dr hab. Dariusz Piwczyński, prof. nadzw. UTP
|
|
- Janusz Rosiński
- 5 lat temu
- Przeglądów:
Transkrypt
1 dr hab., prof. nadzw. UTP
2 HASŁA Z DOMU I MEDIÓW Ucz się a wyrosną z Ciebie ludzie Pij mleko będziesz wielki Każdy wypalony papieros skraca Twoje życie o 5 minut 2
3 WZROST I STOPY 3
4 GRAFICZNA OCENA ZALEŻNOŚCI Możliwe sytuacje: Zależności dodatnie Zależności ujemne 4
5 Temperatura na lędźwiach SZEREG DWUCECHOWY, KONIE BEZPOŚREDNIO PO TRENINGU Temperatura na głowie 5
6 6
7 WYKRES ROZRZUTU, ZALEŻNOŚĆ UJEMNA 7
8 8
9 WYKRES W MS EXCEL 9
10 WYKRES W MS EXCEL Zaznaczamy wskazane pola! Przemieszczamy wskaźnik myszy na jeden z punktów, a następnie z pop-menu wybieramy Dodaj linię trendu 10
11 OSTATECZNY WYNIK 11
12 BADANIE ZALEŻNOŚCI MIĘDZY CECHAMI Analiza korelacji Analiza regresji 12
13 KORELACJE Podstawowe miary zależności między zmiennymi. Współczynnik korelacji jest podstawową, najczęściej stosowaną miarą zależności. Określa on ogólną zależność między badanymi cechami. Najczęściej obliczaną miarą zależności jest współczynnik korelacji prostoliniowej (Pearsona). Stosujemy go do korelowania zmiennych ilościowych ciągłych o rozkładzie zgodnym lub zbliżonym do normalnego. 13
14 WSPÓŁCZYNNIK KORELACJI r xy jest liczbą niemianowaną, przyjmującą wartości od -1 do +1. r xy zbliżony do -1 lub 1 całkowita zależność cech X i Y r xy zbliżony do 0 brak jakiejkolwiek zależności Skala Guillforda 14
15 WSPÓŁCZYNNIK KORELACJI LINIOWEJ Znak korelacji informuje nas o kierunku zależności a wartość bezwzględna o sile zależności r xy = r yx (zależność symetryczna) r xy S S 2 x xy S 2 y lub r xy S x S xy S y 15
16 KOWARIANCJA MIĘDZY CECHAMI (S XY ) Jest to średnia z iloczynów odchyłek każdej pary punktu danych. Należy używać kowariancji w celu określenia zależności pomiędzy dwoma zbiorami danych. Na przykład można sprawdzić, czy większe przychody związane są z wyższym poziomem wykształcenia. S xy x xy n n 1 y 16
17 BADANIE ISTOTNOŚCI WSPÓŁCZYNNIKA KORELACJI Hipoteza zerowa w przypadku badania zależności między cechami posiada następującą postać: H 0 : = 0, zaś alternatywna H 1 : 0 (ro) Istotność korelacji badana jest po to, aby przekonać się czy zależność stwierdzona w próbie będzie miała miejsce również w populacji, z której próba ta pochodzi. 17
18 TESTY ISTOTNOŚCI DLA WSPÓŁCZYNNIKA KORELACJI, N < 122 t r xy n 2 1 r 2 xy Jeżeli t > t ; n-2 to mamy podstawę do odrzucenia H 0. t ; n-2 odczytujemy z tabeli testu t dla poziomu istotności 0,05 i 0,01 oraz dla liczby stopni swobody równej n 2. 18
19 TESTY ISTOTNOŚCI DLA WSPÓŁCZYNNIKA KORELACJI, DUŻE PRÓBY z r xy 1 n r 2 xy Jeżeli z > u to mamy podstawę do odrzucenia H 0. 19
20 20
21 21
22 ROZWIĄZANIE, ŚLIMAK WINNICZEK Długość Szerokość XY muszli (X) muszli (Y) suma 759,50 637, suma kwadratów 25685, ,25 wariancja 27,53 19,20 S xy ,50 637, ,893 r xy 21,893 27,5319,20 0,952 22
23 WERYFIKACJA HIPOTEZY ZEROWEJ t 0, , ,588 t 0,05 2,074 t 0,01 2,819 23
24 24
25 25
26 WSP.KORELACJI() 26
27 27
28 28
29 29
30 30
31 31
32 32
33 WSPÓŁCZYNNIK KORELACJI SPEARMANA (LOKAT) Ten typ korelacji wykorzystujemy do korelowania cech niemierzalnych oraz mierzalnych, ale gdy interesuje nas lokata w próbie. Z tego też względu, muszą istnieć dwa kryteria wg, których możemy uporządkować elementy w próbie. Współczynnik korelacji rang r s Spearmana waha się w przedziale liczbowym od 1 do
34 WSPÓŁCZYNNIK KORELACJI RANG 6 i rs 1 2 n(n n d 1 2 i 1) d i różnica pomiędzy lokatami uzyskanymi przez obiekt w dwóch ocenach n liczba elementów w próbie 34
35 ZADANIE: (ŻUK, BIOMETRIA STOSOWANA) Na wystawie zootechnicznej dwóch sędziów oceniało niezależnie od siebie, pokrój zwierząt i na podstawie tych ocen każdy z sędziów uszeregował stawkę 10 osobników od najlepszego do najgorszego. Sprawdź czy pomiędzy ocenami sędziów istnieje zależność między tymi ocenami? 35
36 DANE ID sędzia 1 sędzia
37 r S = 0,261? Istnieje pewna zależność między ocenami sędziów, lecz nie wiadomo, czy taka zależność wystąpi w populacji (czy przy ocenie dalszych zwierząt przez tych sędziów będzie występować taka zgodność jak w pierwszej ocenie?). Przeprowadzamy wnioskowanie statystyczne, weryfikujemy hipotezę o niezależności uporządkowań. 37
38 ISTOTNOŚĆ Wartości krytyczne odczytujemy dla n=10 i =0,05 i 0,01 (ale tylko do 10 obiektów). Wartość krytyczna równa się 0,64 zatem nie można odrzucić hipotezy zerowej, iż obydwa uporządkowania są niezależne. 38
39 SAS EG 39
40 40
41 41
42 REGRESJA Regresja prostoliniowa ocena wartości jednej cechy na podstawie drugiej. Prognozowanie (predykcja) wartości zmiennej Y na podstawie wartości zmiennej X. 42
43 WSPÓŁCZYNNIK REGRESJI Informuje o ile zmieni się wartość jednej zmiennej (Y), jeżeli wartość drugiej (X) zmieni się o jednostkę. Punkty równania szacuje się metodą najmniejszych kwadratów (MNK). Regresja liniowa między dwiema zmiennymi, równanie liniowe: y = b 0 + b 1 x (y = a + bx ) 43
44 MNK 44
45 RÓWNANIE PROSTEJ REGRESJI Jeżeli założymy, że Y jest funkcją X, to równanie prostej regresji Y względem X ma następującą postać: y = b yx + a Y y b (x yx x) b yx S S xy 2 x a y b x S xy n1 yx x xy n y 45
46 WSPÓŁCZYNNIK REGRESJI b yx r xy S S y x Y - zmienna zależna, X - zmienna niezależna 46
47 GRAFICZNA INTERPRETACJA b = tg() a 47
48 Temperatura na głowie i krzyżu 48
49 49
50 GRAFICZNA INTERPRETACJA y = a + b yx x b - współczynnik regresji tangens kąta tworzonego przez prostą regresji i oś OX (skośność - slope), współczynnik kierunkowy a - odległość punktu przecięcia osi OY przez prostą (wyraz wolny - constant, intercept) 50
51 51
52 Wyniki, MS EXCEL 52
53 ZASTOSOWANIE RÓWNIA REGRESJI Jeżeli (b) i (a) są znane, to równanie regresji można użyć do przewidywania wartości jednej cechy (Y) na podstawie zmiennej wartości drugiej cechy (X) dla dowolnego elementu populacji. Estymatorami parametrów i są wymiary uzyskane z prób: b i a. 53
54 54
55 55
56 Analiza regresji w SAS Pierw.bł.śr.-kw. (Root MSE) odchylenie standardowe błędu, pierwiastek kwadratowy MSE (Średni kwadrat odchyleń dla zmienności spowodowanej modelem). Służy do określania jakości modelu, im niższy Root MSE, tym lepszy model. Wsp.Zmienności (CoeffVar) = (RootMSE)/średnia arytmetyczna zmiennej Y*100; Ocena parametru oszacowane parametry, Wartość t statystyka t, t = parameter / błąd standardowy Model - zmienność zmiennej zależnej wyjaśniona poprzez model regresji. Błąd - zmienność zmiennej zależnej niewyjaśniona równaniem regresji. 56
57 MIARA JAKOŚCI MODELU REGRESJI R 2 (współczynnik determinacji) informacja o tym, w jakim stopniu równanie regresji wyjaśnia zmienność zmiennej zależnej. Przyjmuje wartość od 0 do 1 (0-100%). R 2 y 2 p 2 y y p odchylenie wartości przewidywanej równaniem od wartości średniej y odchylenie rzeczywistej wartości zmiennej zależnej od wartości średniej 57
58 58
59 59
60 MODELE REGRESJI Związki między cechami można rozpatrywać za pomocą 2 różnych modeli. 60
61 MODELE REGRESJI MODEL I Jesteśmy w stanie wyodrębnić zmienną niezależną X i zmienną zależną Y. Zmienna niezależna X nie jest zmienną losową, zależy od eksperymentatora, np. temperatura, liczba osobników. Nie posiada ona rozkładu zgodnego z normalnym. Z kolei zmienna zależna Y jest zmienną losową, a jej rozkład jest zgodny z normalnym. Model I charakteryzuje zależność jednokierunkowa, tj. Y od X. y = a + b yx 61
62 MODELE REGRESJI MODEL II Obie zmienne mają rozkład zgodny z normalnym, traktowane są równorzędnie. Kłopotliwe jest wyróżnienie zmiennej zależnej i niezależnej, gdyż obie nie znajdują się pod bezpośrednim wpływem eksperymentatora. Zamiast prostej regresji, obliczamy tzw. oś główną zredukowaną. Oś główna zredukowana to linia prosta, której suma powierzchni wszystkich trójkątów (punkt opisujący parę pomiarów połączony równoległymi do osi x i y odcinkami tworzącymi trójkąty prostokątne) jest najmniejsza. Jej postać jest następująca: y = a + x ( ni) 62
63 ISTOTNOŚĆ WSPÓŁCZYNNIKA REGRESJI Model I H 0 : =0, zaś alternatywna H 1 : 0 Model II H 0 : =0, zaś alternatywna H 1 : 0 63
64 REGRESJA WIELOKROTNA Model wykorzystywany do szukania estymatorów β 0, β 1, β 2 i β 3. Y = β 0 + β 1 X 1 + β 2 X 2 + β 3 X ε i, gdzie: β 0 wyraz wolny; β 1, β 2, β 3 cząstkowe współczynniki regresji wielokrotnej; ε błąd losowy (reszta); β 1 przyrost wartości zmiennej Y przy zmianie wartości zmiennej niezależnej X 1 o jednostkę, niezależnie od pozostałych zmiennych niezależnych. 64
65 Kilka zaawansowanych statystycznie problemów dotyczących analizy regresji 65
66 Analiza wariancji a analiza regresji 66
67 ANALIZA WARIANCJI A ANALIZA REGRESJI y Y - Y y odchylenie wartości zmiennej zależnej od wartości średniej dla tej zmiennej d odchylenie wartości zmiennej zależnej od wartości przewidywanej równaniem regresji y p odchylenie wartości przewidywanej od wartości średniej, jest to odchylenie wyjaśnione równaniem regresji Odchylenie pomiaru od średniej można rozbić na dwie części: y p Y - Y Sumy kwadratów powyższych odchyleń pozostają względem siebie w następującej relacji: y 2 = y 2 p + d 2 p d Y y y p d Y p 67
68 ISTOTNOŚĆ MODELU REGRESJI Odchylenie przewidywane, czyli y p wyjaśnia współczynnik regresji b, czyli y p = b x. Można więcej przyjąć, że kwadrat tegoż odchylenia ma następującą postać: 2 y p b 2 x 2 b 2 x 2 xy x x 2 xy x 2 2 wzór na współczynnik korelacji: r xy x 2 xy y 2 68
69 ANALIZY WARIANCJI CD. MSS 2 2 y r p xy y 2 ESS y 2 d y 2 y 2 p y 2 r 2 xy y r y xy 2 TSS y 2 Sum of Squares Sumy kwadratów odchyleń TSS suma kwadratów odchyleń (Zmienność ogólna Razem skorygowane) MSS suma kwadratów odchyleń, zmienność międzygrupowa (Model) ESS suma kwadratów odchyleń, zmienność wewnątrzgrupowa (Błąd) 69
70 Ogólna suma kwadratów = wyjaśniona + niewyjaśniona, tj. TSS = MSS + ESS Wartość F to stosunek zmienności zmiennej zależnej wyjaśnionej modelem do zmienności, która nie została wyjaśniona modelem regresji. 70
71 AUTOMATYCZNE METODY DOBORU ZMIENNYCH DO MODELU (REGRESJA HIERARCHICZNA) Metody selekcji krokowej: FORWARD (krokowa postępująca) Jest to metoda, która polega na stopniowym dołączaniu do modelu kolejnych zmiennych. W pierwszym kroku tworzony jest model z jedną zmienną niezależną, zmienną, którą charakteryzuje najniższy poziom istotności z nią związany. W następnym kroku tworzony jest na tej samej zasadzie model z dwiema zmiennymi niezależnymi itd. Postępowanie trwa tak długo, aż nie zostanie znaleziona już zmienna, dla której poziom istotności jest mniejszy aniżeli 0.50, w takiej też sytuacji R 2 jest najwyższe. 71
72 SELEKCJA POSTĘPUJĄCA FORWARD 72
73 METODY SELEKCJI BACKWARD (krokowa wsteczna) Punktem wyjścia jest model z wszystkim deklarowanymi zmiennymi. Kolejne kroki tejże metody polegają na usuwaniu pojedynczo zmiennych, które najmniej wnoszą do modelu, tzn. p jest największe. Analiza trwa do momentu, gdy pozostałe w modelu zmienne charakteryzują się p poniżej STEPWISE (krokowa) Metoda będąca kombinacją dwóch poprzednich metod. Domyślny poziom istotności, przy którym zmienna jest wprowadzana i usuwana z modelu wynosi
74 MIARY JAKOŚCI (DOBROCI) MODELU R-Square, R 2 (współczynnik determinacji) Adj R-sq poprawiony współczynnik Statystyka Cp SBC Schwarz s Bayesian Criterion, AIC Akaike s Information Criterion. 74
75 R-SQUARE (WSPÓŁCZYNNIK DETERMINACJI) Informacja o tym, w jakim stopniu równanie regresji wyjaśnia zmienność zmiennej zależnej. To jest inaczej kwadrat współczynnika korelacji. Przyjmuje wartość od 0 do 1 (0-100%). 75
76 ADJ R-SQ Poprawiony współczynnik determinacji, zawiera poprawkę na liczbę zmiennych niezależnych w równaniu regresji. 76
77 STATYSTYKA CP, PROSTY WSKAŹNIK C p p MSE MSE n p p MSE full full MSE p średni kwadrat odchyleń dla modelu z liczbą zmiennych niezależnych równą p (włącznie z wyrazem wolnym) MSE full średni kwadrat odchyleń dla modelu z wszystkimi wskazanymi zmiennymi (włącznie z wyrazem wolnym) n liczba obserwacji p liczba parametrów, tj. liczba cech
78 CP Biorąc pod uwagę liczbę zmiennych oraz statystykę Cp, należy stwierdzić, że te modele są właściwe, dla których Cp jest mniejsze lub równe p+1, tzn. Cpp+1. Spośród porównywanych modeli, ten jest lepszy, dla którego Cp jest najniższe. 78
79 KRYTERIA OCENY MODELU AIC I SBC AIC (Akaike s Information Criterion) AIC = n ln(ess/n)+2p SBC (Schwarz s Bayesian Criterion) SBC = n ln(ess/n)+(p) ln(n) Spośród rozpatrywanych modeli ten jest najlepszy, w przypadku którego obie statystyki przyjmują najniższą wartość. 79
80 WYBÓR NA PODSTAWIE R 2 80
81 SUGEROWANIE MODELE 81
82 OCENA ZAŁOŻEŃ REGRESJI Włączenie do modelu regresyjnego zmiennej wymaga spełnienia wielu założeń: Zmienne niezależne winny być nielosowe. Model winien być linowy względem parametrów. Liczba obserwacji musi być większa od liczby parametrów. Niezmiernie ważna jest między innymi ocena reszt. Resztę należy rozumieć jako różnicę między rzeczywistą a oszacowaną wartością zmiennej zależnej: y i Y i Yˆ i 82
83 BADANIE RESZT Wartość oczekiwana reszt, dla każdej oszacowanej wartości wynosiła 0. Reszty powinny posiadać rozkład normalny w każdym punkcie szacowanej wartości zmiennej zależnej. Reszty posiadają podobną wariancję w każdym punkcie szacowanej zmiennej (homoscedastyczność) Są niezależne (nieskorelowane). 83
84 WSPÓŁLINIOWOŚĆ Oprócz oceny reszt konieczne jest prześledzenie współliniowości zmiennych (collinearity). Do wskaźników oceniających współliniowość należy, m.in. VIF, CI i VP. Eliminacja współliniowości polega na usunięciu z modelu cech, które są liniową kombinacją innych zmiennych niezależnych. 84
85 COLLIN Użycie opcji COLLIN w modelu wariancji pozwala obliczyć, tzw. Condition index (CI) oraz Variance proportions (VP). 85
86 VIF (VARIANCE INFLATION FACTOR) zwany jest współczynnikiem podbicia wariancji. VIF pozwala wychwycić wzrost wariancji ze względu na współliniowość cechy. VIF > 10 wskazuje na obecną współliniowość. 86
87 CONDITION INDEX (CI) ORAZ VARIANCE PROPORTIONS (VP) Jak interpretować CI? CI pomiędzy 10 a 30 wskazuje na słabą współliniowość CI między 30 a 100 dowodzi silniejszej współliniowości. CI > 100 świadczy o bardzo silnej współliniowości. VP > 0.5 świadczy również o istnieniu współliniowości. 87
88 EG 88
89 WYNIKI 89
90 WSPÓŁLINIOWOŚĆ, SAS proc reg data=owce.dysekcja; model prmoszac=kulmie LATAMIE COMBER POLEDWI tlzeb POWOKA wydrzzim prmudo prmlmz /vif collin;run;quit; 90
Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna
W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1
Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8
ANALIZA REGRESJI WIELOKROTNEJ Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ZADANIE 1A 1. Irysy: Sprawdź zależność długości płatków korony od ich szerokości Utwórz wykres punktowy Wyznacz współczynnik
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15
X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika
ANALIZA REGRESJI SPSS
NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI
ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
Analiza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Korelacja krzywoliniowa i współzależność cech niemierzalnych
Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej
Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna
Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Metodologia badań psychologicznych. Wykład 12. Korelacje
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów
ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna
Ćwiczenie 4 ANALIZA KORELACJI, BADANIE NIEZALEŻNOŚCI Analiza korelacji jest działem statystyki zajmującym się badaniem zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej.
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Regresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14
Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Analiza Współzależności
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Analiza korelacji
Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
STATYSTYKA MATEMATYCZNA, LISTA 3
STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP Porównanie większej niż 2 liczby grup (k>2) Zmienna zależna skala przedziałowa Zmienna niezależna skala nominalna lub porządkowa 2 Istota teorii analizy wariancji
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40
Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way
Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38
Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI
ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Współliniowość zmiennych objaśniających: test Walda i test Studenta w badaniu istotności zmiennych objaśniających - przykłady.
Współliniowość zmiennych objaśniających: test Walda i test Studenta w badaniu istotności zmiennych objaśniających - przykłady. Przykład: Test Walda a test Studenta w badaniu istotności zmiennych objaśniających.
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący