1A. Which of the following five units is NOT the same as the other four? A) joule B) erg C) watt D) foot pound E) newton meter
|
|
- Ewa Piątkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 1P. Cząstka startuje ze stanu spoczynku w chwili t=0 i porusza wzdłuż osi x. Jeżeli siła wypadkowa działająca na cząstkę jest wprost proporcjonalna do t 2, gdzie t jest czasem liczonym od chwili początkowej, to jej energia kinetyczna jest proporcjonalna do: A) t 2 B) t 3 C) t 4 D) t 6 E) żadna odpowiedź nie jest prawidłowa 1A. Which of the following five units is NOT the same as the other four? A) joule B) erg C) watt D) foot pound E) newton meter 2P. Dana jest siła 2 2 F = ( y - x )ˆi + 3xy ˆj Praca tej siły po dowolnej drodze zamkniętej: A) wynosi 0 bo siła ta jest zachowawcza B) wynosi 0 bo siła ta nie jest zachowawcza C) jest różna od zera bo siła ta jest centralna D) jest różna od zera bo siła ta jest zachowawcza E) nie może zostać obliczona bez znajomości drogi 2A. Which of the following is not true (U-scalar function, F is a vector function): U ˆ U i ˆ U A) U = + j+ kˆ x y z ˆ i ˆ B) = + j+ kˆ D) U = grad F C) F x y z = grad U E) F = U 1
2 3P. Chłopiec wiosłując chce przepłynąć rzekę w możliwie najkrótszym czasie. Łódka może poruszać się z prędkością 2 m/s względem wod a rzeka płynie z prędkością 1 m/s. Pod jakim kątem θ powinien chłopiec ustawić dziób łodzi w stosunku do brzegu? A) 30 B) 45 C) 60 D) 63 E) 90 3A. A girl wishes to swim across a river to a point directly opposite as shown. She can swim at 2 m/s in still water and the river is flowing at 1 m/s. At what angle θ with respect to the line joining the starting and finishing points should she swim? A) 30 o B) 45 o C) 60 o D) 63 o E) 90 o 4P. Dwa zdarzenia zachodzą w odległości 100 m od siebie w odstępie czasu 0.60 µs w pewnym układzie odniesienia S. Prędkość układu odniesienia S, w którym zdarzenia te zachodzą w tym samym miejscu, liczona względem S, wynosi: A) 0 B) 0.25c C) 0.56c D) 0.8c E) taki układ nie istnieje 4A. Two events occur 100 m apart with an intervening time interval of 0.37 µs. The speed of clock that measures the proper time between the events is: A) 0 D) 0.9c B) 0.45c E) none of the above is true C) 0.56c 2
3 5P. Długość metrowego pręta poruszającego się z prędkością 0.95c w kierunku swojej długości jest mierzona w laboratoryjnym układzie S przez zaznaczenie jednoczesne położenia początku i końca pręta na osi OX tego układu. Zegar spoczywający względem pręta ( w układzie S ) mierzący przedział czasu pomiędzy zaznaczeniem początku i końca pręta wskaże czas: A) 0 B) s C) s D) s E) s 5A. A meter stick moves sideways at 0.95c. According to the measurements taken in the laborator its length is: A) 0 D) 1 m B) m E) 3.1 m C) 0.31 m 6P. Układ odniesienia S' porusza się w kierunku dodatnim osi OX z prędkością 0.6c względem układu odniesienia S. Cząstka porusza się w kierunku dodatnim OX z prędkością 0.4c mierzoną przez obserwatora w S'. Prędkość cząstki mierzona przez obserwatora w S wynosi: A) c/5 B) 5c/19 C) 8c/25 D) 25c/31 E) c 6A. Star S1 is moving away from us at a speed of 0.8c. Star S2 is moving away from us in the opposite direction at a speed of 0.5c. The speed of S1 as measured by an observer on S2 is: A) 0.21c B) 0.5c C) 0.93c D) 1.3c E) 2.17c 3
4 7P. Przyczepa kempingowa o ciężarze 6000 N jest ciągnięta ze stałą prędkością po zamarzniętym jeziorze za pomocą liny naciągniętej poziomo w stosunku do powierzchni jeziora. Współczynnik tarcia kinetycznego wynosi Praca wykonana przez zewnętrzną siłę ciągnącą na drodze 1000 m wynosi: A) 3.1x10 4 J B) 1.5x10 5 J C) 3.0x10 5 J D) 2.9x10 6 J E) 6.0x10 6 J 7A. A crate moves 10 m to the right on a horizontal surface as a woman pulls on it with a 10-N force. Rank the situations shown below according to the work done by her force, least to greatest. A) 1,2,3 B) 2,1,3 C) 2,3,1 D) 1,3,2 E) 3,2,1 8P. Masa jest przyczepiona do końca idealnej sprężyny i przemieszcza się od położenia x i do położenia x f. Położenie równowagi znajduje się w x = 0. Praca wykonana przez sprężynę jest dodatnia jeżeli: A)x i = 2 cm ix f = 4 cm D) x i = 4 cm ix f = 2 cm B)x i = 2 cm ix f = 4 cm E) x i = 2 cm ix f = 4 cm C)x i = 2 cm ix f = 4 cm 8A. A Boston Red Sox baseball player catches a ball of mass m that is moving toward him with speed v. While bringing the ball to rest, his hand moves back a distance d. Assuming constant deceleration, the horizontal force exerted on the ball by his hand is: A) mv/d B) mvd C) mv 2 /d D) 2mv/d E) mv 2 /(2d) 4
5 9P. Nić na rysunku ma 50 cm długości. Kiedy początkowo spoczywająca kulka zostaje zwolniona porusza się ruchem wahadłowym wzdłuż łuku zaznaczonego na rysunku linią przerywaną. Jaka jest prędkość kulki w najniższym punkcie toru? A) 2.0 m/s B) 2.2 m/s C) 3.1 m/s D) 4.4 m/s E) 6.0 m/s 9A. A 0.50-kg block attached to an ideal spring with a spring constant of 80 N/m oscillates on a horizontal frictionless surface. The total mechanical energy is 0.12 J. The greatest speed of the block is A) 0.15 m/s B) 0.24 m/s C) 0.48 m/s D) 0.69 m/s E) 1.46 m/s 10P. Energia potencjalna ciała o masie m dana jest wzorem:u= mgx + 1/2kx 2. Odpowiadająca tej energii siła wynosi: A) mgx 2 /2 + kx 3 /6 D)mg kx B) mg + kx C)mgx 2 /2 kx 3 /6 E) mg +kx/2 10A. The potential energy for the interaction between the two atoms in a diatomic molecule is U = A/x 12 B/x 6, where A and B are constants and x is the interatomic distance. The magnitude of the force one atom exerts on the other is: A) 12A/ x 13 6B/ x 7 B) 72A/ x 12 72B/ x 6 C) 13A/ x B/ x 7 D) A/ x 13 B/ x 7 E) 11A/ x B/ x 5 5
PRACA I ENERGIA ENERGIA A PRACA
PRACA I ENERGIA 1 ENERGIA A PRACA Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia kinetyczna jest związana ze stanem ruchu ciała. Praca jest
Przedmiot: Fizyka PRACA I ENERGIA. Wykład 5, 2016/2017 1
PRACA I ENERGIA 1 ENERGIA A PRACA Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia kinetyczna jest związana ze stanem ruchu ciała. Praca jest
Praca w języku potocznym
Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy
KINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 2 2012/2013, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 2 2012/2013, zima 2 1 Y RUCH KRZYWOLINIOWY P XY - Układ odniesienia r y - wektor
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
KINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 3 2016/2017, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 3 2016/2017, zima 2 Y r RUCH KRZYWOLINIOWY P r OP y XY - Układ odniesienia - wektor
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
DYNAMIKA ZADANIA. Zadanie DYN1
DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie
ZASADY ZALICZANIA PRZEDMIOTU:
WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima
3. Zadanie nr 21 z rozdziału 7. książki HRW
Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu
1 WEKTORY, KINEMATYKA
Włodzimierz Wolczyński 1 WEKTORY, KINEMATYKA Wektory, działania: Mamy bazę wektorów o różnych jednostkach długości a=3 b=2 c=4 d=4 e=2 f=3 W wyniku mnożenia wektora przez liczbę otrzymujemy wektor o zwrocie:
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
Wykład 5: Praca i Energia. Matematyka Stosowana
Wykład 5: Praca i Energia Matematyka Stosowana Praca w codziennym życiu Czynności w codziennym życiu: Podnosisz pudło z książkami Popychasz zepsute auto Co dokładnie robisz? Działasz z pewną siłą Ciało
(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.
1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv
Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Odp.: F e /F g = 1 2,
Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego
TRANFORMACJA GALILEUSZA I LORENTZA
TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2005 Pomiar napięcia przemiennego Cel ćwiczenia Celem ćwiczenia jest zbadanie dokładności woltomierza cyfrowego dla
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Zakład Dydaktyki Fizyki UMK
Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.
Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0
Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje
4. Jeżeli obiekt waży 1 kg i porusza się z prędkością 1 m/s, to jaka jest jego energia kinetyczna? A. ½ B. 1 C. 2 D. 2
ENERGIA I JEJ PRZEMIANY czas testu minut, nie piszemy po teście, właściwą odpowiedź wpisujemy na kartę odpowiedzi, tylko jedno rozwiązanie jest prawidłowe najpierw wykonaj zadania nieobliczeniowe Trzymamy
Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.
Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Ruch drgający i falowy
Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom.
. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających i N N w funkcji ciepła Q dostarczonego gazom. N N T I gaz II gaz Molowe ciepła właściwe tych gazów spełniają zależność: A),
Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH. Etap III 10 marca 2008 r.
NUMER KODOWY Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH Etap III 10 marca 2008 r. Drogi uczestniku Konkursu Gratulacje! Przeszedłeś przez
Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM
Rodzaj obliczeń Data Nazwa klienta Ref Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/2007 10:53:55 PM Rodzaj obciążenia, parametry pracy Calculation Units SI Units (N, mm, kw...)
v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt PYTANIA ZAMKNIĘTE Jeśli energia kinetyczna
Fizyka 5. Janusz Andrzejewski
Fizyka 5 Przykład R y F s x F n mg W kierunku osi Y: W kierunku osi X: m*0=r-f n m*a=f s F s =mgsinα F n =mgcosα Dynamiczne równania ruchu Interesujące jest tylko rozpatrywanie ruchu w kierunku osi X a=gsin
Kto wykonał większą pracę?
Energia, Praca, Moc Kto wykonał większą pracę? Andiej Czemerkin 1996 r Igrzyska Olimpijskie Rekord : m 60 kg H m Paul Anderson 1957 r Q 7900 N m 3000 kg Energia kinetyczna Energia związana ze stanem ruchu
Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0
lectromagnetism lectromagnetic interaction is one of four fundamental interactions in Nature. lectromagnetism is the theory of electromagnetic interactions or of electromagnetic forces. lectric charge
Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2
Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy
Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
Szczególna teoria względności
Szczególna teoria względności Rakieta zbliża się do Ziemi z prędkością v i wysyła sygnały świetlne (ogólnie w postaci fali EM). Z jaką prędkością sygnały te docierają do Ziemi? 1. Jeżeli światło porusza
2.3. Pierwsza zasada dynamiki Newtona
Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"
Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)
Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
Fizyka 4. Janusz Andrzejewski
Fizyka 4 Ruch jednostajny po okręgu 2 Ruch jednostajny po okręgu Ruch cząstki jest ruchem jednostajnym po okręgu jeśli porusza się ona po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej.
SG-MICRO... SPRĘŻYNY GAZOWE P.103
SG-MICRO... SG-MICRO 19 SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 32 SG-MICRO 32H SG-MICRO 32R SG-MICRO SG-MICRO H SG-MICRO R SG-MICRO 45 SG-MICRO SG-MICRO SG-MICRO 75 SG-MICRO 95 SG-MICRO 0 cylindra body
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
ZADANIA DLA CHĘTNYCH na 6 (seria II) KLASA III
ZADANIA DLA CHĘTNYCH na 6 (seria I) KLASA III Ciało rusza miejsca z przyspieszeniem 1[m/s 2 ]. Oblicz drogę przebytą przez to ciało w 5 sekundzie ruchu. Oblicz drogę przebytą przez to ciało w ciągu 6 sekund.
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Lista zadań nr 5 Ruch po okręgu (1h)
Lista zadań nr 5 Ruch po okręgu (1h) Pseudo siły ruch po okręgu Zad. 5.1 Na cząstkę o masie 2 kg znajdującą się w punkcie R=5i+7j działa siła F=3i+4j. Wyznacz moment siły względem początku układu współrzędnych.
OCENIANIE ARKUSZA POZIOM ROZSZERZONY INFORMACJE DLA OCENIAJACYCH
Próbny egzamin maturalny z fizyki i astronomii OCENIANIE ARKUSZA POZIOM ROZSZERZONY INFORMACJE DLA OCENIAJACYCH. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów
Podstawy fizyki wykład 9
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE REJONOWE
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE
Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa
Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
III Powiatowy konkurs szkół ponadgimnazjalnych z fizyki finał
Zduńska Wola, 2012.03.28 Stowarzyszenie Nauczycieli Łódzkiej III Powiatowy konkurs szkół ponadgimnazjalnych z fizyki finał od ucznia XXX Pesel ucznia Instrukcja dla uczestnika konkursu 1. Etap finałowy
Test powtórzeniowy nr 1
Test powtórzeniowy nr 1 Grupa C... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność
Elektrostatyka, część pierwsza
Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.
Odpowietrznik / Vent Charakterystyka pracy / Performance characteristic: Wykres ciœnienia wyjœciowego p2 w funkcji ciœnienia steruj¹cego p4 Diagram -
Zawór hamowania przyczepy 45 10 Trailer control valve Przeznaczenie: Zawór steruj¹cy przyczepy stosowany jest w jednoprzewodowych i kombinowanych powietrznych uk³adach hamulcowych pojazdów samochodowych
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty
Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze
Informatyka Studia niestacjonarne Fizyka 1.1B
Informatyka Studia niestacjonarne Fizyka 1.1B Listy zadań I. Praca i moc ruch postępowy/ruch obrotowy. Twierdzenie o równoważności pracy i energii kinetycznej 1.Ojciec, goniący syna, ma energię kinetyczną
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)
36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY
36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Drgania Fale Akustyka Optyka geometryczna POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
SPRAWDZIAN NR 1. gruntu energia potencjalna kulki jest równa zero. Zakładamy, że podczas spadku na kulkę nie działają opory ruchu.
SRAWDZIAN NR 1 MAŁGORZATA SZYMAŃSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Z wysokości 2 m nad powierzchnią gruntu puszczono swobodnie metalową kulkę. Na poziomie gruntu energia potencjalna kulki jest równa
III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?
III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor
Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor (na podstawie J.Giergiel, L.Głuch, A.Łopata: Zbiór zadań z mechaniki.wydawnictwo AGH, Kraków 2011r.) Temat
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Energia mechaniczna 2012/2012
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Siła