Analiza kinematyczna mechanizmów. Środki obrotu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza kinematyczna mechanizmów. Środki obrotu"

Transkrypt

1 Analiza kinemayczna mechanizmów Środki obrou

2 Meody określania środków obrou w mechanizmach S S 34 4 S 12 S 14 Środki obrou: rwałe (S 12, S 14, S 23, S 34 ) rwałe sałe (S 12, S 14 ) Ile jes środków obrou?

3 Meody określania środków obrou w mechanizmach v SK S K v SL S L v SK v SL = 0

4 Meody określania środków obrou w mechanizmach 3 S 34 Ile jes środków obrou? S 23 2 S 12 S 14 4 n = 4 i = 6 1 Środki obrou: rwałe (S 12, S 14, S 23, S 34 ) chwilowe (S 13, S 24 ) S 12 S 13 S 14 S 23 S 24 S 34

5 Meody określania środków obrou w mechanizmach z parami obroowymi Twierdzenie o 3 środkach obrou: Jeżeli 3 człony k, l i m układu kinemaycznego są w ruchu płaskim, o środki obrou S KM, S KL, S LM leżą na jednej prosej.

6 Meody określania środków obrou w mechanizmach z parami obroowymi S 24 n = 4 i = n(n1)/2 = 6 S S 34 4 S 12 S 14 S 12 S 13 S 14 S 23 S 24 S 34 Człony: 2, 4, 1 S 12 S 24 S 14 S 23 S 34 Człony: 2, 4, 3 1 S 13 Człony: 1, 3, 2 S 12 S 13 S 23 S 14 S 34 Człony: 1, 3, 4

7 Meody określania środków obrou w mechanizmach z parami posępowymi n = 4 i = n(n1)/2 = 6 3 S 34 Człony: 2, 4, 1 S 12 S 24 S 14 S 23 S 34 S 23 Człony: 2, 4, S 24 S 12 S 14 Człony: 1, 3, 2 S 12 S 13 S 14 S 23 S 24 S 34 1 S 13 S 12 S 13 S 23 S 14 S 34 Człony: 1, 3, 4

8 Zapis srukury łańcucha kinemaycznego: Schema kinemayczny Schema srukuralny Graf srukury Macierz srukury Zapis konurowy B C E F G A D C F E I I 2 D A B I I I I G 4 0 I A D G A B B C E D C E F G F 5 3 F D G C 4 2 A B E 1 0 K 1 = 0 A 1 B 2 C 3 D 0 K 1 = 0 D 3 C 2 E 4 F 5 G 0 K 1 = 0 A 1 B 2 E 4 F 5 G 0

9 Meody określania środków obrou w mechanizmach meoda grafów

10 Meody określania środków obrou w mechanizmach

11 Meody określania środków obrou w mechanizmach v A = w 2 x AS 12 v B = w 2 x BS 12 a w 2 = v A /AS 12 w 2 = v B /BS 12 w 2 b g a = v A /AS 12 = w 2 g b = v B /BS 12 = w 2 a = b

12 Meody określania środków obrou w mechanizmach v 23 S 12 S 13 S 23 Człony: 1, 2, 3 S 23 S 12 S 13

13 Meody określania środków obrou w mechanizmach 3 S 01 S 02 S 03 S 12 S 13 2 S V 12 = 0 w p. syku środek obrou S 13

14 Wykorzysanie środków obrou w analizie kinemaycznej mechanizmów określanie kierunków ruchu, określanie kierunków prędkości, określanie prędkości liniowych i kąowych.

15 Określanie kierunków ruchu mechanizmu: F F 1 F S 14 1 S 13

16 Określanie kierunków prędkości: Kierunek prędkości v K =? Rozwiązanie: wyznaczyć środki obrou, w szczególności S 02

17 Określanie kierunków prędkości: v K v M M v B Kierunek: v K v B v M

18 Określanie prędkości przy użyciu środków obrou K v K B 2 A 1 v B w 2 S 12 3 C 4 v C Dane: w 2 Szukane: v B, v C, v K, w 3 Wyznaczyć niezbędne środki obrou: S 12, S 13 v B = w 2 AB v B = w 3 BS 13 w 3 = v B /BS 13 v C = w 3 CS 13 v K = w 3 KS 13 w 3 S 13

19 Analiza kinemayczna wyznaczanie prędkości i przyśpieszeń w mechanizmach

20 Człony mechanizmu w ruchu płaskim złożonym Inerpreacja ruchu złożonego członu za pomocą środka obrou

21 Człony mechanizmu w ruchu płaskim złożonym Inerpreacja ruchu złożonego członu jako sumy ranslacji i roacji

22 Związki pomiędzy prędkościami dwóch punków na członie v C = v B + v CB v CB = w 2 CB

23 kv KB K kv KC v K C Dane: w 2 Szukane: v B, v C, v K, w 3, w 4 B 2 w 2 1 A v B v C 3 kv BA kv CB kv CD kv CB kv KB w 3 D 4 w 4 v CB v B = v A + v BA v A = 0 v BA = w 2 BA v B = v BA = w 2 v C = v B + v CB v C = v D + v CD v D = 0 BA kv CD p v v B v K v CB v CD = v C kvkc DBCK ~ v K = v B + v KB v K = v C + v KC w 3 = v CB /BC w 4 = v CD /CD Dbck

24 Związki pomiędzy prędkościami dwóch punków na dwóch członach v C = v B + v CB

25 kv CB Dane: w 2 Szukane: v B, v C, v K, w 3, w 4 kv BA =kv B A w B v CB C K v C kv CD v K v B = v A + v BA v A = 0 v BA = w 2 BA v B = v BA = w 2 BA 1 4 D w 4 kv CD p v v B v CD = v C v C = v B + v CB v C = v D + v CD v D = 0 w 4 = v CD /CD w 3 = w 4 v B v CB v K v K = v D + v KD v K = v C + v KC kv CB DDCK ~ Ddck

26 Związki pomiędzy przyspieszeniami dwóch punków na członie a c = a B + a CB a CB = a CBn + a CB a C = a B + a CBn + a CB a CB = e 2 x CB

27 Związki pomiędzy przyspieszeniami dwóch punków na dwóch członach a c = a B + a CB a CB = a CBn + a CB + a CB C a C = a B + a CBn + a CB + a CB C a CBn = v CB2 / r a CB = dv CB / d a CBC = 2w 1 x v CB

28 B kv BA 2 a BAn = a B 1 w 2 3 A v B w 3 e 3 kv CB ka CB a n CB a C 4 C a CB ka C kv C Dane: w 2 = cons, e 2 = 0 Szukane: v B, v C, w 3, a B, a C, e 3 v C v B = v A + v BA v A = 0 v BA = w 2 BA v B = v BA = w 2 v C = v B + v CB w 3 = v CB /CB BA kv C p v v C kv CB v B v CB a CB ka CB a C a n CB p a ka C a B = a BA n a B = a A + a BAn + a BA a A = 0 a BAn = w 22 BA a BA = e 2 BA =0 a C = a B + a CBn + a CB a CBn = w 32 CB a CB = e 3 CB e 3 = a CB /CB

29 Analiza kinemayczna przykład v C =V CD v CB v B kv CD kv CB w 4 w 3 v CB v C =v CD v B v B = v A + v BA v A = 0 v B = v BA = v w v C = v B + v CB v C = v D + v CD v D = 0 w 3 = v CB /CB w 4 = v CD /CD p v

30 Analiza kinemayczna przykład ka CD ka CB a B = a BA c a CB n ka CB w 4 e 4 a CD n a CB n v BA w 3 e 3 a BA c ka CD a CD n a C p a a CB a B = a A + a BAn + a BA + a BA C a A = 0 a BA = dv BA /d=0, bo v BA =v w =cons. a BAn = v BA2 /r = 0, bo r a BAC = 2w 3 x v BA a B = a BA C a C = a B + a CBn + a CB a CBn = w 32 CB a C = a D + a CDn + a CD a D = 0 a CDn = w 42 CD a CD e 3 = a CB /CB e 4 = a CD /CD

Z poprzedniego wykładu:

Z poprzedniego wykładu: Z poprzedniego wykładu: Człon: Ciało stałe posiadające możliwość poruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stopni swobody) Niższe i wyższe pary

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

kartkówka czas 1. Zaznacz na kątomierzu punkt B, tak aby kąt AOB miał rozwartość 90.

kartkówka czas 1. Zaznacz na kątomierzu punkt B, tak aby kąt AOB miał rozwartość 90. kartkówka czas WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz na kątomierzu punkt B, tak aby kąt AOB miał rozwartość 90. 2. Zaznacz trzy współliniowe punkty A, B i C. Narysuj półprostą,

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś

Bardziej szczegółowo

Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą

Bardziej szczegółowo

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów.

Analiza wpływu tarcia na reakcje w parach kinematycznych i sprawność i mechanizmów. Automatyka i Robotyka. Podstawy modelowania i syntezy mechanizmów arcie w parach kinematycznych mechanizmów 1 ARCIE W PARACH KINEMAYCZNYCH MECHANIZMÓW Analiza wpływu tarcia na reakcje w parach kinematycznych

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

Wyznaczyć prędkości punktów A i B

Wyznaczyć prędkości punktów A i B Wyzaczaie prędkości i przyspieszeia puku ciała w ruchu płaskim (a) Wyzaczyć prędkości puków i Dae: rad/s; ε 0; 5 cm; 5 cm 48 mechaika echicza kiemayka 3 Wyzaczaie prędkości i przyspieszeia puku ciała w

Bardziej szczegółowo

Podstawy analizy strukturalnej układów kinematycznych

Podstawy analizy strukturalnej układów kinematycznych Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez

Bardziej szczegółowo

ńń Ż Ń Ł Ś Ś Ń Ł Ż Ł ń Ź Ś ń ń ń ń ń ć ń ć Ś Ż ć ń ń ć ń ń Ś ń ć ć Ź ć ć ć Ż ń ć ź Ś Ć ć ń ć Ż ć Ź Ź ń ń Ż ć ć ń ć Ż Ż Ż ć Ż Ż Ż Ż Ż ć Ż ć ć ć ć Ż ńł ć ć Ź Ż ć ć Ść Ść Ż ź Ś Ż ć ń ć ć ć Ź Ść ć ć ć ńł Ś

Bardziej szczegółowo

Podstawy analizy strukturalnej układów kinematycznych

Podstawy analizy strukturalnej układów kinematycznych Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez

Bardziej szczegółowo

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2

Bardziej szczegółowo

Podstawy analizy strukturalnej układów kinematycznych

Podstawy analizy strukturalnej układów kinematycznych Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

PAiTM - zima 2014/2015

PAiTM - zima 2014/2015 PAiTM - zima 204/205 Wyznaczanie przyspieszeń mechanizmu płaskiego metodą planu przyspieszeń (metoda wykreślna) Dane: geometria mechanizmu (wymiary elementów, ich położenie i orientacja) oraz stała prędkość

Bardziej szczegółowo

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA

Bardziej szczegółowo

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

1. K 5 Ruch postępowy i obrotowy ciała sztywnego

1. K 5 Ruch postępowy i obrotowy ciała sztywnego 1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

!"#$%& ' ()*+,-./-%+01( % (2 3 % :; % 5 - +B% 5; CDE :? F-. GHIJ%KLMN%=O PQRST 1 #U% VW XY % Z VW%+[\]\^_`a\]\bc " L+ > J % a -.K V )

!#$%& ' ()*+,-./-%+01( % (2 3 % :; % 5 - +B% 5; CDE :? F-. GHIJ%KLMN%=O PQRST 1 #U% VW XY % Z VW%+[\]\^_`a\]\bc  L+ > J % a -.K V ) !"#$%& '()*+,-./-%+01( %(23 %456789 +:;% 5 - ?%@A +B% 5;CDE :?F-. GHIJ%KLMN%=OPQRST 1 #U%VW XY% Z VW%+[\]\^_`a\]\bc" L+ > J%a -.K V)*%+01( VW +:# %H % ( 1# VW+:% %K1.UJ+:%=O V^% B +[ %BH %VW67V ^

Bardziej szczegółowo

1TEH Wychowawca: mgr Aleksandra Kozimor Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S

1TEH Wychowawca: mgr Aleksandra Kozimor Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S 1TEH Wychowawca: mgr Aleksandra Kozimor 1 8:00-8:45 SK BHP-1/2 201 OE org-1/2 305 OE tpw-1/2 305 KK j.p 214 AM his 114 KA DzP-2/2 214 OW dzi-2/2 114 KA DzP-2/2 214 2 8:55-9:40 KK j.p 210 OE org-1/2 305

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

Mechanika Teoretyczna Kinematyka

Mechanika Teoretyczna Kinematyka POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Z poprzedniego wykładu:

Z poprzedniego wykładu: Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Lp. Nazwa zamówienia według grupy robót CPV Kod grupy robót Tory Odwodnienie Trakcja

Lp. Nazwa zamówienia według grupy robót CPV Kod grupy robót Tory Odwodnienie Trakcja ćś ż ę ą ą ś ż ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ą ą ę ś ą ą ę ± Ω Ω ą ą ą ą ś ć Ω ± ± ą ą ą ą ą ść ą ść ń ż ń ń

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY W ROKU SZKOLNYM 018-019 MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ZADAŃ KIELCE MARZEC 019 Str. Klucz odpowiedzi do zadań zamkniętych 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

,&"$,, (*& #) $( 0/00 0 / 0.- 2 *((3011444 & &5 6 ),! -./ 0+1%#''&0 0 00+! "#$% & ' $% ()*+,- &.!"#$%&'$ ()*+,-./ 012 3456$&78 9:; 9?@ @ABC?9 DEB =>;FGH;@!9 IJK0LM9 NO?< O?@ 8>! ;PQRST! " U M 9 VW XY!

Bardziej szczegółowo

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne. Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Uchwała Nr... Rady Miasta Ostrowca Świętokrzyskiego z dnia 2016 r.

Uchwała Nr... Rady Miasta Ostrowca Świętokrzyskiego z dnia 2016 r. Uchwała Nr... Rady Miasta Ostrowca Świętokrzyskiego z dnia 2016 r. w sprawie: uchwalenia Zintegrowanej strategii dla obszarów funkcjonalnych miast tracących funkcje społeczno-gospodarcze Ostrowiec Świętokrzyski,

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. 1. PMiSM-2017

AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. 1. PMiSM-2017 AiR. Podstawy modelowania i syntezy mechanizmów. Ćwiczenie laboratoryjne nr 2 str. Akademia Górniczo-Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki PMiSM-207 PODSTAWY

Bardziej szczegółowo

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe. Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,

Bardziej szczegółowo

ń ż Ą Ł ż ć ż ć ż ć Ś Ż ć ć ż ć ż ż ż Ą ż ż Ź ń Ą ź ń ź ń Ą ż Ń ż ń Ą ń ż ń Ź ć ń ż Ń Ą ż ż ż ć ń ń Ł ż ż ż ń Ź ź Ą ż Ł ż ż ć ń Ś ć Ó ż ć Ś ż ż Ą ń ż ń Ł ż Ż ń Ą Ł ć ż ń ż ń Ż ń ń Ą ż ż Ł ż ż ż ż ć ż Ń

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Odbicie lustrzane, oś symetrii

Odbicie lustrzane, oś symetrii Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

Kuratorium Oświaty we Wrocławiu... Dolnośląski Ośrodek Doskonalenia Nauczycieli we Wrocławiu KLUCZ ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ MATEMATYKA

Kuratorium Oświaty we Wrocławiu... Dolnośląski Ośrodek Doskonalenia Nauczycieli we Wrocławiu KLUCZ ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ MATEMATYKA XIX Dolnośląski Konkurs zdolny Ślązak Gimnazjalista Blok matematyczno-fizyczny ETAP POWIATOWY 5 listopada 08 r. Kuratorium Oświaty we Wrocławiu... Dolnośląski Ośrodek Doskonalenia Nauczycieli we Wrocławiu

Bardziej szczegółowo

ZESTAWIENIE MEBLI STANDARYZOWANYCH I ATESTOWANYCH DLA PROJEKTU "BUDOWA BYDGOSKIEGO CENTRUM TARGOWO-WYSTAWIENNICZEGO W BYDGOSZCZY"

ZESTAWIENIE MEBLI STANDARYZOWANYCH I ATESTOWANYCH DLA PROJEKTU BUDOWA BYDGOSKIEGO CENTRUM TARGOWO-WYSTAWIENNICZEGO W BYDGOSZCZY Poz. opisu Wyszczególnienie Symbol Ilość (szt.) Nazwa atestu, certyfikatu, zaświadczenia OK Specyfika mebla Atest badań wytrzymałościowych w zakresie bezpieczeństwa użytkowania dotyczących wymiarów, wytrzymałości,

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja

Bardziej szczegółowo

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami 1. Dane Droga klasy technicznej G 1/2, Vp = 60 km/h poza terenem zabudowanym Prędkość miarodajna: Vm = 90 km/h (Vm = 100 km/h dla krętości trasy = 53,40 /km i dla drogi o szerokości jezdni 7,0 m bez utwardzonych

Bardziej szczegółowo

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim

oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

ę M o t o c y k l e n a T o r z e F S O 2 8 i 2 9 k w i e t n i a 2 0 0 7 r. n a t o r z e j a z d p r ó b n y c h F S O w W a r s z a w i e p r z y u l. J a g i e l l o ń s k i e j 6 9 s h o w m o t o

Bardziej szczegółowo

Ą Ą Ą Ą Ą Ą Ą Ą Ł Ó Ę Ń Ą Ą Ę Ł Ę Ś Ś Ś Ś Ł Ą Ż Ś Ź Ł Ó Ł Ą Ł Ę Ł Ą Ą Ą Ą Ą Ą Ą ĄĄ Ą Ś Ć Ą Ę Ę Ć Ł Ł Ś Ź Ź Ó ĆŚ Ż Ł Ś Ś Ź Ź Ó Ę Ę Ę Ó Ś Ź Ą Ę Ą Ś Ę Ł Ś Ł Ś Ś Ń Ś Ę Ę Ż Ż Ó Ś Ą Ć Ą Ź Ń Ś Ś Ś Ć Ł Ś

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

!!" # " $ $ $ %&'(!! " # " $%%&'$%()* +!! ", -. /

!! #  $ $ $ %&'(!!  #  $%%&'$%()* +!! , -. / !!" # " $ $ $ %&'(!! " +!. / #! " ", $%%&'$%()* - )*+$,* -.* %&'(.%&%&/ #"$ $$ 0* $ 1 + + 23 3 40 05 # %&'(.%&%& * *6 * * 6 7 2* $ 8 * 239. 6 39 0 *6 39 *6 6 *6 39 8 7$ 7 + *$ * + 6 6 7 * + $ * + * * #

Bardziej szczegółowo

ż ź ż Ś Ź Ś Ś ń ń Ś ń Ś Ś ż Ś Ś ż ćś ż ż ż Ł ć ć ć Ść ń Ś ż ż Ś ż ń Ź Ś ż ż ć Ś Ś Ś Ś Ś Ś Ś ź ż ń Ę ż ć Ś Ś ć ż Ś Ś ż ż ć Ś Ś ć Ś Ś ćś Ś Ś ń ż ń Ś ż ć ć Ć Ś ń Ź ń ć ć ć Ść ń ń Ś Ś ż ĘĄ Ś ż ć ć Ś ć ń ć

Bardziej szczegółowo

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek, na którym

Bardziej szczegółowo

9.05-10.25 SzP-4 22os. 4a (b.sport.) 9.15-10.45 Kuropatnik 14os. - 5klasa 10.30-12 Eko Przedszkole 10os. 12.45-14.15 Slavia Gim 9 os.

9.05-10.25 SzP-4 22os. 4a (b.sport.) 9.15-10.45 Kuropatnik 14os. - 5klasa 10.30-12 Eko Przedszkole 10os. 12.45-14.15 Slavia Gim 9 os. 0 tydzień GRAFIK WEJŚĆ NA BASEN GRUP ZORGANIZOWANYCH PAŹDZIERNIK 2013r. - aktualizacja 10.10.2013 30.09.2013 01.10.2013 02.10.2013 03.10.2013 04.10.2013 05.10.2013 8.00-9.00 12.00-13.00 9.05-10.25 SzP-4

Bardziej szczegółowo

VIII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

!" # $%& $& ' 23,425!" 23 '456789:; <=> '4 #$!"#$%&'!"#$%& ()*+,-./01 2 3#$ /089:;% 3 ' 6 7,$ 1,- ABC=>D D3 DE6 B D 3% FG1HIJKL MNO % PQ

! # $%& $& ' 23,425! 23 '456789:; <=> '4 #$!#$%&'!#$%& ()*+,-./01 2 3#$ /089:;% 3 ' 6 7,$ 1,- ABC=>D D3 DE6 B D 3% FG1HIJKL MNO % PQ !" $%&$& ' 23,425!" 23 '456789:;'4 $!"$%&'!"$%&()*+,-./012 3$45672 1/089:;%3 ' 67,$1,- ?@ABC=>DD3DE6B D3%FG1HIJKLMNO%PQ1 ()*+R'F2%3'$45672STUVWX FYW '%3R'F%'STUB 3 Z6J [4\*8]%[4^*8!"%2_`abc _`ab3!"%e

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

"###1#9 % $#"# #$ ""1&"9%1; " $ K! "###$%!" # $ %& "###$%! $#"#'#&'"$ $#"#'#''"#!"#$%&' ' $ ' $ ' $ (& # ) * +,-.+ /* 01 ' ' () *) +, * *- * ( )*-)./

###1#9 % $## #$ 1&9%1;  $ K! ###$%! # $ %& ###$%! $##'#&'$ $##'#''#!#$%&' ' $ ' $ ' $ (& # ) * +,-.+ /* 01 ' ' () *) +, * *- * ( )*-)./ "###1#9 % $#"# #$ ""1&"9%1;! "###$%!" # $ %& "###$%! $#"#'#&'"$ $#"#'#''"#!"#$%&' ' $ ' $ ' $ (& # ) * +,-.+ /* 01 ' ' () *) +, * *- * ( )*-)./ * (. )01. * ( *). )( ) ( * ) * 0 (*- )*- *- *. *- - 0 ( *).

Bardziej szczegółowo

Ś Ś Ś Ć Ś Ś Ś Ś Ś Ś Ś Ź ń ó ó Ć ó Ś ó ó Ś ń ń ó ó ó Ź Ś Ś ń ó ń ó ó ń ó ń ńń ó ó ó ó ń ó ń ĆŚ Ć ó ó Ś Ć Ś Ś Ś Ś Ś Ś Ś Ś Ź ŚĆ Ś Ś Ć Ć Ś Ć ŚĆ ó Ć ń ńó Ć ń ó ó ó Ś Ś Ś ń ń ń ó Ź Ć Ć Ć Ć Ć Ź Ć Ć Ć

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

3 ag E.Bielecka-Cimaszkiewicz Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S

3 ag E.Bielecka-Cimaszkiewicz Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S 3 ag E.Bielecka-Cimaszkiewicz 1 8:00-8:45 RT religia 20 EB j.polski 24 EB z.art 19 WE e_dla_bezp 34 2 8:55-9:40 IK biologia 36 CZ chemia 41 KG matematyka 32 MU Ba-Ch B3 CZ chemia 41 KI Ba-Dz B2 3 9:50-10:35

Bardziej szczegółowo

Lista 0. Kamil Matuszewski 1 marca 2016

Lista 0. Kamil Matuszewski 1 marca 2016 Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy

Bardziej szczegółowo

Dynamika mechanizmów

Dynamika mechanizmów Dynamika mechanizmów napędy zadanie odwrotne dynamiki zadanie proste dynamiki ogniwa maszyny 1 Modelowanie dynamiki mechanizmów wymuszenie siłowe od napędów struktura mechanizmu, wymiary ogniw siły przyłożone

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV

A4 Klub Polska Audi A4 B6 - sprężyny przód (FWD/Quattro) Numer Kolory Weight Range 1BA / 1BR 1BE / 1BV Audi A4 B6 - sprężyny przód E0 411 105 BA żółty niebieski różowy 3 E0 411 105 BB żółty niebieski różowy różowy 4 E0 411 105 BC żółty zielony różowy 5 E0 411 105 BD żółty zielony różowy różowy 6 E0 411

Bardziej szczegółowo

.<=->./?-> 0 A " #($" $' $ "./ F / % 6789 G HIJKLMNO 2 #$ ab]^[ #$ P 6 c_`ab b ]^FG&H+ IJ K LMNO P$QR SU^I T T+ UV? cwxky N ` ]^ Z[\]^ _

.<=->./?-> 0 A  #($ $' $ ./ F / % 6789 G HIJKLMNO 2 #$ ab]^[ #$ P 6 c_`ab b ]^FG&H+ IJ K LMNO P$QR SU^I T T+ UV? cwxky N ` ]^ Z[\]^ _ F / % 6789 G HIJKLMNO 2 #$ ab]^[ #$ P 6 c_`ab b ]^FG&H+ IJ K LMNO P$QR SU^I T T+ UV? cwxky N ` ]^ Z[\]^ _` a/r c9 bc ) &HSU]^ IJ S P. ) # P IJ c _`ab]^ ]^ +c T N _`ab]^ \(c a cg QRS _`ab ]^ + ^I )T U/

Bardziej szczegółowo

Metoda siatek zadania

Metoda siatek zadania Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od

Bardziej szczegółowo

Zadanie 1. Dla ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych. DANE

Zadanie 1. Dla ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych. DANE 4. Obiczanie sił wewnętrznych w ramach płaskich i przestrzennych. Sporządzanie wykresów 4.1 Zadanie 1. Da ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych.

Bardziej szczegółowo

Diagonalizacja macierzy i jej zastosowania

Diagonalizacja macierzy i jej zastosowania Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień

Bardziej szczegółowo

Wektory. dr Jolanta Grala-Michalak. Teoria

Wektory. dr Jolanta Grala-Michalak. Teoria Wektory dr Jolanta Grala-Michalak Teoria Uważa się, że pierwszym podręcznikiem geometrii jest dzieło Euklidesa Elementy, napisane w III wieku p.n.e. Opisywana w nim płaszczyzna i przestrzeń zawierają różne

Bardziej szczegółowo

TEORIA MECHANIZMÓW I MANIPULATORÓW

TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW Dr inż. Artur Handke Katedra Inżynierii Biomedycznej, Mechatroniki i Teorii Mechanizmów Wydział Mechaniczny ul. Łukasiewicza 7/9, 50-371

Bardziej szczegółowo

Bukiety matematyczne dla szkoły podstawowej

Bukiety matematyczne dla szkoły podstawowej Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 8 X 2002 Bukiet 1 Dany jest sześciokąt ABCDEF, którego wszystkie kąty są równe 120. Proste AB i CD przecinają się w punkcie

Bardziej szczegółowo

Rozszerz swoje horyzonty MATEMATYKA. dla dociekliwych licealistów. Zadania i nie tylko FUNKCJE

Rozszerz swoje horyzonty MATEMATYKA. dla dociekliwych licealistów. Zadania i nie tylko FUNKCJE Rozszerz swoje horyzonty MATEMATYKA dla dociekliwych licealistów Zadania i nie tylko FUNKCJE Spis treści Część I Wstęp... 4 1. LICZBY... 5 2. FUNKCJE... 23 3. CIĄGI... 37 4. KOMBINATORYKA... 54 5. GEOMETRIA

Bardziej szczegółowo

Ł ć ź ź Ą Ń ź ź ź Ę Ą Ń ć Ł Ł ć ć ć ć ć ć ć ć ć ź ź ć ć Ł ć ć ć Ł ć Ł ć ź Ś Ś ć ź ć ź ź ć Ł Ę Ę Ń ź ź ć ć Ł Ł Ą Ą ź Ą Ę ź ź Ś Ł ŚĆ ć ć ć Ń Ą Ę ź Ę Ł Ę Ą ź Ń ć ć ź ź Ą ź ź ć ć ŚĆ ć Ś Ś Ś ć Ę ć ć ć Ś

Bardziej szczegółowo

LISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy

LISTA OBECNOŚCI EGZAMINY USTNE JĘZYK WŁOSKI B2/C1 9.03.2015 R. PWP Kształcenie zawodowe na neofilologiach KUL na potrzeby rynku pracy JĘZYK WŁOSKI B2/C1 9.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 10.03.2015 R. 8 14.00-14.50 9 14.30-15.20 10 15.00-15.50 JĘZYK WŁOSKI B2/C1 14.03.2015 R. 1 8.30-9.20 2 9.00-9.50

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 4 Warstwy, dzielniki normalne Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b

Bardziej szczegółowo

Teoria maszyn mechanizmów

Teoria maszyn mechanizmów Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

!!" #! $ %&'!&! "#! $%! &' () *+,-. /01 ' :; <=>? +7 8 A B CD B :% E : 1 4 ( C() 0 )) )+, : ) F789:;GCHI GJ1 7 89:; FK?L/ () > A M N O N

!! #! $ %&'!&! #! $%! &' () *+,-. /01 ' :; <=>? +7 8 A B CD B :% E : 1 4 ( C() 0 )) )+, : ) F789:;GCHI GJ1 7 89:; FK?L/ () > A M N O N !!" #!$ %&'!&! "#! $%! &' () *+,-. /01 ' 2345 6789:;?+7 8 9 @ A B CD B :% E : 1 4 ( C() 0 )) )+, :) F789:;GCHIGJ17 89:; FK?L/() > A M N O N * K :P *QR S0KC+,MTOT QR K:S0 U PK C1 VWXY :C1.789:;?L1Z[\]+

Bardziej szczegółowo