WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych)
|
|
- Maria Szymczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych) Aktywizujące metody nauczania na przykładzie tematu: Dyskusja nad liczbą rozwiązań równania liniowego z wartością bezwzględną i parametrem (metoda drzewa decyzyjnego).
2 Zakres rozszerzony Temat lekcji: Dyskusja nad liczbą rozwiązań równania liniowego z wartością bezwzględną i parametrem. Wprowadzenie Lekcja przeznaczona jest do przeprowadzenia w pierwszej klasie liceum lub technikum realizującej poziom rozszerzony matematyki. Na poprzednich lekcjach uczniowie rozwiązywali równania liniowe z parametrem. Posiadają też umiejętność rozwiązywania metodą algebraiczną równań liniowych z wartością bezwzględną. Potrafią interpretować je graficznie. Celem lekcji jest zapoznanie uczniów z różnymi metodami wyznaczania liczby rozwiązań równania liniowego z wartością bezwzględną i parametrem oraz rozwijanie umiejętności dokonywania wyboru metod, które skutecznie i szybko prowadzą do rozwiązania danego problemu. Czas trwania lekcji dwie jednostki lekcyjne (90 minut). Forma pracy praca w grupach 5 6 osobowych. Metoda pracy drzewo decyzyjne. Metoda ta służy rozwijaniu umiejętności dokonywania wyboru i podejmowania decyzji, z pełną świadomością skutków, które ta decyzja ma przynieść. Materiały pomocnicze - Przygotowanie dla każdej grupy papieru podaniowego w kratkę. - Przygotowanie dla każdej grupy zestawu zadań załącznik nr 1. - Przygotowanie dla każdej grupy schematu drzewa decyzyjnego załącznik nr 2. Materiały pomocnicze przygotowuje nauczyciel.
3 Zamierzona struktura lekcji: Kolejne etapy I faza Proponowany przebieg lekcji Nauczyciel: - informuje uczniów, co będzie przedmiotem zajęć; zapisuje temat na tablicy - dzieli uczniów na 5 6 osobowe grupy - omawia metodę pracy: Czas Umiejętności kształtowane na lekcji Zaangażowanie informuje uczniów, że każda z grup otrzyma zestaw zadań równania liniowe z wartością bezwzględną i parametrem oraz schemat drzewa decyzyjnego podkreśla, że zadaniem każdej grupy będzie znalezienie różnych sposobów na określenie liczby rozwiązań równania liniowego z wartością bezwzględną i parametrem; jednocześnie informuje, że znalezione różne możliwe rozwiązania należy wpisać na dole drzewa drzewo ma tyle gałęzi, ile jest pomysłów na rozwiązanie problemu zaznacza, że każde z możliwych rozwiązań winno być ocenione przez autorów pomysłu należy określić zarówno pozytywne, jak i negatywne skutki każdej możliwości rozwiązania z punktu widzenia stawianych sobie celów i wartości wady i zalety przedstawionej metody należy wypisać na schemacie drzewa informuje, że ostatecznym celem pracy jest podjęcie decyzji, czyli wybranie metody rozwiązania, która szybko i skutecznie prowadzi do rozwiązania problemu decyzję tę uczniowie podejmują grupowo i wpisują na czubku drzewa - rozdaje zestawy zadań oraz schemat drzewa decyzyjnego każdej z grup II faza Uczniowie: Badanie - samodzielnie analizują otrzymane zadania - odnoszą się do wcześniejszych doświadczeń i posiadanych wiadomości - dyskutują nad możliwościami różnych sposobów rozwiązania problemu - podejmują próby różnych możliwych rozwiązań - wymieniają wątpliwości i uwagi 10 minut 15 minut Komunikacja uczeń nauczyciel - współpraca w grupie - dyskutowanie - argumentowanie - zaangażowanie w rozwiązanie problemu Nauczyciel obserwator i słuchacz
4 III faza Uczniowie: - porządkują informacje, które pojawiły się w procesie badania - przystępują do rozwiązania zadań - przedstawiają różne możliwości rozwiązań na papierze podaniowym - oceniają różne sposoby rozwiązań dostrzegając ich wady i zalety - podejmują decyzję o wyborze metody, która z punktu widzenia celów i wartości wydaje się im najlepsza - uzupełniają schemat drzewa decyzyjnego Przekształcanie Nauczyciel: - obserwuje pracę uczniów - odpowiada na pytania - konsultuje się z poszczególnymi grupami IV faza Uczniowie: Prezentacja - przedstawiciele grup prezentują wyniki pracy zespołowej - pozostali uczniowie analizują i porównują sposoby rozwiązania problemu przez inne zespoły - oceniają rezultaty pracy własnej grupy oraz innych zespołów Nauczyciel: - obserwuje sposób prezentacji - w razie potrzeby komentuje efekty pracy poszczególnych grup V faza Uczniowie: Refleksja - dokonują samooceny - uświadamiają sobie czego się nauczyli oraz czemu służyła metoda pracy na lekcji - wyciągają wnioski do dalszej pracy - oceniają przebieg lekcji i osiągnięte rezultaty Nauczyciel bierze czynny udział w dyskusji wyraża własną opinię na temat przebiegu lekcji i zaangażowania uczniów, słucha uwag uczniowskich 30 minut 25 minut 10 minut - porządkowanie informacji - samodzielność w rozwiązywaniu problemów - ocena stosowanych metod rozwiązań - podejmowanie decyzji - planowanie prezentacji wyników - komunikacja uczeń nauczyciel - autoprezentacja - argumentowanie - formułowanie wniosków Pogłębienie świadomości procesu własnego uczenia się
5 Załącznik nr 1 Dane jest równanie z niewiadomą x i parametrem m, x R, m R. Zbadaj liczbę rozwiązań równania ze względu na wartość parametru m: a) x 3 = m, b) x x = m, c) x 1 x = m + 2.
6 Załącznik nr 2
7 Uwagi i spostrzeżenia I. Różne możliwości rozwiązań prezentowane przez uczniów. ad 1) x 3 = m I sposób Korzystając z własności wartości bezwzględnej łatwo zauważyć, że rozważane równanie ma: 0 rozwiązań dla m < 0 bo w 0, w R 1 rozwiązanie dla m = 0 (bo x 3 = 0 x = 3), 2 rozwiązania dla m > 0 (bo x 3 = m, gdzie m > 0 wtedy i tylko wtedy, gdy x 3 = m x 3 = m x = m+3 x = 3 m). II sposób (metoda algebraiczna) Korzystając z definicji wartości bezwzględnej otrzymujemy alternatywę warunków: 3 0 x 3 = m 3 < 0 3 x + 3 = m x = m + 3 < 3 x = 3 m Równanie ma dwa rozwiązania wtedy i tylko wtedy, gdy m m < 3 m 0 m > 0 m > 0. Równanie ma jedno rozwiązanie wtedy i tylko wtedy, gdy (m m 3) (m + 3 < 3 3 m < 3) (m 0 m 0) (m < 0 m > 0) m=0. Równanie nie ma rozwiązań wtedy i tylko wtedy, gdy m + 3 < 3 3 m 3 m <0 m 0 m < 0. Wniosek: Równanie ma: 0 rozwiązań dla m (, 0), 1 rozwiązanie dla m = 0, 2 rozwiązania dla m (0, + ),
8 III sposób (metoda graficzna) Interpretujemy równanie x 3 = m graficznie jako równość dwóch funkcji: f(x) = x 3, x R oraz g(x) = m, x R, m R. Równanie x 3 = m ma tyle rozwiązań, ile punktów wspólnych mają wykresy funkcji f oraz g. Wniosek: Równanie ma: 0 rozwiązań dla m < 0 (wykresy funkcji f oraz g nie mają punktów wspólnych), 1 rozwiązanie dla m = 0 (wykresy mają jeden punkt wspólny), 2 rozwiązania dla m > 0 (wykresy mają dwa punkty wspólne). ad 2) x x = m. I sposób (metoda algebraiczna) Korzystając z definicji wartości bezwzględnej otrzymujemy alternatywę warunków: + 1< < 1 x 1+ x = m x + 1+ x = m 0 x = m < 1 m 1 0 x = m + 1 x = 2 Rozważmy pierwszy człon alternatywy. 1 2x + 1 = m Równanie 0 x=m+1 jest tożsamościowe dla m= 1, natomiast sprzeczne dla m R { 1}. Dziedziną równania jest przedział ( ; 1), zatem możemy wnioskować, że dla m = 1 równanie 0 x = m + 1 ma nieskończenie wiele rozwiązań (każda liczba z przedziału ( ; 1) jest jego rozwiązaniem), zaś dla m 1 nie ma rozwiązań.
9 Rozważmy drugi człon alternatywy. m 1 Równanie 2x + 1 = m ma rozwiązanie w przedziale 1, + ) tylko wtedy, gdy 1, 2 m 1 natomiast nie ma rozwiązań, gdy < 1. Zatem równanie 2x + 1 = m ma jedno rozwiązanie dla 2 m 1 i nie ma rozwiązań dla m < 1. Podsumujmy nasze spostrzeżenia: dla m > 1 równanie 2x + 1 = m ma jedno rozwiązanie, a równanie 0 x=m+1 jest sprzeczne, więc równanie wyjściowe ma jedno rozwiązanie; dla m = 1 równanie 2x + 1 = m ma jedno rozwiązanie, a równanie 0 x=m+1 ma nieskończenie wiele rozwiązań, więc równanie wyjściowe ma nieskończenie wiele rozwiązań; dla m < 1 zarówno równanie 0 x=m+1, jak też równanie 2x + 1 = m jest sprzeczne, więc równanie wyjściowe nie ma rozwiązań. Wniosek: Równanie ma: 0 rozwiązań dla m < 1, 1 rozwiązanie dla m > 1, nieskończenie wiele rozwiązań dla m = 1. II sposób (metoda graficzna) Równanie x x = m traktujemy jako równość dwóch funkcji: 2x + 1 dla x 1 f(x)= x x, czyli f(x)= oraz g(x)=m, m R. 1 dla x < 1
10 Łatwo zauważyć, że równanie ma: 0 rozwiązań dla m < 1, 1 rozwiązanie dla m > 1, nieskończenie wiele rozwiązań dla m = 1. ad 3) x 1 x = m + 2. I sposób (metoda graficzna) Traktujemy równanie jako równość dwóch funkcji: 1 dla x ( ; 0) f(x)= x 1 x, czyli f(x)= 2x + 1 dla x 0;1) oraz g(x) = m + 2, m R. 1 dla x 1; + ) Łatwo zauważyć, że rozważane równanie ma: 0 rozwiązań dla m ( ; 3) ( 1; + ), 1 rozwiązanie dla m ( 3; 1), nieskończenie wiele rozwiązań dla m { 3, 1}. II. Analiza błędów uczniowskich Uczniowie chętnie wybierają metodę algebraiczną. Ta metoda wydaje się im skuteczna. Tymczasem popełniają wiele błędów rzeczowych: np. po zastąpieniu równania x 3 = m alternatywą warunków: 3 x = m + 3 < 3 x = 3 m
11 wnioskują, że rozważane równanie ma dwa rozwiązania x = m+3 oraz x = 3 m dla każdej wartości parametru m. Należy więc wyraźnie przypomnieć uczniom o dziedzinie równania i jej wpływie na zbiór rozwiązań; mają duże trudności w połączeniu otrzymanych wyników przy rozważaniu kilku przypadków, szczególnie wówczas, gdy w równaniu występuje więcej niż jeden znak wartości bezwzględnej. Najczęstszym błędem popełnianym przy wyborze metody graficznej jest błędna interpretacja funkcji o wzorze g(x) = m (g(x) = m + 2), x R, m R. Uczniowie utożsamiają tą funkcję z funkcją liniową odpowiednio o wzorze g(x) = x (g(x) = x + 2), x R. III. Uwagi końcowe Lekcja ta ma charakter problemowy. Stawia przed uczniami trudne zadania. Wymaga od nich twórczej postawy, pomysłowości i dużego zaangażowania. Warto taką lekcję przeprowadzić.
12 Przykład opisania drzewa decyzyjnego:
Konspekt lekcji matematyki klasa 4e Liceum Ogólnokształcce
mgr Tomasz Grbski Konspekt lekcji matematyki klasa 4e Liceum Ogólnokształcce Temat: Dyskusja nad liczb rozwiza równania liniowego i kwadratowego z wartoci bezwzgldn i parametrem. Czas trwania: 45 minut.
Scenariusz lekcji matematyki w klasie II LO
Opracowanie: dr Joanna Kandzia Wytyczne dotyczące praktyk studia podyplomowe Dokumenty wymagane do zaliczenia praktyk 1. Karta praktykanta. 2. Dzienniczek praktyk. 3. Jeden konspekt wraz z załącznikami
Wytyczne dotyczące praktyk WMPSNŚ UKSW
Wytyczne dotyczące praktyk WMPSNŚ UKSW Ogólne dla studiów licencjackich i studiów II stopnia matematyki Uwaga!!! Praktyki pedagogiczne nie są podstawą do zaliczenia praktyk zawodowych 1 1. Dziennik praktyk.
Kurs Pedagogiczny. Studia licencjackie - matematyka
Kurs Pedagogiczny Studenci wszystkich kierunków studiów na Wydziale Matematyczno-Przyrodniczym Szkoła Nauk Ścisłych mogą zdobyć dodatkowo przygotowanie do nauczania matematyki w szkole podstawowej (z licencjatem)
Scenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej
Scenariusz zajęć z matematyki w I klasie Liceum Ogólnokształcącego Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Opracowanie: Anna Borawska Czas trwania zajęć: jedna jednostka
Kurs Pedagogiczny. Studia licencjackie - matematyka
Kurs Pedagogiczny Studenci wszystkich kierunków studiów na Wydziale Matematyczno-Przyrodniczym Szkoła Nauk Ścisłych mogą zdobyć dodatkowo przygotowanie do nauczania matematyki w szkole podstawowej (z licencjatem)
Scenariusz lekcji. Opracował: Paweł Słaby
Scenariusz lekcji 1. Informacje wstępne: Klasa: uczniowie szkoły ponadgimnazjalnej, realizujący poziom podstawowy bądź rozszerzony; Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.. Temat
Scenariusz lekcji matematyki: Zastosowanie równań i układów równań do rozwiązywania zadań tekstowych. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Klasa: uczniowie klasy I szkoły ponadgimnazjalnej Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Temat zajęć:. 3. Integracja: międzyprzedmiotowa:
Funkcja rosnąca, malejąca, stała współczynnik kierunkowy
Funkcja rosnąca, malejąca, stała współczynnik kierunkowy 1. Cele lekcji Cel ogólny: Uczeń podaje przykłady funkcji i odczytuje jej własności z wykresów. Cele szczegółowe: Uczeń potrafi: określić monotoniczność
Scenariusz lekcji matematyki w szkole ponadgimnazjalnej. Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej
Scenariusz lekcji matematyki w szkole ponadgimnazjalnej Funkcja kwadratowa niejedno ma imię... Postać iloczynowa funkcji kwadratowej Czas trwania lekcji: jedna jednostka lekcyjna (4ut) Powiązanie z wcześniejszą
Ad maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ DWUGODZINNYCH (2 X 45 MINUT) ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Doskonalenie umiejętności
Scenariusz lekcji matematyki: Podsumowanie wiadomości o wielomianach rozwiązywanie interaktywnego testu. Scenariusz lekcji
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r. Klasa: Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program
SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1
Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1 Rozdział V: Równania i nierówności I stopnia z jedną niewiadomą Temat: Ćwiczenia utrwalające przekształcanie
Pojęcie funkcji i jej podstawowe własności.
Konspekt lekcji matematyki w klasie II gimnazjum Pojęcie funkcji i jej podstawowe własności. Opracowała mgr Iwona Żuk Gimnazjum nr 2 w Świętoniowej I. Umiejscowienie lekcji w jednostce metodycznej: Pojęcie
Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach.
Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach. Opracowała: mgr inż. Monika Grzegorczyk 1. Temat lekcji: Równania pierwszego stopnia z jedną niewiadomą w zadaniach.
Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:
Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania:
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie
Konspekt lekcji matematyki opracowany przez: Jadwigę Murawiecką nauczyciela Szkoły Podstawowej w Chodowie Temat: Obliczanie procentu danej liczby z wykorzystaniem sytuacji praktycznych. Klasa VI szkoły
SCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO
SCENARIUSZ LEKCJI MATEMATYKI PLANOWANEJ DO PRZEPROWADZENIA W KLASIE I LICEUM OGÓLNOKSZTAŁCĄCEGO DZIAŁ: Funkcje TEMAT: Wykres funkcji i miejsca zerowe funkcji w Excelu Odczytywanie własności funkcji z wykresu
SCENARIUSZ ZAJĘĆ W KLASIE III SZKOŁY PODSTAWOWEJ WG PROGRAMU KREATOR
SCENARIUSZ ZAJĘĆ W KLASIE III SZKOŁY PODSTAWOWEJ WG PROGRAMU KREATOR TEMAT ZAJĘĆ : Sławne kobiety w historii Polski. CEL OGÓLNY : Zapoznanie uczniów z sylwetkami sławnych kobiet. CELE OPERACYJNE : - uczeń
Scenariusz lekcyjny Przekształcenie wzorów występujących w matematyce, fizyce, chemii. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA
Scenariusz lekcyjny Zastosowanie układów równań liniowych do rozwiązywania zadań tekstowych. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Ad maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Wyznaczanie równania prostej prostopadłej i prostej
Szczegółowe warunki realizacji projektu edukacyjnego w Publicznym Gimnazjum w Osieku. Informacje ogólne
Szczegółowe warunki realizacji projektu edukacyjnego w Publicznym Gimnazjum w Osieku. Informacje ogólne Uczniowie klas II gimnazjum biorą udział w realizacji projektu edukacyjnego. Udział w projekcie jest
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO W PUBLICZNYM GIMNAZJUM W SUSKOWOLI
Podstawa prawna: REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO W PUBLICZNYM GIMNAZJUM W SUSKOWOLI Ustawa z dnia 7 września 1991 r. o systemie oświaty - Art. 44p.1. (Dz.U. z 2015 r. poz. 2156 z późn. zm.)
WYKRESY FUNKCJI LINIOWEJ
GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie
DZIENNIK ZAJĘĆ POZALEKCYJNYCH
DZIENNIK ZAJĘĆ POZALEKCYJNYCH REALIZOWANYCH W RAMACH PROGRAMU ROZWOJOWEGO SZKOŁY w projekcie Dolnośląska szkoła liderem projakościowych zmian w polskim systemie edukacji Priorytet IX Rozwój wykształcenia
Temat: Ziemia na rozdrożu, czyli czas na działanie!
Autor: Urszula Depczyk Dla kogo: szkoła podstawowa, klasa VI Temat: Ziemia na rozdrożu, czyli czas na działanie! Cele lekcji: Kształcenie umiejętności dostrzegania zagrożeń związanych ze zmianami klimatycznymi
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
ARKUSZ OBSERWACYJNY LEKCJI. Uwagi nauczyciela hospitującego lekcję koleżeńską na temat zajęć:
Temat zajęć: Proporcjonalność odwrotna. Lekcja dla uczniów klasy: II c Data zajęć: 17 marzec 2005r. 1. Przebieg lekcji. Nauczycielka zgodnie z przyjętymi celami wprowadziła pojęcie proporcjonalności odwrotnej,
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Powtórzenie i utrwalenie wiadomości zajęcie zaplanowane na 3 godziny lekcyjne (przyroda + technika) w klasie V szkoły podstawowej
Opracowanie Anna Nowak Blok tematyczny: Człowiek a środowisko Temat: Podstawowe potrzeby życiowe człowieka Powtórzenie i utrwalenie wiadomości zajęcie zaplanowane na 3 godziny lekcyjne (przyroda + technika)
Konspekt lekcji otwartej dla II klasy gimnazjum Temat: Krótki film o przebaczeniu...
Barbara Niemier Konspekt lekcji otwartej dla II klasy gimnazjum Temat: Krótki film o przebaczeniu... Cele ponadprzedmiotowe: efektywne współdziałanie w grupie sprawne komunikowanie się twórcze rozwiązywanie
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: matematyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Funkcje trygonometryczne
Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
RAPORT ZBIORCZY z diagnozy Matematyka PP
RAPORT ZBIORCZY z diagnozy Matematyka PP przeprowadzonej w klasach drugich szkół ponadgimnazjalnych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy przystąpili
PRZEDMIOTOWY SYSTEM OCENIANIA Z GEOGRAFII
PRZEDMIOTOWY SYSTEM OCENIANIA Z GEOGRAFII I. CEL OCENY Przedmiotem oceny jest : 1. Aktualny stan wiedzy ucznia i jego umiejętności 2. Tempo przyrostu wiadomości i umiejętności 3. Stosowanie wiedzy geograficznej
SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Renata Krzemińska. nauczyciel matematyki i informatyki
Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska
Scenariusz lekcji matematyki w klasie pierwszej szkoły ponadgimnazjalnej z wykorzystaniem komputerów.
Jadwiga Żak nauczyciel matematyki w Liceum Ogólnokształcącym im. Piotra Skargi w Grójcu Scenariusz lekcji matematyki w klasie pierwszej szkoły ponadgimnazjalnej z wykorzystaniem komputerów. Temat: Wykresy
PRZEDMIOTOWY SYSTEM OCENIANIA Z BIOLOGII
PRZEDMIOTOWY SYSTEM OCENIANIA Z BIOLOGII I. CEL OCENY Przedmiotem oceny jest : 1. Aktualny stan wiedzy ucznia i jego umiejętności 2. Tempo przyrostu wiadomości i umiejętności 3. Stosowanie wiedzy biologicznej
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Przedmiotowy system oceniania z biologii w szkole podstawowej
Przedmiotowy system oceniania z biologii w szkole podstawowej Przedmiotem oceniania są: wiadomości, umiejętności, postawa ucznia i jego aktywność. Cele ogólne oceniania: rozpoznanie przez nauczyciela poziomu
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
SCENARIUSZ LEKCJI. TEMAT LEKCJI: O czym mówią współczynniki funkcji liniowej? - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI OPRACOWANY w RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE i OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Scenariusz lekcji matematyki w gimnazjum: NIE TAKI EGZAMIN STRASZNY UDOWODNIJ, Z E.
Scenariusz lekcji matematyki w gimnazjum: NIE TAKI EGZAMIN STRASZNY UDOWODNIJ, Z E. Kształtowanie umiejętności rozumowania i argumentowania. Materiały wypracowane na warsztatach: Realizacja wybranych treści
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
KONSPEKT LEKCJI CELE EDUKACYJNE. - kształtuje proces samodzielnego myślenia i uczenia się drogą obserwacji
KONSPEKT LEKCJI Mgr Edyta Korol Gułaj Zespół Szkół Ogólnokształcących nr 5, VII Liceum Ogólnokształcące, Białystok ul. Wierzbowa 7 Temat : Mszaki rośliny ziemno-wodne. Scenariusz lekcji biologii dla klasy
Scenariusz lekcyjny Rozwiązywanie zadań z wykorzystaniem działań na logarytmach. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY Przedmiotem oceny są: 1. Wiadomości: Uczeń: a) zapamięta: pojęcia, fakty, zjawiska, określenia; b) rozumie: pojęcia, istotę faktów, zjawisk, zależności zachodzące
Pojęcie i klasyfikacja podatków
Pojęcie i klasyfikacja podatków 1. Cele lekcji a) Wiadomości Zapoznanie z pojęciem podatku. Charakterystyka poszczególnych podatków bezpośrednich i pośrednich. b) Umiejętności Doskonalenie umiejętności
2. Metoda i forma pracy - Metody: poszukująca, problemowa, aktywizująca ucznia - Formy: praca grupowa, praca indywidualna ucznia
1 I. Scenariusz lekcji: Wykres funkcji liczbowej i jej przekształcenia 1. Cele lekcji a) Wiadomości Uczeń: poznaje różnego rodzaju przekształcenia funkcji liczbowej, zna poszczególne przekształcenia, zna
temat: Romantyczne widzenie świata i człowieka Romantyczność A. Mickiewicza
SCENARIUSZ LEKCJI Proponowana lekcja ma na celu zapoznać uczniów z utworem A. Mickiewicza, jednak przede wszystkim dzięki lekturze ballady mają oni zrozumieć, jakimi kategoriami myśleli romantycy o świecie,
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Sponsorem wydruku schematu odpowiedzi jest wydawnictwo
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
PRZEDMIOTOWY SYSTEM OCENIANIA Z EKONOMII W PRAKTYCE w XIII LO w Białymstoku
PRZEDMIOTOWY SYSTEM OCENIANIA Z EKONOMII W PRAKTYCE w XIII LO w Białymstoku System oceniania jest zgodny z rozporządzeniem MEN z dnia 30.04.2007 r. w sprawie warunków i sposobu oceniania i klasyfikowania
Scenariusz lekcji fizyki Temat: OD CZEGO ZALEŻY SIŁA TARCIA?
Scenariusz lekcji fizyki Temat: OD CZEGO ZALEŻY SIŁA TARCIA? I KLASA- Gimnazjum Towarzystwa Salezjańskiego Studenci Uniwersytetu Szczecińskiego prowadzący lekcje fizyki: Sylwia Tillack, Ewelina Świerczewska
PROGRAM REALIZACJI ZAJĘĆ Z ZAKRESU DORADZTWA ZAWODOWEGO W KLASIE 7 SZKOŁY PODSTAWOWEJ NR 60 IM. W. BOGUSŁAWSKIEGO W POZNANIU
PROGRAM REALIZACJI ZAJĘĆ Z ZAKRESU DORADZTWA ZAWODOWEGO W KLASIE 7 SZKOŁY PODSTAWOWEJ NR 60 IM. W. BOGUSŁAWSKIEGO W POZNANIU mgr Monika Grobelna WPROWADZENIE Zgodnie z art. 292 ust. 1 ustawy z dnia 14
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Metody i techniki pracy: drzewko decyzyjne, praca w grupach, dyskusja.
II. Scenariusz lekcji dla klasy VI opracowany na podstawie książki J. Verne 80 dni dookoła świata: Temat: Czy Fileas Fogg podjął słuszną decyzję? Czas 2 x 45 minut Cele: Uczeń potrafi: zauważyć związek
mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku
Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.
KARTA PROJEKTU EDUKACYJNEGO
KARTA PROJEKTU EDUKACYJNEGO 1.Temat projektu: Dlaczego Lexus/Mercedes/Ferrari (itp.) jest taki drogi? 2. Imię i nazwisko nauczyciela: Silvija M. Teresiak 3. Termin realizacji: maj 2018 r. 4.Czas realizacji:
REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO
REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO w GIMNAZJUM NR 1 IM. JANA KOCHANOWSKIEGO W KOLUSZKACH I. ZASADY REALIZACJI PROJEKTU Uczeń Gimnazjum ma obowiązek zrealizować projekt edukacyjny na podstawie 21a
Scenariusz lekcji matematyki w klasie I gimnazjum wg programu Matematyka 2001
Scenariusz lekcji matematyki w klasie I gimnazjum wg programu Matematyka 2001 TEMAT: Podział czworokątów CEL GŁÓWNY: rozwiązywanie problemów w sposób twórczy, we współpracy z kolegami, skuteczne komunikowanie
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO w PUBLICZNYM GIMNAZJUM IM. HENRYKA SIENKIEWICZA W SOBOLEWIE I. USTALENIA OGÓLNE
REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO w PUBLICZNYM GIMNAZJUM IM. HENRYKA SIENKIEWICZA W SOBOLEWIE I. USTALENIA OGÓLNE 1. Uczeń Gimnazjum ma obowiązek zrealizować projekt edukacyjny na podstawie 21a
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne
Szkoła Podstawowa nr 3 im. Jana Pawła II w Gdańsku. PRZEDMIOTOWY SYSTEM OCENIANIA z HISTORII
Rok szkolny 2018/2019 PRZEDMIOTOWY SYSTEM OCENIANIA z HISTORII I. PODSTAWA PRAWNA: Rozporządzenie Ministra Edukacji Narodowej z dnia 30 kwietnia 2007 r. w sprawie warunków i sposobu oceniania, klasyfikowania
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI. prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI 1. Autor: Anna Wołoszyn prowadzonego w ramach projektu Uczeń OnLine 2. Grupa docelowa: klasa 3 Gimnazjum 3. Liczba godzin: 1 4. Temat zajęć: Wykorzystanie własności
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
w Szkole Podstawowej Nr 2 w Gryfinie 1. Pobudzanie uczniów do systematycznej pracy i rozwoju, wspieranie motywacji.
PRZEDMIOTOWY SYSTEM OCENIANIA z zajęć technicznych kl. IV-VI w Szkole Podstawowej Nr 2 w Gryfinie Cele systemu oceniania 1. Pobudzanie uczniów do systematycznej pracy i rozwoju, wspieranie motywacji. 2.
Szkoła Podstawowa nr 3 im. Jana Pawła II w Gdańsku (Gimnazjum nr 3 im. Jana Pawła II w Gdańsku)
PRZEDMIOTOWY SYSTEM OCENIANIA z WIEDZY O SPOŁECZEŃSTWIE (II i III klasa gimnazjalna Szkoły Podstawowej nr 3) Rok szkolny 2017/2018 I. PODSTAWA PRAWNA: Rozporządzenie Ministra Edukacji Narodowej z dnia
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program nauczania: Matematyka
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Scenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 20 listopad 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
Treści nauczania zgodne z podstawą programową:
DOBRE PRAKTYKI ERASMUS + mgr inż. Waldemar Śramski Lekcja techniki (2x45 min.) Temat: W pokoju nastolatka - planowanie umeblowania i wyposażenia pokoju ucznia. Treści nauczania zgodne z podstawą programową:
ARKUSZ OBSERWACJI ZAJĘĆ cz. I
1. Informacje ogólne: ARKUSZ OBSERWACJI ZAJĘĆ cz. I Imie i nazwisko nauczyciela Data. Przedmiot/rodzaj zajęć. Problematyka 2. Rozmowa wstępna: Temat obserwowanych zajęć Ogólna charakterystyka klasy/grupy
Temat: Programujemy historyjki w języku Scratch tworzymy program i powtarzamy polecenia.
Prowadzący: Dariusz Stefańczyk Szkoła Podstawowa w Kurzeszynie Konspekt lekcji z informatyki w klasie IV Dział programowy: Programowanie. Podstawa programowa 1. Treści nauczania: Rozumienie, analizowanie
KĄTY. Cele operacyjne. Metody nauczania. Materiały. Czas trwania. Struktura i opis lekcji
KĄTY Cele operacyjne Uczeń zna: pojęcie kąta i miary kąta, zależności miarowe między kątami Uczeń umie: konstruować kąty przystające do danych, kreślić geometryczne sumy i różnice kątów, rozróżniać rodzaje
metodą projektu. program nauczania realizowany
mgr Jolanta Bugajska interjola@o2.pl fizyka, technologia informacyjna, Zespół Szkół Ponadgimnazjalnych nr 4 w Nowej Soli program nauczania realizowany metodą projektu. Nowa Sól 2002. 1 Spis treœci 1. Projekt
Regulamin realizacji projektu edukacyjnego w Gimnazjum nr 17 w Zespole Szkół Ogólnokształcących nr 3 w Gliwicach
Regulamin realizacji projektu edukacyjnego w Gimnazjum nr 17 w Zespole Szkół Ogólnokształcących nr 3 w Gliwicach Podstawa prawna: Rozporządzenie Ministra Edukacji Narodowej z dnia 20 sierpnia 2010 r. zmieniające
W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
I etap edukacyjny, uczeń kończący klasę III, edukacja matematyczna
Scenariusz zajęć I etap edukacyjny, uczeń kończący klasę III, edukacja matematyczna Temat: Telefony Treści kształcenia: 8) uczeń wykonuje łatwe obliczenia pieniężne (cena, ilość, wartość) i radzi sobie
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO W GIMNAZJUM
REGULAMIN REALIZACJI PROJEKTU EDUKACYJNEGO W GIMNAZJUM POSTANOWIENIA OGÓLNE 1. Uczeń gimnazjum ma obowiązek realizowania projektów edukacyjnych na podstawie 21a Rozporządzenia Ministra Edukacji Narodowej
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową