Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość"

Transkrypt

1

2 Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego w danych trenujących

3 Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość Czy można prognozować procent odległości powyżej 40 km? Próba 2 wartości zmiennej losowej odległość

4 Przykład dyskretnej zmiennej Rzut kostką losowej k : X {1, 2, 3, 4, 5, 6} Dla i {1, 2, 3, 4, 5, 6} Pr(k = i) = 1/6

5 Drugi przykład dyskretnej zmiennej losowej Dzienna sprzedaż jednostek towaru x w pewnym sklepie. sp : X N={0, 1, 2,...}

6 Przykład ciągłej zmiennej losowej Odległość miejsca zamówienia taksówki od zajezdni. od : X R

7 Konstrukcja histogramu danych ciągłych Posortuj dane. Podziel posortowane dane na przedziały (w przypadku 100 danych powszechną praktyką jest wzięcie od 10 do 15 przedziałów); jeszcze bardziej powszechną praktyką jest branie takich przedziałów, że przypada co najmniej od 5 do 8 danych na przedział. W naszym przypadku po prostu bierzemy przedziały potencjalnie po 7 danych: [0,7) [7,14) [14,21) [21,28) [28,35) [35,42) [42,49) [49,56) [56,63) [63,70) [70,77) [77,84) oblicz, ile danych wpada do pierwszego przedziału ile danych wpada do drugiego przedziału ile danych wpada do ostatniego przedziału to jest właśnie histogram początkowy łączymy przylegające przedziały, do których wpadło mniej niż 5 danych i dostajemy wynikowy histogram.

8 Wynikowe histogramy Nr. przedziału [lewy kraniec prawy kraniec) Liczba danych

9 Wynikowy histogram po złączeniu przedziałów Nr. przedziału [lewy kraniec prawy kraniec) Liczba danych

10 Wykres słupkowy histogramu 1 - przedział [0,7) Pasujący do danych rozkład 2 - przedział [7,14) itd. itd. prawdopodobieństwa to prawo ukryte w danych liczba danych liczba danych

11 Wykres gęstości standaryzowanego rozkładu normalnego i interpretacja powierzchni pod krzywą Cała powierzchnia pod krzywą = 1 = 100% z= standaryzowana wartość 40-stu p prawdopodobieństwo, że zmienna losowa przyjmie wartość > 40 Wyliczone z tablic statystycznych p = Prognoza procentu odległości > 40 km 42.9% p 0 z

12 Eksploracja danych o naturze kombinatorycznej Drzewa decyzyjne

13 Przykład 1 x n k klasyfikacja ? ?..

14 Przykład 2 x n k klasyfikacja ?

15 Przykład 3 x indeks Wartość Klasyfikacja Drugi Pierwszy Pierwszy Trzeci Pierwszy Drugi Trzeci Trzeci Pierwszy Trzeci Pierwszy Pierwszy Pierwszy Trzeci Trzeci Pierwszy Pierwszy ?

16 Algorytm uczenia wejście: pewien zbiór treningowy... działanie.. wyjście: hipoteza ogólnej klasyfikacji dowolnego przykładu do jednej z rozważanych kategorii

17 Kolejny przykład tabela stanów pogody x aura temperatura wilgotność wiatr Klasyfikacja 1 słoneczna ciepła duża słaby 0 2 słoneczna ciepła duża silny 0 3 pochmurna ciepła duża słaby 1 4 deszczowa umiarkowana duża słaby 1 5 deszczowa zimna normalna słaby 1 6 deszczowa zimna normalna silny 0 7 pochmurna zimna normalna silny 1 8 słoneczna umiarkowana duża słaby 0 9 słoneczna zimna normalna słaby 1 10 deszczowa umiarkowana normalna słaby 1 11 słoneczna umiarkowana normalna silny 1 12 pochmurna umiarkowana duża silny 1 13 pochmurna ciepła normalna słaby 1 14 deszczowa umiarkowana duża silny 0 15 deszczowa ciepła duża słaby?

18 Testy słoneczna t aura (x) = pochmurna deszczowa gdy atrybutem aura obiektu x jest słoneczna gdy atrybutem aura obiektu x jest pochmurna gdy atrybutem aura obiektu x jest deszczowa dostępne testy : t aura, t temperatura, t wilgotność, t wiatr

19 Podział zbioru treningowego przez test Każdy test generuje pewien podział zbioru treningowego. Każdy zbiór tego podziału dzieli się na elementy poszczególnych kategorii. Dla testu t aura otrzymujemy trzy podziały: (a) podział obiektów x zbioru treningowego z atrybutem aura = słoneczna na te zakwalifikowane do kategorii 0 i na te zakwalifikowane do kategorii 1 (b) podział obiektów x zbioru treningowego z atrybutem aura = pochmurna na te zakwalifikowane do kategorii 0 i na te zakwalifikowane do kategorii 1 (c) podział obiektów x zbioru treningowego z atrybutem aura = deszczowa na te zakwalifikowane do kategorii 0 i na te zakwalifikowane do kategorii 1

20 Entropia podziału E = Σ -p i *log(p i ) i przebiegające kategorie. p i prawdopodobieństwo wylosowania elementu kategorii nr. i P1 P2

21 Entropia podziału rozpiętego na skończonym zbiorze X = A 1 A 2... A n E = -( A i / X ) * log( A i / X ) 1 i n Ułamek A i / X można interpretować jako prawdopodobieństwo wylosowania elementu kategorii nr. i ze zbioru X.

22 Entropia testu względem zbioru treningowego Przykład entropia testu t aura ze względu na nasz zbiór treningowy stanów pogody Dla testu t aura dostajemy trzy podziały: (a) podział obiektów x zbioru treningowego z atrybutem aura = słoneczna na te zakwalifikowane do kategorii 0 i na te zakwalifikowane do kategorii 1, (b) podział obiektów x zbioru treningowego z atrybutem aura = pochmurna na te zakwalifikowane do kategorii 0 i na te zakwalifikowane do kategorii 1, (c) podział obiektów x zbioru treningowego z atrybutem aura = deszczowa na te zakwalifikowane do kategorii 0 i na te zakwalifikowane do kategorii 1.

23 Entropia testu względem zbioru treningowego Entropia testu t aura względem zbioru treningowego stanów pogody to suma ważona: entropia podziału (a) stosunek liczności zbioru na którym rozpięty jest podział (a) do liczności całego zbioru treningowego + entropia podziału (b) stosunek liczności zbioru na którym rozpięty jest podział (b) do liczności całego zbioru treningowego + entropia podziału (c) stosunek liczności zbioru na którym rozpięty jest podział (c) do liczności całego zbioru treningowego.

24 Przykład t1 t2

25 Przykład drzewa decyzyjnego dla zbioru treningowego stanów pogody t aura {1,2,3,4,5,6,7,8,9,10,11,12,13,14} {1,2,8,9,11} t wilgotność słoneczna pochmurna {3,7,12,13} 1 deszczowa {4,5,6,10,14} t wiatr normalna duża słaby silny {9,11} {1,2,8} {4,5,10} {6,14}

26 Idea algorytmu indukcji drzew decyzyjnych buduj (T, S, k) : jeżeli T jest pusty to zwróć liść z wpisaną kategorią domniemaną k w przeciwnym przypadku jeżeli w T jest tylko jedna kategoria to zwróć liść z wpisaną tą jedyną w T kategorią w przeciwnym przypadku jeżeli S jest pusty to zwróć liść z wpisaną tą kategorią, która jest najliczniejsza w zbiorze T w przeciwnym przypadku // zbiory S i T są niepuste { zbudowanie węzła n i jego następników, zwrócenie zbudowanego węzła n jako wyniku funkcji buduj szczegóły na następnym slajdzie};

27 Zbudowanie węzła n i jego następników, zwrócenie zbudowanego węzła n jako wyniku funkcji buduj { 1. utwórz kolejny węzeł n; 2. ze zbioru S wybierz, wedle przyjętego kryterium wyboru testu, test t i wpisz go do utworzonego węzła n; 3. jako k przyjmij najliczniejszą w T kategorię; 4. oblicz zbiory treningowe T1,..., Tm na które test t dzieli zbiór treningowy T, gdzie m jest liczbą możliwych wartości testu t; 5. dla wszystkich i = 1,...,m wykonaj i-ty następnik węzła n := buduj (Ti, S - {t}, k)//wołanie rekurencyjne 6. zwróć węzeł n jako wynik funkcji buduj; }

28 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1

29 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1

30 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 słoneczna T1={1,2,8,9,11}, 0 buduj( T1, {ttemperatura, twilgotność, twiatr}, 0)

31 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 słoneczna T1={1,2,8,9,11}, 0 normalna twilgotność T11= ={9,11} buduj(t11, {ttemperatura, twiatr}, 1)

32 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 słoneczna T1={1,2,8,9,11}, 0 normalna twilgotność T11= ={9,11} 1

33 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 słoneczna T1={1,2,8,9,11}, 0 twilgotność normalna duża T11= ={9,11} 1 T12={1,2,8} buduj(t12, {ttemperatura, twiatr}, 0)

34 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 słoneczna T1={1,2,8,9,11}, 0 twilgotność normalna duża T11= ={9,11} 1 T12={1,2,8} 0

35 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 T1={1,2,8,9,11}, 0 słoneczna pochmurna T2={3,7,12,13} twilgotność buduj(t2,{ttemperatura, twilgotność, twiatr},1) normalna duża T11= ={9,11} 1 T12={1,2,8} 0

36 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody taur a {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 T1={1,2,8,9,11}, 0 twilgotność słoneczna pochmurna T2={3,7,12,13} 1 normalna duża T11= ={9,11} 1 T12={1,2,8} 0

37 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody T1={1,2,8,9,11}, 0 twilgotność słoneczna taur a pochmurna T2={3,7,12,13} 1 {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 deszczowa T3={4,5,6,10,14} normalna duża T11= ={9,11} 1 T12={1,2,8} 0 buduj(t3,{ttemperatura,twilgotność, twiatr}, 1)

38 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody T1={1,2,8,9,11}, 0 twilgotność słoneczna taur a pochmurna T2={3,7,12,13} 1 {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 deszczowa T3={4,5,6,10,14} twiatr normalna duża słaby T11= ={9,11} 1 T12={1,2,8} 0 T31={4,5,10} buduj(t31,{ttemperatura,twilgotność},1)

39 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody T1={1,2,8,9,11}, 0 twilgotność słoneczna taur a pochmurna T2={3,7,12,13} 1 {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 deszczowa T3={4,5,6,10,14} twiatr normalna duża słaby T11= ={9,11} 1 T12={1,2,8} 0 T31={4,5,10} 1

40 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody T1={1,2,8,9,11}, 0 twilgotność słoneczna taur a pochmurna T2={3,7,12,13} 1 {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 deszczowa T3={4,5,6,10,14} twiatr normalna duża słaby silny T11= ={9,11} T12={1,2,8} T31={4,5,10} T32={6,14} buduj(t32,{ttemperatura, twilgotność},0)

41 Wykonanie algorytmu buduj na zbiorze treningowym stanów pogody T1={1,2,8,9,11}, 0 twilgotność słoneczna taur a pochmurna T2={3,7,12,13} 1 {1,2,3,4,5,6,7,8,9,10,11,12,13,14}, 1 deszczowa T3={4,5,6,10,14} twiatr normalna duża słaby silny T11= ={9,11} T12={1,2,8} T31={4,5,10} T32={6,14}

42 Podstawowe Pojęcia zbiór X przykładów zbiór wszystkich stanów pogody, zbiór C kategorii pojęcia ocena-pogody, C = {0, 1}, pojęcie ocena-pogody : X C, zbiór hipotez H równy zbiorowi funkcji h : X C definiowalnych przez pewne drzewo decyzyjne dla przyjętego zbioru dostępnych testów, błąd hipotezy h względem pojęcia ocena-pogody err(h, ocena-pogody) = {x X h(x) ocena-pogody(x) } / X

43 Formalne definicje Formalne definicje testu, zbioru treningowego, entropii testu względem zbioru treningowego podane są w materiałach dla słuchaczy.

44 Ocenianie błędu klasyfikatora walidacja krzyżowa T pewien zbiór treningowy dla pojęcia c T T - pewna część zbioru treningowego h klasyfikator obliczony ze zbioru treningowego T Szacunkowy błąd klasyfikacji: zliczona liczba błędnych klasyfikacji na elementach x z T T liczność zbioru T T 1. Należy założyć, że struktura ukryta w zbiorze treningowym T dla pojęcia c dobrze przybliża strukturę ukrytą w całej przestrzeni X i w pojęciu c. Innymi słowy, zbiór T ma być w stosownym sensie reprezentatywny dla przestrzeni X i pojęcia c. 2. Zbiór T wybrany do walidacji krzyżowej powinien być reprezentatywny dla zbioru T struktura ukryta w T powinna dobrze przybliżać strukturę ukrytą w T.

45 Nadmierne dopasowanie Rozważmy pojęcie c : N N {0, 1} 1 gdy k=2n lub k=2n+1 c(n,k) = 0 w przeciwnym przypadku.

46 Zbiór treningowy T dla pojęcia c dla zilustrowania nadmiernego dopasowania x n k klasyfikacja

47 Dostępne testy Tak gdy n, k są parzyste t 1 (n,k) = Nie Tak t 2 (n,k) = Nie Tak t 3 (n,k) = Nie w przeciwnym przypadku. gdy n jest parzysta i k=2n lub n jest nieparzysta w przeciwnym przypadku. gdy n jest nieparzysta i k=2n+1 lub n jest parzysta w przeciwnym przypadku. Zbiór {Tak, Nie} to zbiór możliwych wartości testów t 1, t 2, t 3.

48 Dwa klasyfikatory D1: t 1 Tak Nie 1 0 D2: Tak t 2 Nie t 1 0 Tak Nie 1 t 3 Tak Nie 1 0

49 Propozycja przeprowadzenia prostych badań 1. Ściągnij z pliki z oferowanymi tam zbiorami treningowymi. Użyj także przekazanych przez nas plików heart_disease.txt, iris.txt, diabets.txt, wine.txt. 2. Dla każdego z badanych plików napisz program, który 2.1. wczyta zbiór treningowy z pliku 2.2. wśród zadeklarowanych funkcji programu będą funkcje reprezentujące zbiór S dostępnych testów na danych, stosownie do specyfiki konkretnego zbioru treningowego 2.3. program obliczy drzewo decyzyjne z kryterium wyboru testu przez entropię i drzewo decyzyjne z kryterium losowego wyboru testu, 2.4. zgodnie z metodą walidacji krzyżowej zostaną obliczone prawdopodobieństwa błędnej klasyfikacji dla jednego i drugiego drzewa i te prawdopodobieństwa zostaną wyświetlone jako wyniki obliczeń.

50 Niektóre pola zastosowań metod eksploracji danych Automatyczna klasyfikacja plam słonecznych Wsparcie diagnostyki w medycynie Bankowość i marketing Klasyfikacja danych biologicznych... i wiele innych

51

Wszechnica Poranna: Tendencje w rozwoju informatyki i jej zastosowań Odkrywanie struktur ukrytych w danych, czyli eksploracja danych

Wszechnica Poranna: Tendencje w rozwoju informatyki i jej zastosowań Odkrywanie struktur ukrytych w danych, czyli eksploracja danych Wszechnica Poranna: Tendencje w rozwoju informatyki i jej zastosowań Odkrywanie struktur ukrytych w danych, czyli eksploracja danych Michał Grabowski Odkrywanie struktur ukrytych w danych, czyli eksploracja

Bardziej szczegółowo

WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne

WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006 SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu

Bardziej szczegółowo

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

Data Mining Kopalnie Wiedzy

Data Mining Kopalnie Wiedzy Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

Drzewa decyzyjne i lasy losowe

Drzewa decyzyjne i lasy losowe Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM

Bardziej szczegółowo

Rozkład Gaussa i test χ2

Rozkład Gaussa i test χ2 Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Sztuczna inteligencja : Algorytm KNN

Sztuczna inteligencja : Algorytm KNN Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Drzewa Decyzyjne, cz.2

Drzewa Decyzyjne, cz.2 Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania

Bardziej szczegółowo

Wprowadzenie Pojęcia podstawowe Szeregi rozdzielcze STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP.

Wprowadzenie Pojęcia podstawowe Szeregi rozdzielcze STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 września 2017 1 Wprowadzenie 2 Pojęcia podstawowe 3 Szeregi rozdzielcze Zwykle wyróżnia się dwa podstawowe działy statystyki: statystyka

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Definicja pliku kratowego

Definicja pliku kratowego Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne. Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo

Bardziej szczegółowo

Wykłady 14 i 15. Zmienne losowe typu ciągłego

Wykłady 14 i 15. Zmienne losowe typu ciągłego Wykłady 14 i 15. Zmienne losowe typu ciągłego dr Mariusz Grządziel r. akad. 14 15 Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x, gdzie f jest funkcją ciągłą

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; - badanie stanu zdrowia w pewnej miejscowości; - badanie stopnia zanieczyszczenia gleb metalami ciężkimi

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Laboratorium 6. Indukcja drzew decyzyjnych.

Laboratorium 6. Indukcja drzew decyzyjnych. Laboratorium 6 Indukcja drzew decyzyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 8

Indukowane Reguły Decyzyjne I. Wykład 8 Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Niech x 1,..., x n będzie ciągiem zdarzeń. ---

Niech x 1,..., x n będzie ciągiem zdarzeń. --- Matematyczne podstawy kryptografii, Ćw2 TEMAT 7: Teoria Shannona. Kody Huffmana, entropia. BIBLIOGRAFIA: [] Cz. Bagiński, cez.wipb.pl, [2] T. H. Cormen, C. E. Leiserson, R. L Rivest, Wprowadzenie do algorytmów,

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Data Mining z wykorzystaniem programu Rapid Miner

Data Mining z wykorzystaniem programu Rapid Miner Data Mining z wykorzystaniem programu Rapid Miner Michał Bereta www.michalbereta.pl Program Rapid Miner jest dostępny na stronie: http://rapid-i.com/ Korzystamy z bezpłatnej wersji RapidMiner Community

Bardziej szczegółowo

Wykład 10: Elementy statystyki

Wykład 10: Elementy statystyki Wykład 10: Elementy statystyki dr Mariusz Grządziel 0 grudnia 010 Podstawowe pojęcia Biolodzy: -badają pojedyńcze rośliny lub zwierzęta; -chcemy rozszerzyć wnioski na wszystkich przedstawicieli gatunku

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

ED Laboratorium 3. Drzewa decyzyjne

ED Laboratorium 3. Drzewa decyzyjne ED Laboratorium Drzewa decyzyjne 1 Drzewa decyzyjne Algorytmy indukcji drzew decyzyjnych to jeden z klasycznych algorytmów uczenia maszynowego służący do rozwiązywania problemu klasyfikacji. Drzewa decyzyjne

Bardziej szczegółowo

2. Empiryczna wersja klasyfikatora bayesowskiego

2. Empiryczna wersja klasyfikatora bayesowskiego Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski

Bardziej szczegółowo

Wykład 3. Rozkład normalny

Wykład 3. Rozkład normalny Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Algorytmy i Struktury Danych, 9. ćwiczenia

Algorytmy i Struktury Danych, 9. ćwiczenia Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych.

Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Wykład 14 Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Rozkład chi-kwadrat Suma kwadratów n-zmiennych losowych o rozkładzie normalnym standardowym ma rozkład

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for. Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła

Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła 12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo

Bardziej szczegółowo

I. Podstawy języka C powtórka

I. Podstawy języka C powtórka I. Podstawy języka C powtórka Zadanie 1. Utwórz zmienne a = 730 (typu int), b = 106 (typu long long), c = 123.45 (typu double) Wypisz następujące komunikaty: Dane sa liczby: a = 730, b = 106 i c = 123.45.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,

Bardziej szczegółowo

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x), Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo