu. Zadanie 1. Utwórz funkcję użytkownika kotek, która będzie funkcją dwóch zmiennych b i h i
Bardziej szczegółowoif (wyrażenie ) instrukcja
if (wyrażenie ) instrukcja Jeśli wartość wyrażenia jest różna od zera, to jest wykonywana instrukcja, jeśli wartość wyrażenia jest równa 0, to dana instrukcja nie jest wykonywana Wyrażenie testowe podajemy
Bardziej szczegółowoAnaliza Matematyczna. Przeglad własności funkcji elementarnych
Analiza Matematyczna. Przeglad własności Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk 4 marca
Bardziej szczegółowoWykresy i interfejsy użytkownika
Wrocław, 07.11.2017 Wstęp do informatyki i programowania: Wykresy i interfejsy użytkownika Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Instrukcje sterujące Biblioteka
Bardziej szczegółowoPoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj
Bardziej szczegółowoZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW MASZYNY O DOSTEPIE SWOBODNYM (RAM) Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 INSTRUKCJE MASZYNY RAM Instrukcja Argument Znaczenie READ
Bardziej szczegółowoInformatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki
Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.
Bardziej szczegółowoGrafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły
Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 obiektów
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka-poziom ROZSZERZONY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Bardziej szczegółowoVisual Basic dla AutoCAD
Visual Basic dla AutoCAD 1. Programowanie Język programowania to sztuczny język przeznaczony do zapisu algorytmów, w taki sposób, aby mogły one być wykonywane przez komputer. Język programowania charakteryzuje
Bardziej szczegółowoFUNKCJA REKURENCYJNA. function s(n:integer):integer; begin if (n>1) then s:=n*s(n-1); else s:=1; end;
Rekurencja Wykład: rekursja, funkcje rekurencyjne, wywołanie samej siebie, wyznaczanie poszczególnych liczb Fibonacciego, potęgowanie, algorytm Euklidesa REKURENCJA Rekurencja (z łac. recurrere), zwana
Bardziej szczegółowoXI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Bardziej szczegółowoPróbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
Bardziej szczegółowoModelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl
Modelowanie i wizualizowanie 3W-grafiki Transformacje Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki ul. Słoneczna 54 10-561
Bardziej szczegółowoInternetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
Bardziej szczegółowoGeometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
Bardziej szczegółowoReprezentacja i analiza obszaru
Reprezentacja i analiza obszaru Cechy kształtu Topologiczne Geometryczne I Geometryczne II spójność liczba Eulera liczba otworów szkielet obwód pole powierzchni promienie max-min kołowość symetria środek
Bardziej szczegółowoTroszkę przypomnienia
Troszkę przypomnienia Przesunięcie o wektor Przesunięcie funkcji o wektor polega na przesunięciu jej w układzie współrzędnych o określoną ilośc jednostek w poziomie oraz w pionie. Pierwsza współrzędna
Bardziej szczegółowo1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 010 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Bardziej szczegółowoVII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
Bardziej szczegółowoMaxima i Visual Basic w Excelu
12 marca 2013 Maxima - zapoznanie z programem Maxima to program - system algebry komputerowej. Podstawowa różnica w stosunku do klasycznych programów obliczeniowych jest możliwość wykonywania obliczeń
Bardziej szczegółowoWstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Bardziej szczegółowoCzy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?
DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU
Bardziej szczegółowoPOZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Bardziej szczegółowoKontrola przebiegu programu
Kontrola przebiegu programu Wykład 9 Instrukcje sterujące: pętle rozgałęzienia skoki PRZYPOMINAJKA Zadanie : Zaprojektuj rekurencyjny przepis na wyznaczenie największej takiej liczby m, że 2 m jest podzielnikiem
Bardziej szczegółowoTechnologie Informatyczne Wykład VII
Technologie Informatyczne Wykład VII A. Matuszak (1) 22 listopada 2007 A. Matuszak (1) Technologie Informatyczne Wykład VII A. Matuszak (2) Technologie Informatyczne Wykład VII (Rekursja) albo rekursja
Bardziej szczegółowoGrafika komputerowa I. Przemyslaw Kiciak przemek@mimuw.edu.pl http://www.mimuw.edu.pl/~przemek
Grafika komputerowa I Przemyslaw Kiciak przemek@mimuw.edu.pl http://www.mimuw.edu.pl/~przemek 5 października 2011 2 Streszczenie. Treścią wykładu są podstawy teoretyczne grafiki komputerowej oraz wykorzystywane
Bardziej szczegółowoPodstawy Programowania Algorytmy i programowanie
Podstawy Programowania Algorytmy i programowanie Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Algorytm Algorytm w matematyce, informatyce, fizyce, itp. lub innej dziedzinie życia,
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
Bardziej szczegółowoLI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
Bardziej szczegółowoEGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
Bardziej szczegółowoRasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela
Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa Rados!aw Mantiuk Wydzia! Informatyki Zachodniopomorski Uniwersytet Technologiczny Zamiana ci!g"ej funkcji 2D na funkcj# dyskretn! (np.
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 LUTEGO 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba x jest przybliżeniem
Bardziej szczegółowoAlgebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 KWIETNIA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 7 48 jest równa
Bardziej szczegółowoObliczenie pola wieloboku na podstawie współrzędnych wierzchołków
Obliczenie pola wieloboku na podstawie współrzędnych wierzchołków Algorytmy 1. Metoda pierwsza wzory Gaussa - dla każdego punktu mnożymy współrzędną przez różnicę drugich współrzędnych punktu następnego
Bardziej szczegółowo1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna
Bardziej szczegółowoInstrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle.
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle. Sub Hasla1() Dim wzor_hasla As String Dim haslo As String Dim adres
Bardziej szczegółowoINSTRUKCJA ITERACYJNA REPEAT. repeat Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE
INSTRUKCJA ITERACYJNA REPEAT Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; until wyr ; INSTRUKCJA ITERACYJNA WHILE while wyr do Instrukcja_1; Instrukcja_2; {... } Instrukcja_N; M.P. «PASCAL» (P04) 1
Bardziej szczegółowo