WIROWANIE. 1. Wprowadzenie

Wielkość: px
Rozpocząć pokaz od strony:

Download "WIROWANIE. 1. Wprowadzenie"

Transkrypt

1 WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił grawitacyjnych zostanie zastąpione polem sił odśrodkowych. Stosowane przyspieszenia odśrodkowe są znacznie większe niż wartości przyspieszenia ziemskiego. Poniżej przedstawiono teoretyczne rozważania dotyczące sił działających na cząstki w polu sił odśrodkowych oraz podstawowe informacje o działaniu wirówek sedymentacyjnych. Znaczenie poszczególnych symboli wykorzystywanych w poniższych równaniach oraz wartości niektórych z nich zestawiono w tabeli 1. W trakcie wirowania na każdą cząstkę zawieszoną w roztworze działają siły: odśrodkowa F a, wyporu F w i oporu F o. Przyjmuje się, że wartość siły grawitacji w stosunku do siły odśrodkowej jest na tyle niska, że można ją pominąć. Początkowy brak równowagi pomiędzy tymi siłami powoduje, że cząsteczki przyspieszają. Po pewnym, krótkim z reguły czasie, wymienione siły się równoważą a zawieszone w medium cząstki zaczynają poruszać się ruchem jednostajnym. W obszarze Stokesa Re d <1, wartości współczynnika oporu kropli (np. wody, oleju) poruszającej się w pewnym ciekłym medium są zbliżone do wartości sztywnej kulistej cząstki i równania te można uprości do: w d = d d 2 ρg 18η c (1) Czas sedymentacji w obszarze Stokesa można opisać równaniem: τ = 18η c (2πn) 2 d d 2 ρ ln R r i (2) natomiast czas przebywania w wirówce musi być co najmniej równy czasowi sedymentacji więc: τ w = V w V 0 = πh(r2 r i 2 ) V 0 (3) gdzie V w to objętość układu znajdującego się w wirówce. Równania te można przekształcić i przedstawić w następującej formie opisującej strumień zawiesiny V 0: V 0 = d d 2 ρ (2πn) 2 πh(r 2 2 r i ) 18η c lub w uproszczeniu ln R r i (4) V 0 = w d (2πn) 2 πh(r 2 r i 2 ) g ln R r i = w d Σ (5) Strona 1 z 8

2 gdzie Σ to ekwiwalentna powierzchnia klarowania. Odpowiada ona powierzchni przekroju osadnika zapewniającego rozdzielenie danego strumienia zawiesiny i zależy jedynie od parametrów operacyjnych wirówki. W praktyce często wykorzystuje się tak zwane wirówki sedymentacyjne. Posiadają one lity bęben, a produkty separacji odprowadzane są z niego przelewami odpowiedniej konstrukcji (rys. 1.). Dobór odpowiedniej średnicy, tych wylotów jest niezwykle ważny. Zbyt mała lub zbyt duża średnica może być przyczyną niepełnej separacji składników mieszaniny. Z reguły konstrukcja wirówki pozwala na manipulowanie wielkością promienia r 1 (wartość r i jest stała). Rys. 1. Wirówka sedymentacyjna - przekrój W przypadku gdy olej jest bardzo ciężki, prawie tak ciężki jak woda (ρ 1 ρ 2 ), dostarczenie jego pewnej ilości wraz ze strumieniem V 0 spowoduje przemieszczenie prawie takiej samej ilości wody w obszar wypływu strumienia V 1. Może spowodować to zwiększenie promienia r 2. Po przekroczeniu wartości krytycznej olej może zacząć przedostawać się w obszar wypływu strumienia V 1. Strumień V 1 będzie zanieczyszczony olejem. Separacja nie będzie przebiegać w pełni efektywnie. Można temu zaradzić manipulując wielkością przegrody przy wypływie strumienia V 1 należy ją wydłużyć w kierunku osi obrotu a więc zmniejszyć promień r 1. Dla olejów o bardzo małej gęstości (ρ 2 < ρ 1 ) warstwa r 2 -r i może się znacząco zmniejszyć. Może to powodować przedostawanie się fazy ciężkiej wraz ze strumieniem V 2. Aby temu zapobiec należy zwiększyć grubość warstwy r 2 -r i skracając długość przegrody przy wypływie strumienia V 1 - a więc zwiększyć promień r 1. Ponadto aby zapobiec wypływaniu nierozdzielonej mieszaniny wraz ze strumieniem V 1 przed rozpoczęciem procesu rozdzielania wirówkę wstępnie napełnia się fazą ciężką np. wodą. Strona 2 z 8

3 Aby opisać zależności pomiędzy rozdzielanymi cieczami należy założyć, że na każdą różniczkową masę dm działa różnicowa siła odśrodkowa przez co powstaje gradient ciśnienia dp, który po scałkowaniu można wyrazić jako: p = (2πn) 2 ρ m (r 2 r i 2 ) (6) To równanie można wykorzystać do opisu dwóch faz o różnych gęstościach znajdujących się w bębnie wirówki: (2πn) 2 ρ 1 (R 2 r 1 2 ) = (2πn) 2 ρ 1 (R 2 r 2 2 )+(2πn) 2 ρ 2 (r 2 2 r i 2 ) (7) skąd wynika, że : r 2 2 r i 2 r 2 2 r 1 2 = ρ 1 ρ 2 (8) W wirówkach z reguły ustalona jest wartość r i a regulowana jest wartość r 1. Należy ją odpowiednio dobrać dla danego układu. Ponadto, przyjmując brak poślizgu w bębnie można przyjąć, że: V 2 V 1 = r 2 2 r i 2 R 2 r 2 2 = ε 02 1 ε 02 (9) UWAGA! Do kartkówki obowiązuje materiał z książki [1] oraz znajomość wszystkich pojęć pojawiających się w instrukcji. [1] R. Koch, A. Noworyta, Procesy mechaniczne w inżynierii chemicznej, Wydawnictwo Naukowo-Techniczne, Warszawa 1998 Rozdziały: Ruch fazy rozproszonej w płynie Układ ciecz-ciecz Układ ciało stałe- ciecz Wirowanie Strona 3 z 8

4 2. Przebieg ćwiczenia. Celem ćwiczenia jest zapoznanie się z konstrukcją i sposobem działania wirówki sedymentacyjnej. Ćwiczenie przebiega w następujących etapach. wyznaczenie gęstości wody i oleju (ρ 1, ρ 2 ) jedną z dwóch metod: Zważyć piknometr o danej objętości (10 lub 50ml), wraz z korkiem szlifowym z zatopioną rurką kapilarną. Następnie zapełnić go wodą/olejem i zważyć ponownie, uprzednio usuwając nadmiar cieczy bibułą. Obliczyć masę cieczy i wyznaczyć jej gęstość. Przelać odpowiednią ilość wody/oleju do cylindra miarowego o pojemności 250ml. W cylindrze umieścić areometr. Odczytać gęstość cieczy ze skali umieszczonej na areometrze. przygotowanie mieszaniny olej-woda Na podstawie wyznaczonych wartości gęstości obliczyć skład mieszaniny (objętościowy) olejwoda, której składniki mogą zostać rozdzielone przy danych ustawieniach wirówki (R, r 1, r i ). Wykorzystaj równania 8 i 9 i wyznacz r 2 oraz stosunek V 2 V 1 Wyznaczenie średnicy kropel (d d ) w mieszaninie Przy użyciu pipety Pasteura nanieść kroplę mieszaniny olej-woda na szkiełko mikroskopowe ze skalą. Preparat obserwować pod mikroskopem w powiększeniu 100x (z podłączoną kamerą). Wykonać kilka zdjęć preparatu. Zdjęcia wykorzystać do pomiaru średnicy kropel. Na zdjęciach zmierzyć obwód co najmniej 20 kropel. Na podstawie uzyskanych wyników obliczyć średnią wartość i odchylenie średnicy kropel. Przykładowe programy: Programy komputerowe do pomiaru wielkości kropel: Jens' Makroaufmaß-programm - ImgeJ - Programy na smartfona/ tablet: SketchAndCalc Area Calculator Images Maps Wyznacz czas sedymentacji w obszarze Stokesa (τ) (równanie 2) oraz strumień zawiesiny V 0 (równanie 5). Porównaj czas sedymentacji z czasem przebywania w wirówce (τ w ) (równanie 3). Strona 4 z 8

5 Przygotowanie pompy perystaltycznej. Należy ustawić odpowiedni przepływ przez pompę V 0P, dostosowany do przepustowości wirówki V 0 (V 0P < V 0). W tym celu należy wykonywać pomiary objętości wody pompowanej do cylindra miarowego w czasie. Wyniki pomiarów zestawić na wykresie. Wprowadzenie fazy ciężkiej do bębna wirówki. Wodę należy pompować do bębna wirówki do momentu pojawienia się pierwszych kropel w odpływie z wirówki (maksymalny przepływ). Wprowadzenie mieszaniny wody i oleju do bębna wirówki. Do wirówki należy wprowadzić uprzednio przygotowaną mieszaninę przy pomocy pompy (odpowiedni przepływ przez pompę V 0P). Wyznaczanie wartości strumieni V 1 i V 2 (V 1P i V 2P). W trakcie ćwiczenia należy wyznaczyć objętościowe strumienie powstałych rozdzielonych składników mieszaniny (oleju i wody) dla przyjętej wartości V 0P. W pierwszym kroku wyznaczamy teoretyczne wartości V 1 i V 2 układając prostą proporcję. Eksperymentalne wyznaczenie wielkości strumieni polega na prowadzeniu pomiarów objętości cieczy wypływających z wirówki w czasie jej pracy. V 1P i V 2P należy porównać z V 1 i V 2. Ocena jakości rozdzielnia oleju i wody Pobrać próbki strumieni V 1P i V 2P do falkonów o objętości 15 ml. Po upływie co najmniej 24 godzin, wykorzystując skalę umieszczona na falkonach odczytać proporcje pomiędzy objętością oleju i wody w pobranych próbkach. Wyniki przedyskutować. Oblicz szybkość liczbę Reynoldsa Re d. Odnieś się do uzyskanych wyników. Re d = w dd d ρ 1 η c Strona 5 z 8

6 Tab. 1. Znaczenie wykorzystanych symboli. Właściwości fizyczne mieszaniny Jednostka/wartość ρ Różnica gęstości składników mieszaniny kg/m 3 ρ c Gęstość ośrodka ciekłego (medium dla innej fazy) kg/m 3 ρ 1 ; ρ 2 Gęstość składników mieszaniny heterogenicznej kg/m 3 d d Średnica kropli fazy zawieszonej m η c Lepkość ośrodka ciekłego (medium) 1*10-3 kg/(m*s) Proces sedymentacji τ Czas sedymentacji s τ w Czas przebywania układu w wirowce s w d Szybkość sedymentacji m/s V 0 Objętościowy strumień mieszaniny m 3 /s V w Objętość bębna wirówki m 3 /s V 1; V 2 Strumienie objętościowe rozdzielonych składników mieszaniny m 3 /s Σ Ekwiwalentna powierzchnia klarowania m 2 n Częstość obrotów 1/s ε 02 Udział objętościowy składnika 2 mieszaniny układu 1 g Przyspieszenie ziemskie m/s 2 Re d Liczba Reynoldsa 1 Budowa wirówki 2R Średnica bębna 0,1025 m r i Promień do ujścia fazy lekkiej 0,0135 m r 1 Promień do ujścia fazy ciężkiej 0,0206 m r 2 Promień do granicy między fazami lekką i ciężką m H Wysokość bębna 0,455 m Strona 6 z 8

7 Wrocław, dn.. Grupa: środa, godz Nazwisko 1, Imię 1 Nazwisko 2, Imię 2 Nazwisko 3, Imię 3 1. Celem ćwiczenia było.. 2. Wyniki obliczeń i pomiarów. Rozdzielanie układów heterogonicznych Sprawozdanie z ćwiczenia: WIROWANIE Tab. 1. Wyniki przeprowadzonych obliczeń i eksperymentów gęstości wody i oleju (ρ 1, ρ 2 ) Wielkości teoretyczne Wielkości przyjęte na cele ćwiczenia lub wyznaczone eksperymentalnie promień r 2 stosunek V 2 V 1 średnica kropel d d brak W bębnie: W mieszaninie: czas sedymentacji w obszarze Stokesa τ strumień zawiesiny V 0 czas przebywania w wirówce τ w strumienie V 1 i V 2 proporcje pomiędzy objętością oleju i wody w pobranych próbkach liczba Reynoldsa Re d brak τ = τ w brak Tu znajduje się rysunek Rys.1. Przyrost objętości mieszaniny w czasie V(t) dla strumieni V 0, V 1 i V 2. Strona 7 z 8

8 3. Dyskusja wyników. Czy można zauważyć różnice pomiędzy wartościami teoretycznymi a wyznaczonymi eksperymentalnie? Z czego wynikają? Czy zastosowana metoda separacji była skuteczna? Czy prawidłowo dobrano parametry operacyjne? Jak można polepszyć stopień rozdzielania? 4. Wnioski Wymień kilka wniosków, które nasuwają się po przeprowadzeniu dyskusji. Strona 8 z 8

WIROWANIE. 1. Wprowadzenie

WIROWANIE. 1. Wprowadzenie WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

1. SEDYMENTACJA OKRESOWA

1. SEDYMENTACJA OKRESOWA SEPARACJE i OCZYSZCZANIE BIOPRODUKTÓW SEDYMENTACJA i FILTRACJA 1. SEDYMENTACJA OKRESOWA CEL ĆWICZENIA Wyznaczenie krzywej sedymentacji oraz krzywej narastania osadu dla procesu sedymentacji okresowej.

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

K02 Instrukcja wykonania ćwiczenia

K02 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K2 Instrukcja wykonania ćwiczenia Wyznaczanie krytycznego stężenia micelizacji (CMC) z pomiarów napięcia powierzchniowego Zakres zagadnień obowiązujących

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

Modele matematyczne procesów, podobieństwo i zmiana skali

Modele matematyczne procesów, podobieństwo i zmiana skali Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o

Bardziej szczegółowo

Zastosowania Równania Bernoullego - zadania

Zastosowania Równania Bernoullego - zadania Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH

OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH UKŁAD NIEJEDNORODNY złożony jest z fazy rozpraszającej (gazowej lub ciekłej) i fazy rozproszonej stałej. Rozdzielanie układów

Bardziej szczegółowo

DOŚWIADCZENIE MILLIKANA

DOŚWIADCZENIE MILLIKANA DOŚWIADCZENIE MILLIKANA Wyznaczenie wartości ładunku elementarnego metodą Millikana Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie ładunku elementarnego ( ładunku elektronu) metodą zastosowaną przez R.A

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu. 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW

WYZNACZANIE ROZMIARÓW POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

Materiały pomocnicze z Aparatury Przemysłu Chemicznego

Materiały pomocnicze z Aparatury Przemysłu Chemicznego Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Destylacja z parą wodną

Destylacja z parą wodną Destylacja z parą wodną 1. prowadzenie iele związków chemicznych podczas destylacji przy ciśnieniu normalnym ulega rozkładowi lub polimeryzacji. by możliwe było ich oddestylowanie należy wykonywać ten

Bardziej szczegółowo

K05 Instrukcja wykonania ćwiczenia

K05 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy

Bardziej szczegółowo

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych. BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą

Bardziej szczegółowo

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ Ćwiczenie nr 3 1. CHARAKTERYSTYKA PROCESU Wirowanie jest procesem sedymentacji uwarunkowanej działaniem siły odśrodkowej przy przyspieszeniu 1500

Bardziej szczegółowo

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15)

1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) 66 Mechanika 1.10 Pomiar współczynnika lepkości cieczy metodą Poiseuille a(m15) Celem ćwiczenia jest wyznaczenie współczynnika lepkości wody. Współczynnik ten wyznaczany jest z prawa Poiseuille a na podstawie

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

A4.04 Instrukcja wykonania ćwiczenia

A4.04 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.04 Instrukcja wykonania ćwiczenia Wyznaczanie cząstkowych molowych objętości wody i alkoholu Zakres zagadnień obowiązujących do ćwiczenia 1. Znajomość

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

Ćwiczenie 5: Wyznaczanie lepkości właściwej koloidalnych roztworów biopolimerów.

Ćwiczenie 5: Wyznaczanie lepkości właściwej koloidalnych roztworów biopolimerów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: (1) Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów

Bardziej szczegółowo

Wyznaczanie gęstości i lepkości cieczy

Wyznaczanie gęstości i lepkości cieczy Wyznaczanie gęstości i lepkości cieczy A. Wyznaczanie gęstości cieczy Obowiązkowa znajomość zagadnień Definicje gęstości bezwzględnej (od czego zależy), względnej, objętości właściwej, ciężaru objętościowego.

Bardziej szczegółowo

Hydrodynamika warstwy fluidalnej trójczynnikowej

Hydrodynamika warstwy fluidalnej trójczynnikowej Politechnika Śląska Gliwice Wydział Inżynierii Środowiska i Energetyki Katedra Technologii i Urządzeń Zagospodarowania Odpadów Ćwiczenia laboratoryjne Hydrodynamika warstwy fluidalnej trójczynnikowej PROWADZĄCY

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia Sprawozdanie z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie Temat ćwiczenia Badanie właściwości reologicznych cieczy magnetycznych Prowadzący: mgr inż. Marcin Szczęch Wykonawcy

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ PRZERÓBKA I UNIESZKODLIWIANIE OSADÓW ŚCIEKOWYCH Ćwiczenie nr 3 ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ 1. CHARAKTERYSTYKA PROCESU Odwadnianie osadów za pomocą odwirowania polega na wytworzeniu

Bardziej szczegółowo

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu Ćwiczenie laboratoryjne Parcie na stopę fundamentu. Cel ćwiczenia i wprowadzenie Celem ćwiczenia jest wyznaczenie parcia na stopę fundamentu. Natężenie przepływu w ośrodku porowatym zależy od współczynnika

Bardziej szczegółowo

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM Cel ćwiczenia: wyznaczenie diagramu fazowego ciecz para w warunkach izobarycznych. Układ pomiarowy i opis metody: Pomiary wykonywane są metodą recyrkulacyjną

Bardziej szczegółowo

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

( ) ( ) Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: - piaskowa: f ' 100 f π π. - pyłowa: - iłowa: Rodzaj gruntu:...

( ) ( ) Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: - piaskowa: f ' 100 f π π. - pyłowa: - iłowa: Rodzaj gruntu:... Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: 100 f p - piaskowa: f ' p 100 f + f - pyłowa: - iłowa: ( ) 100 f π f ' π 100 ( f k + f ż ) 100 f i f ' i 100 f + f k ż ( ) k ż Rodzaj gruntu:...

Bardziej szczegółowo

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ 5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ Opracował: Krzysztof Kaczmarski I. WPROWADZENIE Sprawność kolumn chromatograficznych określa się liczbą

Bardziej szczegółowo

Henryk Bieszk. Odstojnik. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Gdańsk H. Bieszk, Odstojnik; projekt 1

Henryk Bieszk. Odstojnik. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Gdańsk H. Bieszk, Odstojnik; projekt 1 Henryk Bieszk Odstojnik Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego Gdańsk 2007 H. Bieszk, Odstojnik; projekt 1 PRZEDMIOT: APARATURA CHEMICZNA TEMAT ZADANIA PROJEKTOWEGO ODSTOJNIK

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 1 WYZNACZANIE GĘSTOSCI CIECZY Autorzy:

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA Piotr KOWALIK Uniwersytet Przyrodniczy w Lublinie Studenckie Koło Naukowe Informatyków KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA 1. Ciekłe układy niejednorodne Ciekły układ niejednorodny

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

HYDRAULIKA KOLUMNY WYPEŁNIONEJ

HYDRAULIKA KOLUMNY WYPEŁNIONEJ Ćwiczenie 5: HYDRAULIKA KOLUMNY WYPEŁNIONEJ 1. CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie oporów przepływu gazu przez wypełnienie zraszane cieczą oraz określenie granicy zachłystywania aparatu wypełnionego.

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA DYFUZJI W FAZIE GAZOWEJ

WYZNACZANIE WSPÓŁCZYNNIKA DYFUZJI W FAZIE GAZOWEJ Ćwiczenie 7: WYZNZNIE WSPÓŁZYNNIK DYFUZJI W FZIE GZOWEJ 1. EL ĆWIZENI elem ćwiczenia jest eksperymentalne wyznaczenie współczynnika dyfuzji wybranej substancji w określonym środowisku gazowym i porównanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Izoterma rozpuszczalności w układzie trójskładnikowym ćwiczenie nr 28 Zakres zagadnień obowiązujących do ćwiczenia 1. Stan równowagi układu i rodzaje równowag

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,

Bardziej szczegółowo

WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ. Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej.

WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ. Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik,

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

prędkości przy przepływie przez kanał

prędkości przy przepływie przez kanał Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Absorpcja Osoba odiedzialna: Donata Konopacka - Łyskawa dańsk,

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 2 WYZNACZANIE GĘSTOSCI CIAŁ STAŁYCH Autorzy:

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych Wersja z dnia: 2008-02-25 Wyznaczanie gęstości metodą piknometryczną Gęstości ciała (ρ) jest definiowana jako masa (m) jednostkowej objętości tego ciała (V). Jeśli ciało jest jednorodne, to jego gęstość

Bardziej szczegółowo

Ściąga eksperta. Mieszaniny. - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne?

Ściąga eksperta. Mieszaniny.  - filmy edukacyjne on-line Strona 1/8. Jak dzielimy substancje chemiczne? Mieszaniny Jak dzielimy substancje chemiczne? Mieszaninami nazywamy substancje złożone z kilku skład, zachowujących swoje właściwości. Mieszaniny uzyskuje się na drodze mechanicznego mieszania ze sobą

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE CEL ĆWICZENIA Celem ćwiczenia jest wykonanie analizy sitowej materiału ziarnistego poddanego mieleniu w młynie kulowym oraz

Bardziej szczegółowo

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-05 Temat: Pomiar parametrów przepływu gazu. Opracował: dr inż.

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zastosowanie destylacji z parą wodną do oznaczania masy cząsteczkowej cieczy niemieszającej się z wodą opracował prof. B. Pałecz ćwiczenie nr 35 Zakres zagadnień

Bardziej szczegółowo

Wyznaczanie współczynnika lepkości cieczy.

Wyznaczanie współczynnika lepkości cieczy. Politechnika Warszawska Wydział Fizyki Centralne Laboratorium Fizyki Piotr Jaśkiewicz Krystyna Wosińska 1. Podstawy fizyczne. Wyznaczanie współczynnika lepkości cieczy. Płyny to substancje, które po przyłożeniu

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 3 Pomiar współczynnika oporu lokalnego 1 Wprowadzenie Stanowisko umożliwia wykonanie szeregu eksperymentów związanych z pomiarami oporów przepływu w różnych elementach rzeczywistych układów

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Rozszerzalność cieplna ciał stałych

Rozszerzalność cieplna ciał stałych Zagadnienia powiązane Rozszerzalność liniowa, rozszerzalność objętościowa cieczy, pojemność cieplna, odkształcenia sieci krystalicznej, rozstaw położeń równowagi, parametr Grüneisena. Podstawy Zbadamy

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zależność napięcia powierzchniowego cieczy od temperatury opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr 4 Zakres zagadnień obowiązujących do ćwiczenia

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Hydrostatyczne Układy Napędowe Laboratorium

Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW GRAWITACYJNE ZAGĘSZCZANIE OSADÓW Ćwiczenie nr 4 1. CHARAKTERYSTYKA PROCESU Ze względu na wysokie uwodnienie oraz niewielką ilość suchej masy, osady powstające w oczyszczalni ścieków należy poddawać procesowi

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18 Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18 Celem ćwiczenia jest przedstawienie reakcji katalitycznego utleniania węglowodorów jako wysoce wydajnej

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO 1. Cel ćwiczenia Doświadczalne wyznaczenie zaleŝności współczynnika oporu linioweo przepływu

Bardziej szczegółowo