System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy
|
|
- Kazimierz Marszałek
- 9 lat temu
- Przeglądów:
Transkrypt
1 System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej
2 System informacyjny System informacyjny SI zdefiniowany jest jako czwórka: SI = (U, A, V, f) gdzie: U jest niepustym, skończonym zbiorem obiektów, A jest niepustym, skończonym zbiorem atrybutów. Zbiór V a jest dziedziną atrybutu a: a A, V = a A V a Definiuje się również funkcję informacyjną. f: U A V
3 System informacyjny System informacyjny SI zdefiniowany jest jako czwórka: SI = (U, A, V, f) gdzie: U jest niepustym, skończonym zbiorem obiektów, A jest niepustym, skończonym zbiorem atrybutów. Zbiór V a jest dziedziną atrybutu a: a A, V = a A V a Definiuje się również funkcję informacyjną. f: U A V System decyzyjny natomiast różni się tym, że A składa się z atrybutów warunkowych oraz atrybutów decyzyjnych.
4 Przykładowy SD
5 Ćwiczenie 1. Wyróżnij klasy decyzyjne 2. Wyindukuj wszystkie reguły decyzyjne 3. Dokonaj formalnej definicji zbiorów z definicji SD 4. Jaka jest odpowiedź: 1. f(1,pogoda) 2. f(3,nastrój) 3. f(6,stan kasy)
6 Relacja nierozróżnialności Niech SI= (U, A) będzie systemem informacyjnym i niech B A. W zbiorze U definiujemy dwuargumentową relację IND(B), generowaną przez zbiór B, zwaną relacją nierozróżnialności (ang. indescernibility relation): IND (B) = {(x, y) U U : a B, a(x) = a(y)} gdzie znak = między a(x) i a(y) należy rozumieć w ten sposób, że dla obiektów x i y, należących do U, atrybut a przyjmuje taką samą wartość.
7 Ćwiczenie 1. Które z obiektów są nierozróżnialne w systemie? 2. Które są nierozróżnialne ze względu na atrybut Pogoda? 3. Które są nierozróżnialne ze względu na atrybuty Stan kasy oraz Nastrój? Zapisz te obserwacje formalnie. Jakie są właściwości relacji nierozróżnialności?
8 Klasy abstrakcji Klasy abstrakcji U / IND(B) relacji nierozróżnialności IND(B) to zbiór zbiorów takich obiektów, które są nierozróżnialne ze względu na atrybuty ze zbioru B. Definicja: Przykład: U/IND(p,k) = {(1), (2,6), (3), (4,5)}
9 Ćwiczenie 1. Wyznacz wszystkie klasy abstrakcji dla pojedynczych atrybutów (łącznie z decyzyjnym) oraz wszystkich par
10 Aproksymacja zbiorów Powinniście znać definicje: 1. Niespójność danych (atrybutów warunkowych, atrybutów decyzyjnych) 2. Dolne i górne przybliżenie 3. Brzeg zbioru 4. Zbiór dokładny 5. Zbiór przybliżony 6. Współczynnik dokładności przybliżenia 7. Obszar pozytywny, obszar negatywny
11 Zbiory dokładne i przybliżone Załóżmy zbiory zgodne z klasami decyzyjnymi: X1={1,5}, X2={2,3}, X3={4,6} oraz zbiory atrybutów: A1={p}, A2={k,n,p} Wtedy: U/IND SI (A1) = {(1,4,5),(2,3,6)} oraz U/IND SI (A2) = {(1), (2,6), (3), (4), (5)} X1: zbiór przybliżony względem A1 oraz dokładny względem A2 X2: zbiór przybliżony względem A1 oraz przybliżony względem A2 X3: zbiór przybliżony względem A1 oraz przybliżony względem A2
12 Ćwiczenie IdOsoby Dyplom Doświadczenie Angielski Referencje Decyzja 1 Mgr Średnie Certyfikat Pozytywne Przyjęty 2 Dr Odpowiednie Certyfikat Negatywne Przyjęty 3 Dr Odpowiednie Certyfikat Pozytywne Przyjęty 4 Mgr Odpowiednie Brak Pozytywne Przyjęty 5 Mgr Niskie Certyfikat Negatywne Odrzucony 6 Matura Niskie Certyfikat Pozytywne Odrzucony 7 Dr Średnie Certyfikat Negatywne Odrzucony 8 Matura Niskie Brak Pozytywne Odrzucony 1. Określ które osoby można zaliczyć do zbiorów przybliżonych: 1. Bez wątpienia przyjętych do pracy 2. Być może przyjętych 3. Na pewno nie przyjętych 4. Być może odrzuconych posługując się kolejno zbiorami cech: B 1 ={Dyplom, Angielski}, B 2 ={Doświadczenie, Angielski}, B 3 ={Dyplom, Referencje}, B 4 ={Angielski, Referencje, Dyplom}
13 Dolne i górne przybliżenie Definicje: BX = x U I SI,B x X BX = x U I SI,B x X BN B X = BX BX Przykład: Klasy rozróżnialności dla całego zbioru atr. warunk: U/IND(C) = {(1),(2,6),(3),(4),(5) Mamy trzy zbiory obiektów ze względu na atr. dec.: X 1 ={1,5} ; X 2 ={2,3}; X 3 ={4,6} BX 1 = 1,5 ; BX 1 = 1,5 BX 2 = 3 ; BX 2 = 2,3,6 BX 3 = 4 ; BX 3 = 2,4,6
14 Dolne i górne przybliżenie: dokładność Definicje: γ B X γ B X = BX U = BX U Przykład: γ B X 2 = BX 2 U γ B X 2 = BX 2 U = 1 6 = 3 6
15 Ćwiczenie IdOsoby Dyplom Doświadczenie Angielski Referencje Decyzja 1 Mgr Średnie Certyfikat Pozytywne Przyjęty 2 Dr Odpowiednie Certyfikat Negatywne Przyjęty 3 Dr Odpowiednie Certyfikat Pozytywne Przyjęty 4 Mgr Odpowiednie Brak Pozytywne Przyjęty 5 Mgr Niskie Certyfikat Negatywne Odrzucony 6 Matura Niskie Certyfikat Pozytywne Odrzucony 7 Dr Średnie Certyfikat Negatywne Odrzucony 8 Matura Niskie Brak Pozytywne Odrzucony 1. Wylicz dolne i górne przybliżenie oraz brzeg zbioru względem wszystkich atrybutów warunkowych. Wylicz dokładność tych przybliżeń.
Systemy ekspertowe. Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych. Część trzecia
Część trzecia Autor Roman Simiński Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 3 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący
B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej Metody usuwania niespójności z T 1. Pomoc eksperta:
Teoretyczne podstawy zbiorów przybliżonych
Teoretyczne podstawy zbiorów przybliżonych Agnieszka Nowak 17 kwietnia 2009 1 Podstawy teorii zbiorów przybliżonych 1.1 Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława Pawlaka w
Systemy ekspertowe : Tablice decyzyjne
Instytut Informatyki Uniwersytetu Śląskiego 16 marzec 2010 Tablica decyzyjna Klasy nierozróżnialności i klasy decyzyjne Rdzeń Redukt Macierz nierozróżnialności Rdzeń i redukt w macierzy nierozróżnialności
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH
WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne
Wprowadzenie do zbiorów przybliżonych
Instytut Informatyki, Uniwersytet Śląski, ul. Będzinska 39, Sosnowiec, Polska Tel (32) 2 918 381, Fax (32) 2 918 283 Wykład II i III Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława
Sztuczna inteligencja
POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 10: Zbiory przybliżone
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Katedra Systemów Multimedialnych 2009 Plan wykładu Historia zbiorów przybliżonych System informacyjny i decyzyjny Reguły decyzyjne Tożsamość
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Tablicowa reprezentacja danych
Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława Pawlaka w 1982 roku. Jest ona wykorzystywana jako narzędzie do syntezy zaawansowanych i efektywnych metod analizy oraz do redukcji
Systemy informacyjne nad grafami ontologicznymi
Systemy informacyjne nad grafami ontologicznymi Krzysztof Pancerz Wyższa Szkoła Zarządzania i Administracji w Zamościu Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Seminarium Zakładu Inteligentnych
Zbiory przybliżone w obszarze systemów ekspertowych
Zbiory przybliżone w obszarze systemów ekspertowych Agnieszka Nowak Institute of Computer Science, University of Silesia Bȩdzińska 39, 41 200 Sosnowiec, Poland e-mail: nowak@us.edu.pl 1 Wprowadzenie Okres
Systemy ekspertowe. Generowanie reguł minimalnych. Część czwarta. Autor Roman Simiński.
Część czwarta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów
Zbiory przybliżone wnioskowanie przybliżone
Zbiory przybliżone wnioskowanie przybliżone Autor: Piotr Nowotarski, Diana Chodara. Przemysław Leończyk Państwowa Wyższa Szkoła Zawodowa im. prof. Stanisława Tarnowskiego w Tarnobrzegu Streszczenie / Abstrakt
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 2
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 2 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący
Metody numeryczne. Ilorazy różnicowe. dr Artur Woike. Wzory interpolacyjne Newtona i metoda Aitkena.
Ćwiczenia nr 3. Ilorazy różnicowe Niech będą dane punkty x 0,..., x n i wartości f (x 0 ),..., f (x n ). Definiujemy rekurencyjnie ilorazy różnicowe: f (x i, x i+1 ) = f (x i+1) f (x i ) x i+1 x i, i =
Teoria liczb. Wykład nr 9: Przybliżanie liczb rzeczywistych. Ułamki łańcuchowe (cz.1) Semestr letni 2018/2019
Teoria liczb Wykład nr 9: Przybliżanie liczb rzeczywistych. Ułamki łańcuchowe (cz.1) Semestr letni 2018/2019 Trzy sposoby definiowania liczb rzeczywistych Dedekind Parę (A, B) podzbiorów zbioru Q nazywamy
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Teoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
PRACA DYPLOMOWA MAGISTERSKA. Analiza danych z zastosowaniem teorii zbiorów przybliżonych.
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH INSTYTUT INFORMATYKI Rok akademicki 2003/2004 PRACA DYPLOMOWA MAGISTERSKA Andrzej Dominik Analiza danych z zastosowaniem teorii zbiorów
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Języki programowania zasady ich tworzenia
Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty Dr inŝ. Janusz Majewski Katedra Informatyki Literatura Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques
Elementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur.
Języki i paradygmaty programowania 1 studia stacjonarne 2018/19 Lab 10. Funkcje w argumentach funkcji metoda Newtona. Synonimy nazw typów danych. Struktury. Tablice struktur. 1. Identyfikator funkcji,
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Dodawanie, edycja i usuwanie zbioru kolekcji
Dodawanie, edycja i usuwanie zbioru kolekcji Program Moje kolekcje umożliwia dodawanie, edycję oraz usuwanie zbiorów. Opis procedury dodawania nowego zbioru danych W celu zobrazowania procedury założymy,
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Lista zadań - Relacje
MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Metody numeryczne Wykład 7
Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych
Sztuczna inteligencja: zbiory rozmyte
Instytut Informatyki Uniwersytetu Śląskiego lab 1 1 Klasyczna teoria zbiorów 2 Teoria zbiorów rozmytych 3 Zmienne lingwistyczne i funkcje przynależności 4 System rozmyty 5 Preprocesing danych Każdy element
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Scenariusz lekcyjny Zadania typu maturalnego: procenty, przedziały, wartość bezwzględna, błędy przybliżeń, logarytmy. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 20 listopad 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
Inteligentne systemy wspomagania decyzji oparte na wiedzy odkrytej z danych. Roman Słowiński
Inteligentne systemy wspomagania decyzji oparte na wiedzy odkrytej z danych Roman Słowiński Roman Słowiński Motywacje Wzrasta przepaść między generowaniem danych a ich zrozumieniem Odkrywanie wiedzy z
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2020 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z wyznaczania reduktów zbioru Liczba osób realizuj cych projekt: 1-2 osoby 1. Wczytanie danych w formatach arf,
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Definicja: alfabetem. słowem długością słowa
Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody
Symbol, alfabet, łańcuch
Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)
Zad. 3: Układ równań liniowych
1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich
ALGORYTMY INDUKCJI REGUŁ DECYZYJNYCH W ODKRYWANIU WIEDZY
JERZY STEFANOWSKI ALGORYTMY INDUKCJI REGUŁ DECYZYJNYCH W ODKRYWANIU WIEDZY Rozprawa habilitacyjna Wersja z 8 lutego 2001 Wydane przez Wydawnictwo Politechniki Poznańskiej, Seria Rozprawy nr 361 4 Spis
Semantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
ĆWICZENIE A. Poniżej podano informacje o liczbie sprzedanych biletów na. Dokument pochodzi ze strony www.gwo.pl
Autorka listu pisze, że na jednym z koncertów zespołu The Beatles było 12 tys. osób, a na drugim 17 tys. Liczby te oczywiście nie są dokładne. Na każdym koncercie mogło być trochę mniej lub trochę więcej
Analiza ankiet badawczych przeprowadzonych wśród studentów w Polsce
Analiza ankiet badawczych przeprowadzonych wśród studentów w Polsce Szczecin, wrzesień 2012 Spis treści 1 Wprowadzenie... 3 2 Opis badania... 3 2.1 Przedmiot badania... 3 2.2 Cele badania... 3 2.3 Narzędzia
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Definicja obiektowego modelu danych: struktura i zachowanie
Definicja obiektowego modelu danych: struktura i zachowanie Podziękowania Dla Grzegorza Enzo Dołęgowskiego za wpisanie moich notatek do komputera. Relacyjna baza danych (przypomnienie) Pojęcia pierwotne
1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy
1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,
Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum
Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum I. Liczby rzeczywiste 1. Liczby naturalne 2. Liczby całkowite. 3. Liczby wymierne 4. Rozwinięcie dziesiętne liczby
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
Analiza ankiet badawczych przeprowadzonych wśród nauczycieli akademickich w Polsce
Analiza ankiet badawczych przeprowadzonych wśród nauczycieli akademickich w Polsce Szczecin, wrzesień 2012 Spis treści 1 Wprowadzenie... 3 2 Opis badania... 3 2.1 Przedmiot badania... 3 2.2 Cele badania...
JĘZYKIFORMALNE IMETODYKOMPILACJI
Stefan Sokołowski JĘZYKIFORMALNE IMETODYKOMPILACJI Inst. Informatyki Stosowanej, PWSZ Elbląg, 2009/2010 JĘZYKI FORMALNE reguły gry Wykład1,2X2009,str.1 Zasadnicze informacje: http://iis.pwsz.elblag.pl/
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z grupowania danych - Rough k-medoids Liczba osób realizuj cych projekt: 1 osoba 1. Wczytanie danych w formatach
Z Wikipedii, wolnej encyklopedii.
Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to
Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.
Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Podstawy Programowania Obiektowego
Podstawy Programowania Obiektowego Wprowadzenie do programowania obiektowego. Pojęcie struktury i klasy. Spotkanie 03 Dr inż. Dariusz JĘDRZEJCZYK Tematyka wykładu Idea programowania obiektowego Definicja
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
1 Wstęp do modelu relacyjnego
Plan wykładu Model relacyjny Obiekty relacyjne Integralność danych relacyjnych Algebra relacyjna 1 Wstęp do modelu relacyjnego Od tego się zaczęło... E. F. Codd, A Relational Model of Data for Large Shared
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje. Definicja 1 Funkcję postaci f. nazwiemy n-argumentową funkcją boolowską.
1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje Definicja 1 Funkcję postaci f n :{ 0, 1} { 0, 1} nazwiemy n-argumentową funkcją boolowską. Definicja 2 1 2 Term g = x 1 x x ( ϕ ) ( ϕ
Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość
Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Paweł Kurzawa, Delfina Kongo
Paweł Kurzawa, Delfina Kongo Pierwsze prace nad standaryzacją Obiektowych baz danych zaczęły się w roku 1991. Stworzona została grupa do prac nad standardem, została ona nazwana Object Database Management
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Relacje. 1 Iloczyn kartezjański. 2 Własności relacji
Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
JĘZYKI FORMALNE I METODY KOMPILACJI
Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 JĘZYKI FORMALNE reguły gry Wykład1,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform
Wykłady z dydaktyki matematyki (klasy IV-VIII) III rok matematyki semestr zimowy 2017/2018 ćwiczenia i wykład nr 6
Wykłady z dydaktyki matematyki (klasy IV-VIII) III rok matematyki semestr zimowy 2017/2018 ćwiczenia i wykład nr 6 Zadanie domowe Wizualizacje do oddania. Przygotuj dwie pary kart Matematyczne skojarzenia,
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Relacje i relacje równoważności Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Zbiór i iloczyn kartezjański Pojęcie zbioru Zbiór jest