Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
|
|
- Filip Mazurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Równania różniczkowe zwyczajne i cząstkowe (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3) Kod (4) Studia Kierunek studiów Poziom kształcenia Forma studiów Matematyka studia drugiego stopnia studia niestacjonarne (5) Rodzaj podstawowy (6) Rok i semestr studiów I rok, I semestr (7) Imię i nazwisko koordynatora dr Piotr Drygaś (8) Imię i nazwisko osoby prowadzącej dr Piotr Drygaś ( osób prowadzących) zajęcia z (9)Cele zajęć z Celem nauczania jest przyswojenie przez studentów podstawowych pojęć, faktów i metod równań różniczkowych. Wybrano te rozdziały oraz poszczególne zagadnienia, które przydatne są na kierunku nauczania Matematyka i służą ogólnej edukacji matematycznej. (10) Wymagania wstępne Analiza matematyczna, algebra (11) Efekty kształcenia Wiedza: definiuje większość klasycznych pojęć i formułuje podstawowe twierdzenia z zakresu równań różniczkowych wyższych rzędów i równań różniczkowych cząstkowych posiada wiedzę dotyczącą metod dowodowych stosowanych w równaniach różniczkowych posiada wiedzę dotyczącą technik obliczeniowych stosowanych w równaniach różniczkowych Umiejętności: potrafi w oparciu o znane twierdzenia sprawdzić, czy dane równanie ma jednoznaczne rozwiązania rozpoznaje typy równań różniczkowych cząstkowych rzędu 2 i wie jak je sprowadzić do postaci kanonicznej, umie rozwiązywać równania różniczkowe liniowe o stałych współczynnikach, potrafi wykorzystać narzędzia komputerowe do badania rozwiązań równań różniczkowych, stosuje właściwe metody rozwiązywania klasycznych równań różniczkowych zwyczajnych i cząstkowych, potrafi stosować je w typowych zagadnieniach praktycznych 1
2 Kompetencje społeczne: samodzielnie wyszukuje informacje w literaturze i właściwie je stosuje, formułuje opinie na temat podstawowych zagadnień analizy zespolonej rozumie znaczenie równań różniczkowych i ich zastosowań w życiu społecznym i gospodarczym. (12) Forma(y) zajęć, liczba realizowanych godzin Wykład - 20 godzin, Ćwiczenia audytoryjne 20 godzin A. Problematyka wykładu (13) Treści programowe 1) Równania różniczkowe wyższych rzędów. 2) 2.Twierdzenia o istnieniu i jednoznaczności rozwiązań zagadnień początkowych dla równań różniczkowych n tego rzędu. 3) Równania różniczkowe liniowe n tego rzędu. 4) Twierdzenie o istnieniu i jednoznaczności rozwiązania zagadnienia początkowego dla równania różniczkowego liniowego wyższego rzędu. 5) Równania różniczkowe liniowe jednorodne n tego rzędu. Własności ich rozwiązań. 6) Wyznacznik Wrońskiego dla rozwiązań równań różniczkowych liniowych jednorodnych n tego rzędu. 7) Wzór Ostrogradskiego Liouville a. 8) Warunek konieczny i dostateczny na to aby układ n rozwiązań równania różniczkowego liniowego jednorodnego n tego rzędu był liniowo niezależnym. 9) Fundamentalny układ rozwiązań równania różniczkowego liniowego jednorodnego n tego rzędu, jego istnienie. 10) Twierdzenie o postaci rozwiązania ogólnego równań różniczkowych liniowych jednorodnych n tego rzędu. 11) Twierdzenie o postaci rozwiązania ogólnego równań różniczkowych liniowych niejednorodnych n tego rzędu. 12) Twierdzenie o addytywności rozwiązania względem prawej strony. 13) Metoda uzmienniania stałych dla równań różniczkowych liniowych niejednorodnych n tego rzędu. 14) Fundamentalne układy rozwiązań liniowych równań jednorodnych n-tego rzędu o stałych współczynnikach. 15) Twierdzenie o zasadzie przewidywania dla liniowych równań niejednorodnych n-tego rzędu o stałych współczynnikach. 16) Definicja układów równań różniczkowych rzędu pierwszego o postaci normalnej. Układy autonomiczne. Postać symetryczna oraz postać wektorowa układu. 17) Twierdzenie Picarda Lindelöfa o istnieniu i jednoznaczności rozwiązań zagadnień początkowych dla układów równań różniczkowych rzędu pierwszego. 18) Twierdzenie Peano dla układów równań różniczkowych rzędu pierwszego. 19) Układy równań różniczkowych liniowych rzędu pierwszego. Postać wektorowo macierzowa takiego układu. 20) Twierdzenie o istnieniu i jednoznaczności rozwiązań zagadnień początkowych dla układów równań różniczkowych liniowych pierwszego rzędu. 21) Rozwiązanie jednorodnego zagadnienia Cauchy ego dla układu liniowego jednorodnego. 2
3 22) Własności rozwiązań jednorodnych liniowych układów równań różniczkowych pierwszego rzędu. 23) Liniowa niezależność/zależność funkcji wektorowych. 24) Wyznacznik Wrońskiego dla układów funkcji wektorowych. Wzór Ostrogradskiego Liouville a dla układów równań różniczkowych liniowych rzędu pierwszego. 25) Warunki konieczne i dostateczne na to, aby układ n rozwiązań układu liniowego jednorodnego pierwszego rzędu był liniowo niezależnym. 26) Układ fundamentalny rozwiązań dla układu równań różniczkowych liniowych rzędu pierwszego, jego istnienie. 27) Twierdzenie o postaci rozwiązania ogólnego układu liniowego jednorodnego. 28) Twierdzenie o postaci rozwiązania ogólnego układu liniowego niejednorodnego. 29) Metoda uzmienniania stałych dla układu liniowego niejednorodnego. 30) Definicja stabilności w sensie Lapunowa rozwiązań układów równań różniczkowych. 31) Funkcja Lapunowa. Przykład. 32) Kryteria stabilności rozwiązań układów równań różniczkowych. 33) Definicja równania różniczkowego cząstkowego, przykłady. 34) Rząd równania różniczkowego cząstkowego, przykłady. 35) Liniowe, półliniowe, quasiliniowe, nieliniowe równania różniczkowe cząstkowe, przykłady. 36) Definicja rozwiązania równania różniczkowego cząstkowego, przykłady. 37) Wyróżnik. Klasyfikacja równań różniczkowych cząstkowych rzędu drugiego: typ hiperboliczny, typ paraboliczny, typ eliptyczny. 38) Równanie poprzecznych drgań struny nieograniczonej. 39) Drgania swobodne struny nieograniczonej. Wzór d Alamberta. 40) Drgania swobodne struny zamocowanej na końcach. Metoda Fouriera. 41) Równanie przewodnictwa cieplnego. 42) Zagadnienie mieszane z warunkami brzegowymi jednorodnymi dla równania przewodnictwa cieplnego. Metoda Fouriera. 43) Równania Laplace a. B. Problematyka ćwiczeń audytoryjnych i laboratoryjnych 1) Badanie istnienia i jednoznaczności rozwiązań zagadnień początkowych dla przykładowych równań różniczkowych n tego rzędu, 2) Zastosowania wyznacznika Wońskiego 3) Zastosowania wzoru Ostrogradskiego Liouville a. 4) Fundamentalny układ rozwiązań równania różniczkowego liniowego jednorodnego n tego rzędu, 5) Metoda uzmienniania stałych dla równań różniczkowych liniowych niejednorodnych n tego rzędu, 6) Fundamentalne układy rozwiązań liniowych równań jednorodnych n-tego rzędu o stałych współczynnikach, 7) Zasada przewidywania dla liniowych równań niejednorodnych n-tego rzędu o stałych współczynnikach, 8) Układy równań różniczkowych liniowych rzędu pierwszego. Postać wektorowo macierzowa takiego układu, 9) Wyznacznik Wrońskiego dla układów funkcji wektorowych. Wzór Ostrogradskiego Liouville a dla układów równań różniczkowych liniowych rzędu pierwszego, 10) Układ fundamentalny rozwiązań dla układu równań różniczkowych liniowych rzędu 3
4 pierwszego, jego istnienie, 11) Metoda uzmienniania stałych dla układu liniowego niejednorodnego, 12) Badanie stabilności rozwiązań układów równań różniczkowych, 13) Klasyfikacja równań różniczkowych cząstkowych rzędu drugiego, 14) Równanie poprzecznych drgań struny nieograniczonej, 15) Drgania swobodne struny nieograniczonej. Wzór d Alamberta, 16) Drgania swobodne struny zamocowanej na końcach. Metoda Fouriera, 17) Równanie przewodnictwa cieplnego, 18) Zagadnienie mieszane z warunkami brzegowymi jednorodnymi dla równania przewodnictwa cieplnego. Metoda Fouriera, 19) Równania Laplace a. (14) Metody dydaktyczne Wykład, wykład z prezentacją multimedialną, rozwiązywanie zadań, praca przy komputerze (15) Sposób(y) i forma(y) zaliczenia Ćwiczenia - zaliczenie na ocenę 2 sprawdziany pisemne, oceny cząstkowe za aktywność Wykład egzamin Egzamin pisemny dwuczęściowy : teoretyczny i zadaniowy (16) Metody i kryteria oceny (17) Całkowity nakład pracy studenta potrzebny do osiągnięcia założonych efektów w godzinach oraz punktach ECTS (18) Język wykładowy polski Aktywność Nakład pracy studenta w godz. wykład 20 Ćwiczenia audytoryjne 20 udział w konsultacjach 7 przygotowanie do kolokwiów 15 Przygotowanie do wykładów 15 przygotowanie do ćwiczeń 60 przygotowanie do egzaminu 25 udział w egzaminie 3 SUMA GODZIN 165 LICZBA PUNKTÓW ECTS 6 (19) Praktyki zawodowe w ramach nie dotyczy (20) Literatura Literatura podstawowa: 1. A. Palczewski, Równania różniczkowe zwyczajne, WNT, Warszawa 1999, H. Marcinkowska, Wstęp do teorii równań różniczkowych cząstkowych, PWN, Warszawa I. Dziubiński, L. Siewierski, Matematyka dla wyższych szkół technicznych, tom II,III, WST, Warszawa awrence C. Evans, Równania różniczkowe cząstkowe, PWN, Warszawa W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, cz. II, PWN, Warszawa J. Niedoba, W. Niedoba, Równania różniczkowe zwyczajne i cząstkowe, Kraków, AGH, Uczelniane Wydaw. Naukowo- Dydaktyczne,
5 Podpis koordynatora Literatura uzupełniająca: 1. M. Abell, J. Braselton, Differential equations with Mathematica, Academic Press, New York, Pinchover Ye., Rubinstein Ja. An introduction to partial differential equations Cambridge, Jeffrey A. Applied partial differential equations. An introduction, Academic Press, 2003 Podpis kierownika jednostki 5
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
Bardziej szczegółowoWYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia
Bardziej szczegółowoWYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Równania różniczkowe cząstkowe i ich zastosowania. Nazwa w języku angielskim Kierunek studiów (jeśli dotyczy):
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Równania różniczkowe Differential equations Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Nazwa Algebra liniowa z geometrią Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Kod Studia Kierunek
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:
Bardziej szczegółowoKARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Równania różniczkowe (RRO020) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 / 30
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
Bardziej szczegółowoWYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka II Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Wydział Nauk Technicznych i Ekonomicznych, Instytut Nauk Technicznych, Zakład
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:
Bardziej szczegółowoAiRZ-0008 Matematyka Mathematics
. KARTA MODUŁU / KARTA PRZEDMIOTU AiRZ-0008 Matematyka Mathematics Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów
Bardziej szczegółowoI. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA STOSOWANA II 2. Kod przedmiotu: Ma2 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie informatyki
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom
Bardziej szczegółowoSYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia
Bardziej szczegółowoWykład Ćwiczeni a 15 30
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
Bardziej szczegółowo20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
Bardziej szczegółowoI. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: Ma 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów Mechatronicznych
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice
Bardziej szczegółowoMatematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne
Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu
Bardziej szczegółowoSYLABUS/KARTA PRZEDMIOTU
SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Analiza i modelowanie systemów. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu AiR I Stacjonarne/Niestacjonarne
Bardziej szczegółowoKARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu. Zakład Statystyki i Informatyki Medycznej
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Bardziej szczegółowoAlgebra liniowa Linear algebra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Geometria szkolna Kod
Bardziej szczegółowoKARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30
Bardziej szczegółowoSYLABUS. Cele zajęć z przedmiotu
Załącznik nr 1 do Zarządzenia Rektora UR Nr 4/2012 z dnia 20.01.2012r. SYLABUS Nazwa przedmiotu Nazwa jednostki prowadzącej przedmiot Analiza matematyczna Wydział Matematyczno-Przyrodniczy, Instytut Fizyki
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016 2020 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu
Bardziej szczegółowoGEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Bardziej szczegółowoAlgebra liniowa Linear algebra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki
Bardziej szczegółowoMatematyka I i II - opis przedmiotu
Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
Bardziej szczegółowoRównania różniczkowe Differential Equations
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/016 Z-ID-0a Równania różniczkowe Differential Equations A. USYTUOWANIE MODUŁU
Bardziej szczegółowoGeodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od
Bardziej szczegółowoAlgebra liniowa. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Algebra liniowa Nazwa modułu w języku angielskim Linear algebra Obowiązuje
Bardziej szczegółowoPoziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Teoria miary i całki Measure and Integration Theory Kod przedmiotu: Poziom
Bardziej szczegółowoMatematyka - opis przedmiotu
Matematyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka Kod przedmiotu 11.1-WZ-EkoP-M-W-S14_pNadGenAT6Y9 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ Linear algebra and analytical geometry Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka,
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Matematyka 4 Rok akademicki: 2012/2013 Kod: JFM-1-401-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Algebra liniowa i geometria analityczna II Linear algebra and geometry II Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka
Bardziej szczegółowoInżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/1 z dnia 1 lutego 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka Nazwa modułu w języku angielskim Mathematics Obowiązuje od roku akademickiego
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Bardziej szczegółowoANALIZA SYLABUS. A. Informacje ogólne
ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:
Bardziej szczegółowoOPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Matematyka 3 2 Kod modułu kształcenia 04-ASTR1-MatIII60-2Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów Astronomia
Bardziej szczegółowoWYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek
Bardziej szczegółowoSTATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Wstęp do logiki i teorii
Bardziej szczegółowoNazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka I Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych, Zakład
Bardziej szczegółowoKARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
Bardziej szczegółowoSYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii
SYLABUS Nazwa Wprowadzenie do metrologii Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów Poziom kształcenia
Bardziej szczegółowoRachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18
Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu
Bardziej szczegółowoZaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli
Bardziej szczegółowoRachunek prawdopodobieństwa
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Bardziej szczegółowoOPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 2 2 Kod modułu 04-A-MAT2-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku: Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Bardziej szczegółowoDynamika maszyn - opis przedmiotu
Dynamika maszyn - opis przedmiotu Informacje ogólne Nazwa przedmiotu Dynamika maszyn Kod przedmiotu 06.1-WM-MiBM-P-52_15gen Wydział Kierunek Wydział Mechaniczny Mechanika i budowa maszyn / Maszyny i Urządzenia
Bardziej szczegółowoKARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: WGG s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Matematyka stosowana Rok akademicki: 2013/2014 Kod: WGG-1-304-s Punkty ECTS: 5 Wydział: Wiertnictwa, Nafty i Gazu Kierunek: Górnictwo i Geologia Specjalność: - Poziom studiów: Studia I stopnia
Bardziej szczegółowoKarta (sylabus) przedmiotu
WM Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia I stopnia o profilu: A P Przedmiot: Wybrane z Kod ECTS Status przedmiotu: obowiązkowy MBM S 0 5 58-4_0 Język wykładowy: polski, angielski
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Algebra liniowa z geometrią Kod przedmiotu/
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Statystyka w biologii
Bardziej szczegółowoMetody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści dodatkowych Rodzaj zajęć: wykład, ćwiczenia Metody Optimization methods Forma studiów: stacjonarne Poziom studiów
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Instrumenty finansowe Kod
Bardziej szczegółowoWYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI
Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Bankowość I. Kod przedmiotu/
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,
Bardziej szczegółowoKARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30 7. TYP
Bardziej szczegółowoKARTA KURSU. Kod Punktacja ECTS* 4
Załącznik nr 4 do Zarządzenia Nr.. KARTA KURSU Nazwa Analiza matematyczna 3 Nazwa w j. ang. Mathematical Analysis 3 Kod Punktacja ECTS* 4 Koordynator Prof. M. C. Zdun Zespół dydaktyczny dr Z. Powązka,
Bardziej szczegółowoKIERUNEK STUDIÓW: ELEKTROTECHNIKA
1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III
Bardziej szczegółowoZ-ID-103 Algebra liniowa Linear Algebra
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-0 Algebra liniowa Linear Algebra Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/06 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowo2. Opis zajęć dydaktycznych i pracy studenta
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Technologia chemiczna, I Sylabus modułu: Matematyka B (006) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma
Bardziej szczegółowoModelowanie stochastyczne Stochastic Modeling. Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2C
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Modelowanie stochastyczne Stochastic Modeling Poziom przedmiotu:
Bardziej szczegółowoWykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA M1 Nazwa w języku angielskim ALGEBRA M1 Kierunek studiów (jeśli dotyczy): Matematyka Stopień studiów
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:
Bardziej szczegółowoKARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza zespolona. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza zespolona 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład + 15 ćwiczenia
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium GRAFIKA KOMPUTEROWA I WIZUALIZACJA Computer
Bardziej szczegółowoProgramy zdrowotne. Kierunek studiów Poziom kształcenia Forma studiów. Zdrowie publiczne Studia II stopnia stacjonarne. Cele zajęć z przedmiotu
Sylabus : PROGRAMY ZDROWOTNE Nazwa Nazwa jednostki prowadzącej przedmiot Programy zdrowotne Wydział Medyczny, Instytut Pielęgniarstwa i Nauk o zdrowiu, Katedra i Zakład Zdrowia Publicznego Kod Studia Kierunek
Bardziej szczegółowoKierunek studiów Poziom kształcenia Forma studiów. Zdrowie publiczne Studia II stopnia Stacjonarne. Dr Anna Jacek. Dr Anna Jacek
Sylabus : UBEZPIECZENIA SPOŁECZNE I ZDROWOTNE Nazwa Nazwa jednostki prowadzącej przedmiot Ubezpieczenia społeczne i zdrowotne Wydział Medyczny, Instytut Pielęgniarstwa i Nauk o zdrowiu, Katedra i Zakład
Bardziej szczegółowoSylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
. Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa przedmiotu Teoria ryzyka w bankowości (2) Nazwa jednostki prowadzącej przedmiot Wydział Matematyczno - Przyrodniczy
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy PODSTAWY INFORMATYKI Fundamentals of computer science
Bardziej szczegółowostudia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
Bardziej szczegółowoMatematyka. WZ-ST1-RC-Co-13/14Z-MATE Controlling. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 15. niestacjonarne: Wykłady: 9 Ćwiczenia: 9
Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Rachunkowość i Controlling I. Informacje podstawowe Nazwa przedmiotu Matematyka Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu polski Kody/Specjalności
Bardziej szczegółowoSylabus przedmiotu: ORGANIZACJA I ZARZĄDZANIE W OCHRONIE ZDROWIA. Kierunek studiów Poziom kształcenia Forma studiów
Sylabus przedmiotu: ORGANIZACJA I ZARZĄDZANIE W OCHRONIE ZDROWIA Nazwa przedmiotu Nazwa jednostki prowadzącej przedmiot Organizacja i zarządzanie w ochronie zdrowia Instytut Pielęgniarstwa i Nauk o Zdrowiu
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
Bardziej szczegółowoKARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE
1 2 3 4 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych
Bardziej szczegółowoWYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
Bardziej szczegółowo