zna wykresy i własności niektórych funkcji, np. y = x, y =
|
|
- Krystian Walczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek 1. Funkcja i jej własności. 2 zna pojęcie funkcji i różne sposoby opisywania funkcji (graf, wzór, tabela, wykres, opis słowny) potrafi odróżnić przyporządkowanie, które jest funkcją, od przyporządkowania, które funkcją nie jest zna takie pojęcia, jak: dziedzina, zbiór wartości, miejsce zerowe funkcji liczbowej umie wskazać wykres funkcji liczbowej wyznacza dziedzinę funkcji liczbowej oraz w nieskomplikowanych przykładach określa zbiór wartości funkcji oblicza ze wzoru funkcji jej wartość dla danego argumentu oblicza argument funkcji, gdy dana jest wartość funkcji dla tego argumentu oblicza miejsca zerowe funkcji zna pojęcie monotoniczności funkcji zna pojęcie różnowartościowości funkcji określa na podstawie wykresu, czy dana funkcja jest różnowartościowa na podstawie wykresu określa monotoniczność funkcji liczbowej zna wykresy i własności niektórych funkcji, np. y = x, y = x 1, y = x 2, y = x 3, y = x 3 potrafi sporządzić wykres funkcji spełniającej podane warunki 4 potrafi odczytywać i interpretować informacje na podstawie wykresów funkcji, dotyczące różnych zjawisk, np. przyrodniczych, ekonomicznych, socjologicznych, fizycznych, chemicznych przetwarza informacje wyrażone w postaci wzoru funkcji lub wykresu funkcji 5 podaje opis matematyczny zależności dwóch zmiennych w postaci funkcji 2. Przekształcenia wykresu funkcji. 2 zna pojęcie wektora w układzie współrzędnych umie dodawać i odejmować wektory oraz mnożyć wektor przez liczbę potrafi obliczyć współrzędne wektora i długość wektora zna pojęcie wektorów przeciwnych zna pojęcie przesunięcia równoległego zna pojęcie symetrii osiowej i środkowej na podstawie wykresu funkcji y = f(x) potrafi naszkicować wykres funkcji y = f(x + a); na podstawie wykresu funkcji y = f(x) potrafi naszkicować wykres funkcji y = f(x) + b; na podstawie wykresu funkcji y = f(x) potrafi naszkicować wykres funkcji y = f (x + a) + b na podstawie wykresu funkcji y = f(x) potrafi naszkicować wykres funkcji y = f(x) na podstawie wykresu funkcji y = f(x) potrafi naszkicować wykres funkcji y = f( x); na podstawie wykresu funkcji y = f(x) potrafi naszkicować wykres funkcji y = f( x) 3 stosuje pojęcie wektorów równych i przeciwnych w rozwiązywaniu zadań 4 poprawnie ustala kolejność przekształceń, aby na podstawie wykresu funkcji y = f(x) naszkicować wykres funkcji, np. g(x) = f(x) rozwiązuje równania i nierówności z wykorzystaniem wykresów funkcji
2 3. Funkcja liniowa. 2 zna definicję proporcjonalności prostej, definicję funkcji liniowej zna znaczenie współczynników we wzorze funkcji liniowej potrafi wskazać wielkości wprost proporcjonalne oraz określić współczynnik proporcjonalności zna własności funkcji liniowej i potrafi szkicować wykres funkcji liniowej o zadanych własnościach potrafi wyznaczać miejsce zerowe funkcji liniowej znajduje wzór funkcji liniowej, której wykres jest równoległy lub prostopadły do wykresu danej funkcji liniowej sporządza wykres funkcji liniowej i odczytuje własności funkcji na podstawie jej wykresu potrafi znaleźć wzór funkcji liniowej o zadanych własnościach zna określenie równania pierwszego stopnia z dwiema niewiadomymi i rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi 3 stosuje proporcjonalność prostą w rozwiązywaniu zadań potrafi naszkicować wykres równania pierwszego stopnia z dwiema niewiadomymi 4 wykorzystuje interpretację współczynników występujących we wzorze funkcji liniowej w rozwiązywaniu zadań potrafi rozwiązywać zadania tekstowe prowadzące do układów równań liniowych 5 wykorzystuje poznane własności funkcji liniowej do rozwiązywania zadań na dowodzenie sprawnie posługuje się symboliką matematyczną 4. Funkcja kwadratowa. 2 zna i potrafi sformułować definicję funkcji kwadratowej odróżnia wzór funkcji kwadratowej od wzorów innych funkcji rysuje wykres funkcji kwadratowej i bada jej własności na podstawie wykresu przekształca wykresy funkcji kwadratowych pisze wzór funkcji kwadratowej o zadanych własnościach wyznacza współrzędne wierzchołka paraboli i wzór funkcji kwadratowej w postaci kanonicznej wyznacza miejsca zerowe funkcji kwadratowej i wzór funkcji kwadratowej w postaci iloczynowej sprawnie zamienia jedną postać funkcji kwadratowej na drugą (postać kanoniczna, iloczynowa i ogólna) interpretuje informacje występujące we wzorze funkcji kwadratowej w postaci kanonicznej, ogólnej i postaci iloczynowej (o ile istnieje) sprawnie rozwiązuje równania i nierówności kwadratowe wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym 3 rozwiązuje zadania tekstowe prowadzące do równań kwadratowych analizuje zjawisko z życia codziennego opisane wzorem (wykresem) funkcji kwadratowej 4 potrafi w zadaniach optymalizacyjnych zapisać warunek początkowy zadania, funkcję celu i przekształcić ją do funkcji jednej zmiennej potrafi opisać dane zjawisko za pomocą wzoru funkcji kwadratowej rozwiązuje zadania prowadzących do nierówności kwadratowych 5 rozwiązuje zadania optymalizacyjne z wykorzystaniem własności funkcji kwadratowej rozwiązuje układy równań prowadzące do równań kwadratowych 5. Geometria płaska czworokąty. Pole czworokąta. Ocena Uczeń
3 2 zna podział czworokątów, własności deltoidu, twierdzenia opisujące własności trapezów, własności równoległoboków, własności wielokątów (w tym wielokątów foremnych) zna pojęcie podobieństwa i jego własności wie jakie cechy mają czworokąty podobne oraz zna twierdzenie dotyczące figur podobnych zna wzory na pole czworokąta stosuje poznane wzory do obliczania pól wielokątów stosuje poznane własności i funkcje trygonometryczne kąta ostrego w rozwiązywaniu zadań geometrycznych dotyczących czworokątów zna i stosuje twierdzenie o okręgu wpisanym w czworokąt do rozwiązywania czworokątów 3 posługuje się własnościami czworokątów w rozwiązywaniu zadań (w tym, w przypadku okręgu opisanego na czworokącie i wpisanego w czworokąt) stosuje funkcje trygonometryczne kąta rozwartego w rozwiązywaniu zadań geometrycznych dotyczących czworokątów zna i posługuje się twierdzeniem dotyczącym okręgu opisanego na czworokącie do rozwiązywania czworokątów 4 stosuje twierdzenie dotyczące pól figur podobnych, w tym również umieszczonych w kontekście praktycznym (np. dotyczących planu, mapy, skali mapy) 5 wykorzystuje poznane własności czworokątów do rozwiązywania zadań na dowodzenie sprawnie posługuje się symboliką matematyczną 6. Wielomiany. 2 zna pojęcia: jednomian, wielomian jednej zmiennej rzeczywistej x potrafi rozpoznać wielomian, jednomian oraz wskazać jednomiany podobne określa stopnie wielomianów jednej zmiennej potrafi dodawać, odejmować mnożyć i dzielić wielomiany porządkuje wielomiany i oblicza wartości wielomianu dla danej wartości zmiennej sprawdza, czy dana liczba jest pierwiastkiem wielomianu zna Twierdzenia Bézouta i stosuje je do znajdowania pierwiastków wielomianu znajduje pierwiastki wielomianu zapisanego w postaci iloczynu czynników liniowych i kwadratowych ustala krotność pierwiastka wielomianu danego w postaci iloczynowej potrafi rozłożyć wielomian na czynniki znanymi metodami sprawnie rozwiązuje równania wielomianowe potrafi rysować przebieg (wykres) znaku wielomianu o danej postaci iloczynowej rozwiązuje nierówności wielomianowe z wykorzystaniem wykresu znaku oblicza resztę z dzielenia wielomianu W(x) przez dwumian (x - p) 3 wyznacza wartości parametrów tak, aby dwa wielomiany były równe 4 zna i stosuje twierdzenie o pierwiastkach całkowitych wielomianu rozwiązuje zadania tekstowe prowadzące do równań wielomianowych 5 zna i stosuje twierdzenie o pierwiastkach wymiernych wielomianu rozwiązuje różne zadania z zastosowaniem wiadomości o wielomianach 7. Ułamki algebraiczne. Równania wymierne. 2 zna określenie ułamka algebraicznego wyznacza dziedzinę ułamka algebraicznego potrafi skracać, rozszerzać, dodawać, odejmować, mnożyć i dzielić ułamki algebraiczne odróżnia na podstawie wzoru proporcjonalność odwrotną od innej funkcji wyznacza dziedzinę funkcji wymiernej podaje przykłady proporcjonalności odwrotnej rysuje wykresy funkcji homograficznych i na ich podstawie opisuje własności funkcji określa własności funkcji homograficznej na podstawie jej wzoru oblicza wartości danej funkcji homograficznej dla danego argumentu
4 oblicza miejsca zerowe funkcji homograficznej mając dany wykres funkcji rozwiązuje równania i nierówności homograficzne rozwiązuje równania wymierne prowadzące do równań liniowych lub kwadratowych 3 rozwiązuje zadania tekstowe prowadzące do równań wymiernych przekształca wzór do postaci dla danych wartości k, p, q i odwrotnie 4 rozwiązuje nierówności z funkcją wymierną i stosuje je do rozwiązywania zadań 5 rozwiązuje zadania tekstowe prowadzące do równań i nierówności wymiernych 8. Ciągi. 2 zna definicję ciągu zna sposoby opisywania ciągów (wzór ogólny, wykres) określa ciąg wzorem ogólnym wyznacza wyrazy ciągu określonego wzorem ogólnym potrafi narysować wykres ciągu i podać własności tego ciągu na podstawie wykresu zna definicję ciągu monotonicznego i umie badać monotoniczność ciągu bada, czy dany ciąg jest ciągiem arytmetycznym potrafi wyznaczyć ciąg arytmetyczny na podstawie wskazanych danych bada, czy dany ciąg jest ciągiem geometrycznym potrafi wyznaczyć ciąg geometryczny na podstawie wskazanych danych wyznacza sumę n początkowych wyrazów ciągu arytmetycznego wyznacza sumę n początkowych wyrazów ciągu geometrycznego 3 rozwiązuje zadania tekstowe z wykorzystaniem własności ciągu arytmetycznego rozwiązuje zadania tekstowe z wykorzystaniem własności ciągu geometrycznego oblicza wartości wyrazu środkowego dla ciągu arytmetycznego (geometrycznego) 4 oblicza odsetki lokat w różnych okresach kapitalizacji ustala oprocentowania lokaty na podstawie informacji o okresach kapitalizacji oraz odsetkach oblicza podatek od zysku z oszczędności na podstawie informacji o stopie procentowej i okresach kapitalizacji odsetek 5 rozwiązuje zadania stosując wzory na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego, również umieszczone w kontekście praktycznym sprawnie stosuje procent prosty i procent składany w zadaniach dotyczących oprocentowania lokat i kredytów Ocenę dopuszczającą otrzymuje uczeń, który spełnia wymagania z zakresu,,2 Ocenę dostateczną otrzymuje uczeń, który spełnia wymagania z zakresu,,2 i,,3 Ocenę dobrą otrzymuje uczeń, który spełnia wymagania z zakresu,,2 i,,3 i,,4 Ocenę bardzo dobrą otrzymuje uczeń, który spełnia wymagania z zakresu,,2 i,,3 i,,4 i,,5 Ocenę celującą otrzymuje uczeń, który spełnia wymagania z zakresu,,2 i,,3 i,,4 i,,5 a ponadto samodzielnie rozwiązuje nietypowe zadania o wysokim stopniu trudności, odkrywa, formułuje i dowodzi twierdzenia, posiada wiadomości i umiejętności wykraczające poza program nauczania, a także uzyskał tytuł finalisty COM, lub tytuł laureata Ogólnopolskiej Olimpiady o diamentowy Indeks AGH. FORMY OCENIANIA Z MATEMATYKI WSKAŹNIKI PROCENTOWE SPRAWDZIANY 40% KARTKÓWKI 25% AKTYWNOŚĆ 10% ZADANIE DOMOWE 15%
5 INNE FORMY np. odpowiedź ustna 10% Wyniki z sesji egzaminacyjnych mają największy wpływ na ocenę półroczną i roczną. PRZELICZNIK OCEN ZE SPRAWDZIANÓW W SKALI PROCENTOWEJ: 0-40% niedostateczny 41-55% dopuszczający 56-69% dostateczny 70-74% + dostateczny 75-84% dobry 85-90% + dobry 91-99% bardzo dobry 100% celujący PRZELICZNIK OCEN Z KARTKÓWEK W SKALI PROCENTOWEJ: 0-40% niedostateczny 41-55% dopuszczający 56-69% dostateczny 70-74% + dostateczny 75-84% dobry 85-90% + dobry % bardzo dobry Uczeń ma prawo zgłosić nieprzygotowanie do lekcji (dwa razy w semestrze). Prawo to nie dotyczy lekcji, na których przewidziane są zapowiedziane wcześniej kartkówki lub sprawdziany. Uczeń może poprawić każdą ocenę niedostateczną. Poprawa odbywa się na zasadach ustalonych z nauczycielem. Uczeń nieobecny na sprawdzianie ma obowiązek napisania go w terminie dwóch tygodni od daty sprawdzianu. Jeżeli podczas sprawdzianu lub kartkówki uczeń pracuje niesamodzielnie, wówczas otrzymuje ocenę niedostateczną bez możliwości poprawy. W przypadku otrzymania oceny niedostatecznej za I semestr, uczeń jest zobowiązany zaliczyć zakres materiału przewidzianego do poprawy. Nauczyciel ustala z uczniem termin oraz formę zaliczenia.
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
1, y = x 2, y = x 3, y= x, y = [x], y = sgn x;
Wymagania edukacyjne dla uczniów klasy II z rozszerzonym programem nauczania matematyki, niezbędne do uzyskania rocznych i śródrocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE rok szkolny 2018/2019 Przedmiot Klasa Nauczyciel uczący Poziom matematyka 3t Zuzanna Durlak rozszerzony 1. Funkcja kwadratowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy
Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych Nauczyciel: mgr Karolina Bębenek z matematyki dla uczniów klasy I LO poziom podstawowy 1. Wprowadzenie do matematyki.
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY I. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO
Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony I Przekształcenia wykresów funkcji Stopień bardzo Wiadomości i umiejętności Uczeń: - zna określenie
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony Funkcje i ich własności. -podać przykład funkcji; -rozpoznać funkcję, wskazać jej dziedzinę i zbiór
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Poznać, zrozumieć Kształcenie w zakresie podstawowym Klasa 1 (4 godziny tygodniowo) Poniżej podajemy umiejętności, jakie powinien
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Wymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Klasa II - zakres podstawowy i rozszerzony
Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Klasa druga. Poziom rozszerzony.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Klasa druga. Poziom rozszerzony. Wymagania ogólne używa języka matematycznego do opisu rozumowania i uzyskanych wyników,
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki poziom podstawowy klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom rozszerzony.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom rozszerzony. Wymagania ogólne Uczeń: używa języka matematycznego do opisu rozumowania
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY
. ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym i rozszerzonym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć
MATEMATYKA KL II LO zakres podstawowy i rozszerzony
MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
W SPOŁECZNYM LICEUM OGÓLNOKSZTAŁCĄCYM SPLOT IMIENIA JANA KARSKIEGO W NOWYM SĄCZU I. Cele edukacyjne: W zakresie rozwoju intelektualnego ucznia:
W SPOŁECZNYM LICEUM OGÓLNOKSZTAŁCĄCYM SPLOT IMIENIA JANA KARSKIEGO W NOWYM SĄCZU I. Cele edukacyjne: W zakresie rozwoju intelektualnego ucznia: wykształcenie umiejętności operowania obiektami abstrakcyjnymi,
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane
Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum
edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
Wymagania podstawowe (ocena dostateczna)
Plan wynikowy z matematyki dla szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy programowej Klasa 1
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Przedmiot Klasa Matematyka (poziom podstawowy) II a lo I. Wymagania ogólne 1. Wykorzystanie i tworzenie informacji. - interpretuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14
z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej
Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania dostosowano do sześciostopniowej skali ocen. I. Liczby rzeczywiste zna cechy
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który