Ekonometria Bayesowska
|
|
- Bogumił Czajkowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ekonometria Bayesowska Wykªad 2: Bayesowska estymacja równania ze staª. Elementy j zyka R (2) Ekonometria Bayesowska / 24
2 Plan wykªadu Model ze staª 2 Podstawy j zyka R 3 Bayesowska analiza modelu ze staª (2) Ekonometria Bayesowska 2 / 24
3 Plan prezentacji Model ze staª 2 Podstawy j zyka R 3 Bayesowska analiza modelu ze staª (2) Ekonometria Bayesowska 3 / 24
4 Specykacja modelu Model ze staª Rozwa»my absurdalnie prosty model ekonometryczny: y i c + ε i, ε N ( 0, σ 2) i.i.d. c jedyny nieznany parametr (dlatego model jest prosty, z sam staª chodzi o ustalenie poziomu zjawiska). Ustalamy dla niego rozkªad a priori: c N ( ) µ c, σc 2 Model jest absurdalnie prosty, bo dodatkowo zakªadamy znajomo± wariancji skªadnika losowego (σ 2 ), co jest rzadkie w praktyce. Pozwala to jednak upro±ci model na tyle, by±my przejrzy±cie prze±ledzili schemat rozumowania bayesowskiego. (Wkrótce poznamy bardziej praktyczn wersj.) (2) Ekonometria Bayesowska 4 / 24
5 Specykacja modelu Rozkªad normalny Dotyczy zmiennych losowych o warto±ciach rzeczywistych. Opisuj go dwa parametry: µ i σ 2 (odpowiednio warto± oczekiwana i wariancja). Funkcja g sto±ci: f (x) σ 2π (x µ) 2 e 2σ 2. Zatem w naszym przykªadzie g sto± a priori dla parametru c: f (c) e (c µc ) 2 2σc 2 σ c 2π (2) Ekonometria Bayesowska 5 / 24
6 Specykacja modelu G sto± próbkowa Przy niezale»nych obserwacjach (jak w poprzednim przykªadzie o Euro 206) jest to iloczyn warto±ci funkcji g sto±ci dla ka»dego elementu w próbie: n f (ε c) f (ε i c) i 2 (σ 2π) n e (σ 2π) n e f (y c) 2 n i n i (ε i 0) 2 σ 2 (y i c) 2 σ 2 (2) Ekonometria Bayesowska 6 / 24
7 G sto± a posteriori G sto± a posteriori () Zgodnie z twierdzeniem Bayesa: f (c y) R A f (y c) f (c) f (y c) f (c) dc }{{} A n 2 (σ 2π) e n i (y i c) 2 2 A (σ 2π) n σ c 2π e i σ 2 σ c 2π e (c µc ) 2 2σ c 2 n (y i c) 2 σ 2 + (c µc )2 σ 2 c (2) Ekonometria Bayesowska 7 / 24
8 G sto± a posteriori G sto± a posteriori (2) n (y i c) 2 (c µc )2 σ 2 + σc 2 i... n n y n i 2 2cȳ+c 2 i σ 2 n i y 2 i 2c n i σ 2 + c2 2cµ c +µ 2 c σ 2 c y i +nc 2 (nσc 2 +σ2 )c 2 2c(σc 2 nȳ+σ2 µ c)+ σc 2 yi 2 +σ 2 µ 2 c i σ 2 σc 2 n + c2 2cµ c +µ 2 c σ 2 c n nσc 2 y n i 2 2cȳ+c 2 +σ 2 (c 2 2cµ c +µ 2 c ) i σ 2 σc 2 n σ c 2 y ( c 2 σ 2 2c c nȳ+σ 2 ) i 2 +σ 2 µ 2 c µc nσ c 2+σ2 + i nσ c 2 +σ2 σ 2 σc 2 nσc 2+σ2 (2) Ekonometria Bayesowska 8 / 24
9 G sto± a posteriori G sto± a posteriori (3) ( c 2 σ 2 2c c nȳ+σ 2 ) µc nσ c 2+σ2 + ( σ 2 c nȳ+σ 2 µc nσ c 2+σ2 ) 2 ( σ 2 c nȳ + σ 2 µ c nσ 2 c + σ 2 ) 2 + σc 2 i n yi 2 + σ 2 µ 2 c nσc 2 + σ 2... ( c σ2 c nȳ+σ2 ) 2 µc nσc 2+σ2 +B σ 2 c + n σ 2 } {{ } B σ 2 c + n σ 2 (2) Ekonometria Bayesowska 9 / 24
10 G sto± a posteriori G sto± a posteriori (4) f (c y) A (σ 2π) n ( c σ2 c nȳ+σ2 ) 2 µc nσc 2 2 +σ2 +B σ σ c 2π e c 2 + n σ 2 B(nσ 2 c +σ2 ) ( ) A n e σ 2π σ c 2π 2σ 2 σc 2 e } {{ } sta la niezależna od c c Rozkªad a posteriori to równie» rozkªad normalny. w.o. rozk ladu N {}}{ σc 2 nȳ + σ 2 µ c nσc 2 + σ 2 2 σc 2 + n σ 2 }{{} wariancja rozk ladu N 2 (2) Ekonometria Bayesowska 0 / 24
11 G sto± a posteriori G sto± a posteriori (5) µ c σ2 c nȳ+σ2 µ c nσ 2 c +σ 2 nσ2 c nσ 2 c +σ 2 ȳ + σ2 nσ 2 c +σ 2 µ c Warto± oczekiwana a posteriori to ±rednia wa»ona warto±ci oczekiwanej a priori i ±redniej z próby. σ 2 c σ 2 c Waga ±redniej z próby ro±nie wraz z wielko±ci próby i z wariancj a priori. Waga ±redniej a priori ro±nie wraz z wariancj danych. + n σ 2 Wariancja a posteriori: ro±nie wraz z wariancj a priori i wariancj danych; maleje wraz z wielko±ci próby. (2) Ekonometria Bayesowska / 24
12 Plan prezentacji Model ze staª 2 Podstawy j zyka R 3 Bayesowska analiza modelu ze staª (2) Ekonometria Bayesowska 2 / 24
13 Potrzebne pakiety R Do analiz bayesowskich b dziemy wykorzystywa program R. Potrzebna nam b dzie równie» aplikacja interfejsu R Studio. Na razie, oprócz bazowych pakietów R, b dzie korzysta z manipulate ten pakiet pozwala tworzy interaktywne wykresy (pozwalaj ce efektywnie ±ledzi zmiany rozkªadów a posteriori przy zmianach parametrów a priori). W przyszªo±ci przydadz nam si równie» m.in.: R.utils pomocniczo rjags, R2jags, MCMCpack, R2WinBUGS pakiety zawieraj ce próbniki numeryczne (gdy nie b dziemy potrali analitycznie caªkowa rozkªadów) JAGS wymaga osobnego instalatora (do pobrania tutaj) (2) Ekonometria Bayesowska 3 / 24
14 Potrzebne pakiety Instalacja i ªadowanie pakietów Aby zainstalowa pakiet manipulate: install.packages("manipulate") Aby wprowadzi go do pami ci i bie» cego u»ytku: library(manipulate) Wygodnie jest te» ustali folder sieciowy w domu dowolnie, na zaj ciach najlepiej na przeno±nym dysku lub wªasnej przestrzeni na dysku sieciowym, na przykªad: setwd("c:/ekonometria_bayesowska/wyklad02") (2) Ekonometria Bayesowska 4 / 24
15 Zadanie Co chcemy zrobi? Przekonajmy si, jak b dzie wygl da rozkªad a posteriori c w omawianym przykªadzie. Wiemy,»e σ 2. Powiedzmy te»,»e nasz wiedz a priori o c opiszemy rozkªadem normalnym: µ c 0 σ 2 c 0, 3 W praktyce mieliby±my do dyspozycji wektor danych y [ y y 2... y n ] T. W naszym przypadku wyznaczymy go symulacyjnie, ustalaj c c, n i losuj c ε,..., ε n i.i.d. N(0, σ 2 ). Przyjmijmy wi c prawdziwe c 0, 5 (zauwa»my,»e to inna warto± ni» ±rednia a priori - a wi c nasza wiedza a priori jest znieksztaªcona) oraz n 20. (2) Ekonometria Bayesowska 5 / 24
16 Potrzebne polecenia Generujemy skalar lub wektor Generujemy skalar o zadanej warto±ci: c_true <- 0.5 Generujemy wektor: o znanych warto±ciach, 2, 3: uc(, 2, 3) o jednej warto±ci, np. siedem zer: vrep(0, 7) ci g arytmetyczny o za c <- seq(from -.5, to.5, by 0.0) Sprawdzamy w pomocy, jak dziaªa polecenie:?seq (2) Ekonometria Bayesowska 6 / 24
17 Potrzebne polecenia Funkcje g sto±ci rozkªadów Wektor n liczb losowych z rozkªadu normalnego o ±redniej A i odchyleniu standardowym B: y <- rnorm(n, mean A, sd B) Warto± g sto±ci dla liczby x z rozkªadu normalnego o ±redniej A i odchyleniu standardowym B: v <- dnorm(x, mean A, sd B) Na podobnej zasadzie posªugiwali±my si poprzednio poleceniami rbeta i dbeta. (2) Ekonometria Bayesowska 7 / 24
18 Potrzebne polecenia Wykresy plot tworzy wykres liniowy lub punktowy lines dodaje do ostatnio utworzonego wykresu dodatkow lini polygon dodaje wykres powierzchniowy abline dodaje prost lini text dodaje pole tekstowe legend dodaje legend Szczegóªy w kodzie. (2) Ekonometria Bayesowska 8 / 24
19 Potrzebne polecenia Wykresy interaktywne manipulate ( {plot(x,y,...)...} #Polecenia tworz ce wykres y <- f(x,a) #Polecenia przetwarzaj ce parametry a <- slider(od, do, step..., initial...) #Parametry ) (2) Ekonometria Bayesowska 9 / 24
20 Potrzebne polecenia Zapisywanie wykresów do pliku png(file "tytul.png", width..., height..., res...) manipulate (......) dev.off() (2) Ekonometria Bayesowska 20 / 24
21 Plan prezentacji Model ze staª 2 Podstawy j zyka R 3 Bayesowska analiza modelu ze staª (2) Ekonometria Bayesowska 2 / 24
22 Model ze staª Rozkªad a priori (2) Ekonometria Bayesowska 22 / 24
23 Model ze staª Rozkªad a posteriori (2) Ekonometria Bayesowska 23 / 24
24 Model ze staª Pytania Co si dzieje przy zmianie ±redniej a priori dla c? 2 Co si dzieje przy wzro±cie wariancji a priori dla c? 3 Co si dzieje przy wzro±cie σ 2? 4 Co si dzieje przy wzro±cie n? (2) Ekonometria Bayesowska 24 / 24
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych
Biostatystyka, # 5 /Weterynaria I/
Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria
Biostatystyka, # 4 /Weterynaria I/
Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 10: Symulacje a posteriori w R (10) Ekonometria Bayesowska 1 / 23 Plan wykªadu 1 Przykªad: model ze skªadnikiem losowym o grubych ogonach 2 Wykorzystanie pakietu rjags 3 Diagnostyka
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 8: Restrykcje na parametry w postaci nierówno±ci: analiza bayesowska (8) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Restrykcje nierówno±ciowe: podej±cie klasyczne a bayesowskie
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 10: Symulacje a posteriori w R Andrzej Torój 1 / 23 Plan wykªadu 1 Przykªad: model ze skªadnikiem losowym o grubych ogonach 2 3 4 2 / 23 Plan prezentacji 1 Przykªad: model
Metody probablistyczne i statystyka stosowana
Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Modele wielorównaniowe. Problem identykacji
Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje
Statystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Modele wielorównaniowe. Estymacja parametrów
Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 5: Narz dzia wnioskowania w ekonometrii bayesowskiej (5) Ekonometria Bayesowska 1 / 8 Plan wykªadu 1 Przedziaªy ufno±ci HPDI Werykacja hipotez podej±cie bayesowskie 3 Werykacja
CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski
III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych
Ekonometria - wykªad 1
Ekonometria - wykªad 1 0. Wprowadzenie Barbara Jasiulis-Goªdyn 28.02.2014 2013/2014 Ekonometria Literatura [1] B. Borkowski, H. Dudek, W. Szczesny, Ekonometria. Wybrane Zaganienia, PWN, Warszawa 2003.
Ekonometria bayesowska: szybki start
Ekonometria bayesowska: szybki start Wprowadzenie do reguª wnioskowania i oblicze«w R SKN Ekonometrii 12.12.2016 r. Andrzej Torój 1 / 23 Plan wykªadu 1 Podstawowe zasady wnioskowania bayesowskiego 2 3
MODELE LINIOWE i MIESZANE
MODELE LINIOWE i MIESZANE WYKŠAD 5 13 kwiecie«2018 1 / 48 Plan wykªadu 1. Metody Monte Carlo we wnioskowaniu statystycznym 2. Pakiet R 2 / 48 Metody Monte Carlo we wnioskowaniu statystycznym 3 / 48 Zaªó»my,»e
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13
Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for
Wykªad 6: Model logitowy
Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3
Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja
Statystyka opisowa. Wykªad II. Elementy statystyki opisowej. Edward Kozªowski.
Statystyka opisowa. Wykªad II. e-mail:e.kozlovski@pollub.pl Spis tre±ci Mediana i moda 1 Mediana i moda 2 3 4 Mediana i moda Median m e (warto±ci ±rodkow ) próbki x 1,..., x n nazywamy ±rodkow liczb w
Makroekonomia Zaawansowana
Makroekonomia Zaawansowana wiczenia 1 Stan ustalony i log-linearyzacja MZ 1 / 27 Plan wicze«1 Praca z modelami DSGE 2 Stan ustalony 3 Log-linearyzacja 4 Zadania MZ 2 / 27 Plan prezentacji 1 Praca z modelami
Wst p do ekonometrii II
Wst p do ekonometrii II Wykªad 4: Wprowadzenie do ekonometrii bayesowskiej (4) WdE II 1 / 41 Plan wykªadu 1 Podstawowe zasady wnioskowania bayesowskiego 2 Zastosowania ekonometrii bayesowskiej 3 Metody
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 4 03 listopad 2014 1 / 47 Plan wykªadu 1. Testowanie zaªo»e«o proporcjonalnym hazardzie w modelu Cox'a 2. Wybór zmiennych do modelu Cox'a 3. Meta analiza
Stacjonarne szeregi czasowe
e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa
Metody probabilistyczne
Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia
In»ynierskie zastosowania statystyki wiczenia
Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010
WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo
Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Modele zapisane w przestrzeni stanów
Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy
Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
Elementarna statystyka
Elementarna statystyka Alexander Bendikov 26 marca 2017 Klasyczny model: eksperyment o jednakowo prawdopodobnych wynikach Zaªo»enia: 1 Przestrze«próbek S ma sko«czenie wiele wyników ω 1, ω 2,..., ω n,
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Makroekonomia zaawansowana (1)
Makroekonomia zaawansowana (1) Oprogramowanie: Matlab/Octave, Dynare Plan wicze«1 Pierwsze uruchomienie 2 3 4 Plan prezentacji 1 Pierwsze uruchomienie 2 3 4 Matlab, Octave, Dynare 1 Octave: program do
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany
REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
Ekonometria Przestrzenna
Ekonometria Przestrzenna Wykªad 6: Zªo»one modele regresji przestrzennej (6) Ekonometria Przestrzenna 1 / 21 Plan wykªadu 1 Modele zªo»one 2 Model SARAR 3 Model SDM (Durbina) 4 Model SDEM 5 Zadania (6)
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
Stosowana Analiza Regresji
prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Wst p do ekonometrii II
Wst p do ekonometrii II Wykªad 1: Modele ADL. Analiza COMFAC. Uogólniona MNK (1) WdE II 1 / 36 Plan wykªadu 1 Restrykcje COMFAC w modelach ADL ADL(1,1) ADL(2,2) 2 Uogólniona MNK Idea UMNK Znajdowanie macierzy
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Statystyka w analizie i planowaniu eksperymentu
10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Wzorce projektowe kreacyjne
Wzorce projektowe kreacyjne Krzysztof Ciebiera 14 pa¹dziernika 2005 1 1 Wst p 1.1 Podstawy Opis Ogólny Podstawowe informacje Wzorce kreacyjne sªu» do uabstrakcyjniania procesu tworzenia obiektów. Znaczenie
Ekonometria Przestrzenna
Ekonometria Przestrzenna Wykªad 4: Model autoregresji przestrzennej. Dane GIS: punkty i siatki (4) Ekonometria Przestrzenna 1 / 24 Plan wykªadu 1 Model czystej autoregresji przestrzennej (pure SAR) Specykacja
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Informatyka w selekcji - Wykªad 1
Informatyka w selekcji - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu
5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka
Pakiety statystyczne - Wykªad 8
Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Dynamiczne wªasno±ci algorytmu propagacji przekona«
BP propagacji przekona«4. Interdyscyplinarne Warsztaty Matematyczne Wydziaª Fizyki Politechnika Warszawska B dlewo, 26 maja, 2013 BP 1 2 3 4 5 6 BP Rysunek: Zbiór zmiennych losowych. BP Rysunek: Zbiór
Przekroje Dedekinda 1
Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2
Metoda najmniejszych kwadratów
Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 1: Twierdzenie Bayesa, rozkªad a priori i a posteriori (1) Ekonometria Bayesowska 1 / 35 Plan wykªadu 1 Przykªad UEFA Euro 2016 2 Podstawowe poj cia ekonometrii bayesowskiej
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Makroekonomia Zaawansowana
Makroekonomia Zaawansowana wiczenia 2 Podstawy pracy z Octave/Matlabem MZ 1 / 20 Plan wicze«1 Pierwsze uruchomienie 2 Podstawowe operacje macierzowe w Matlabie/Octave 3 Wy±wietlanie wyników 4 Zadanie MZ
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t
Metody statystyczne w biologii - Wykªad 8 Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Regresja logistyczna 1. Podstawy teoretyczne i przykªady zastosowania
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Dokładne i graniczne rozkłady statystyk z próby
Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Rozwini cia asymptotyczne dla mocy testów przybli»onych
Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) W modelu rezerwy R n = u + n (W 1 + + W n ) wiemy,»e W i s iid o rozkªadzie geometrycznym na 0, 1, 2,...
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Kierunek studiów: Informatyka Profil: Praktyczny
PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść I
PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść I Szkic wykładu 1 Przykład wprowadzajacy 2 Prawo wielkich liczb Bernoulliego i centralne tw. graniczne 3 4 Przykład wprowadzajacy W Polsce różne głosowania odbywaja
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i