Rozszerz swoje horyzonty MATEMATYKA. dla dociekliwych licealistów. Zadania i nie tylko FUNKCJE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozszerz swoje horyzonty MATEMATYKA. dla dociekliwych licealistów. Zadania i nie tylko FUNKCJE"

Transkrypt

1 Rozszerz swoje horyzonty MATEMATYKA dla dociekliwych licealistów Zadania i nie tylko FUNKCJE

2 Spis treści Część I Wstęp LICZBY FUNKCJE CIĄGI KOMBINATORYKA GEOMETRIA PŁASKA TRYGONOMETRIA GEOMETRIA ANALITYCZNA Rozwiązania zadań Część II 8. STEREOMETRIA 9. PRAWDOPODOBIEŃSTWO I STATYSTYKA 10. RACHUNEK RÓŻNICZKOWY I CAŁKOWY Rozwiązania zadań

3 Wstęp Autor

4 1. LICZBY Liczby naturalne N {0, 1, 2, 3, } Z { 3, 2, 1, 0, 1, 2, 3, } p Q q : p, q q Z Z i 0 to te i z y, kt re nie a z si rze stawi w osta i a ka aj e o i w i znik, i w ianownik i z a kowit. i z y wy ierne i niewy ierne raze tworz z i r i z R. o r znika szko ny i z y a kowite ozna zane s rzez C, wy- ierne rzez W, a e w ksi ka aka e i ki wy ierne s Q, a a kowite Z, tak jak w a ej wiatowej iterat rze. Liczby całkowite. Dzielenie z resztą Twierdzenie 1.1 o zie eni z reszt a owo ny w i z a kowity a i b, b 0, istnieje ok a nie je na i z a a kowita q i ok a nie je na i z a a kowita r, 0 r b, e a q b r. i z a q jest a rzez b, a i z r nazywa y z te o zie enia. e i r 0, to wi y, e a zie i si rzez b ez reszty. akt, e i z a a kowita a zie i i z a kowit b ez reszty, za- is je y a b. a i z reszt z zie enia 14 rzez 3. i z reszt z zie enia 14 rzez 3. i z reszt z zie enia 14 rzez 3. i z reszt z zie enia 14 rzez 3. a 14 4 ( 3) 2. oraze jest 4, reszt oraze jest 4, a reszt oraze jest 5, a reszt ( 3) 1. oraze jest 5, a reszt 1.

5 6 Matematyka dla dociekliwych licealistów. Część I W W 2 a b a b. W 3 a b jest q a b jest q. W 4 a b a b. W 5 a c jest r 1 b c jest r 2, c a b i r 1 r 2 a b i r 1 r 2 ab i r 1 r 2 W r a b r b. W 2 i W 3 a qb r, to a q( b) r. W 4 ka qb r, to a kb (q k) b r. W 5 a q 1 c r 1, b q 2 c r 2. a b q 1 c q 2 c r 1 r 2 (q 1 q 2 )c r 1 r 2 a b q 1 c q 2 c r 1 r 2 (q 1 q 2 )c r 1 r 2 a b (q 1 c r 1 )(q 2 c r 2 ) q 1 q 2 c 2 q 1 r 2 c q 2 r 1 c r 1 r 2 (q 1 q 2 c q 1 r 2 q 2 r 1 )c r 1 r 2 c W 3 W, a i b c a c b

6 Dzielniki i wielokrotności. Indukcja matematyczna 1. Liczby ,,, Twierdzenie 1.2 A - m - a i b m ab. a i b m m m - a, i b m

7 8 Matematyka dla dociekliwych licealistów. Część I m- A - Twierdzenie 1.3 A N A (0 A) k A k A A N. B A B - m m A m A, to i m A m A i B B A n 3, 4, 5, A jest {3, 4, 5, }. 2n 13 2n n 0, 1, 2, 3, An 2n 13 2n 2 jest 1. n A. k A 41 2(k 1) 13 2(k 1) k k k k ( ) 41 2k (41 2k 13 2k 2) ( ) 41 2k (41 2k 13 2k 2) 2 (13 2 1) (41 13)(41 13) 41 2k 13 2 (41 2k 13 2k 2) (41 13) 41 2k 13 2 (41 2k 13 2k 2) 28 ( k ) 13 2 (41 2k 13 2k 2) 28 6 ( k ) 13 2 (41 2k 13 2k 2) 168 ( k ) 41 2k 13 2k k A. 168 ( k ) 2(k 1) 13 2(k 1) 2 jest k 1 A.

8 1. Liczby 9 A Nn 0, 1, 2, wyra- 2n 13 2n Twierdzenie 1.4 A N A (0 A) k k 1 - A, to k A A N. B A B mm 2, m A m A m A i B - B A a n, n a 1 1, a 2 3, a 3 n a n a n 1 a n 2 a n 3 - An, n a n 1. a 1, a 2, a 3 A. k a 1, a 2,, a k 1 - A a k a k 1 a k 2 a k 3 k A. A - a n, n - p p}.

9 10 Matematyka dla dociekliwych licealistów. Część I {1, 2, 3, }. a i b a i b. NWD(a, b). a 0. NWD(0, 0) nie istnieje. NWD(a, b) NWD(b, a) NWD(a, 0) a NWD(a, a) a a b, to NWD(a, b) a. a a a i b a a b- a i b. a i b a i b a i b NWD(a, b) 1. Twierdzenie a, b Z a b NWD(a, b) NWD(a b, b). - 1

10 1. Liczby 11 NWD(a, b) NWD(a kb, b), ka b. Twierdzenie 1.6 a, b oraz a b k NWD(a, b) NWD(a k b, b). a i b a kb i b. a i b jest zawarty a kb i b c i a, i b a kb a, b i a kb i ba kb i b. a kb i b jest zawarty a i b c a kb i b(a kb) kb a a, i b, i a kba i b a i b. a i b b i a kb NWD(a, b) i NWD(a kb, b). a i b a b d NWD(a, b). b 0, to d a b - a i b NWD(437, 323) NWD(323, ) NWD(323, 114) NWD(114, ) NWD(114, ) NWD(114, 95) NWD(95, ) NWD(95, 19) NWD(19, ) NWD(19, 0) 19 a 5775 i b a i b.

11 12 Matematyka dla dociekliwych licealistów. Część I NWD(5775, 2015). a 5775, b a b a 2b b a 2b b (a 2b) a 3b a 2b ( a 3b) 7a 20b a 3b 7a 20b a 3b 2(7a 20b) 15a 43b 7a 20b ( 15a 43b) 97a 278b a 43b a b a 43b 4 (97a 278b) 403a 1155b NWD(5775, 2015) NWD(5775, 2015) a i b xa yb x i y NWD(5775, 2015) NWD(a, b) a i b jest NWD(a, b). NWD(5776, 2016) jest NWD(5776, 2016). a b a 2b b a 2b b (a 2b) a 3b a 2b ( a 3b) 7a 20b a 3b

12 1. Liczby 13 7a 20b a 3b 2(7a 20b) 15a 43b 7a 20b 2 ( 15a 43b) 37a 106b a 43b 37a 106b a 43b 3 (37a 106b) 126a 361b NWD(5776, 2016) 16 i NWD(5776, 2016) Twierdzenie 1.7 a owo ny w nie je ny i z a i b, z kt ry rzynaj niej je na jest o atnia, istniej takie i z y a kowite x i y, e NWD(a, b) xa yb. o ejny krok a oryt k i esa zast je wyj iow ar i z a i b rzez niejsz ar i z a i b, zie a a i b b i rzynaj niej je na z ty nier wno i jest ostra, rzy zy i a, i b s ko ina ja i iniowy i a i b. ast ny krok zast je ar a i b niejsz ar a i b, rzy zy i a, i b s ko ina ja i iniowy i a i b. o ina ja iniowa ko ina ji iniowy i z a i b jest ko ina j iniow i z a i b, wi i a, i b s ko ina ja i iniowy i a i b. state znie NWD(a, b) jest ko ina j iniow i z a i b. ie i z y a i b nie je ne i rzynaj niej je na ni nie zie o atnia. a y ws ny zie nik i z a i b zie i r wnie NWD(a, b). s ny zie nik i z a i b zie i r wnie owo n ko ina j iniow i z a i b, a wi tak e i z NWD(a, b), kt ra jest ewn ko ina j iniow i z a i b. i r wszystki zie nik w i z y NWD(a, b) jest ty sa y z iore, o z i r ws ny zie nik w i z a i b. niosek 1 wi, e ws ny zie nik a i b zie i NWD(a, b). ato iast NWD(a, b) zie i i a i b i je i jaka i z a zie i NWD(a, b), to zie i i a, i b, zy i jest ws ny zie nikie a i b. Twierdzenie 1.8 twier zenie zo ta ie a i b wie a nie je ny i i z a i a kowity i, z kt ry rzynaj niej je na jest o atnia. aj niejsza o atnia ko ina ja iniowa o a kowity ws zynnika i z a i b jest r wna NWD(a, b).

13 14 Matematyka dla dociekliwych licealistów. Część I a i b - a 1 b a b - a i b a i b a i b xa yb xa yb a a 0, to xa yb a a xa yb a a xa ybr, 0 r xa yb ka k(xa yb) r. r r (1 kx) a ky b, r a i b - xa yb a xa by b xa yb i a, i b a i b xa yb NWD(a, b) NWD(a, b)a i b xa yb NWD(a, b) xa yb xa yb NWD(a, b). Twierdzenie 1.9 a bc i NWD(a, b) 1, to a c. NWD(a, b) - a i b x i y NWD(a, b) 1 xa yb c c 1 c (xa yb) cx a y bc a c. - - Twierdzenie a a p 1 p 2 p n i a q 1 q 2 q m kie p i i q j p i q j a p i a p 1, p 2,, p n } {q 1, q 2,, q m } a p 1 p 1 q 1 q 2 q m 1 q m p 1 i q m - p 1 q 1 q 2 q m 1 p 1 q 1

14 1. Liczby 15 a i b to naj- a b NWW(a, b). Twierdzenie 1.11 a c i b c, to NWW(a, b) c. NWW(a, b) c q i r, 0 r NWW(a, b)c k NWW(a, b) r a c i b c, to i a r, i b r NWW(a, b)- a i b NWW(a, b) c. Twierdzenie 1.12 a, b i c NWD(ac, bc) c NWD(a, b) NWW(ac, bc) c NWW(a, b) NWD(ac, bc) xac ybc ac i ab xac ybc c(xa yb) xa bc a i b - NWW(ac, bc) ac bc c. NWW ( ac, bc) NWW ( ab, ac) = c ac a NWW ab, ac i bc NWW ac, bc c b ( ) = ( ) ( ) ( ) NWW(ac, bc) c NWW(a, b). NWW ac, bc NWW a, b c c NWW(a, b) acbc c NWW(a, b) NWW(ca, cb). Twierdzenie 1.13 a i b NWD(a, b) 1, to NWW(a, b) ab (NWD) NWD(882, 735) NWD( , )

15 16 Matematyka dla dociekliwych licealistów. Część I NWD(2(1 2 3 n), n 1) NWD(2(1 2 3 n) 1, n 1) NWD(2n 2 3n 1, n 1) 1.3. NWW(12, 28) NWW(47, 3) NWW(7 13, 13) NWW(n, n 1) NWW(2n 2 3n 1, n 1) 1.4. NWD(a, b, c) NWD(a, b, c) NWD(NWD(a, b), c) NWD NWD(234, 567, 890) a bcd i NWD(a, c) 1 i NWD(a, d) 1, to a b. Algorytm Euklidesa i odcinanie kwadratów m na n m n - - m l 2 l 1 n m 2n n n - n na n l 1 - n n na n l 2 m na n -

16 1. Liczby 17 - n na m 2n NWD(m, n). NWD(36, 21). NWD(36, 21) NWD(15, 21), NWD(15, 21) NWD(15, 6), NWD(15, 6) NWD(6, 3) - NWD(6, 3) NWD(0, 3) na 1. -

17 1. Liczby Rozwiązania zadań (3 4 ) 25 2 (2 4 ) (1 4 ) 25 2 (1 4 ) (3 4 ) (2 4 ) (3 4 ) (2 4 ) (3 4 ) (2 4 ) NWD(882, 735) NWD(735, 147) NWD(147, 0) 147 NWD( , ) NWD( , 1) NWD(1, 0) 1 NWD(n(n 1), n 1) NWD(n 1, 0) n 1 NWD(2(1 2 3 n) 1, n 1) NWD(n(n 1) 1, n 1) NWD(1, n 1) NWD(1, 0) 1 NWD((2n 1)(n 1), n 1) NWD(n 1, 0) n NWW(12, 28) 4 NWW(3, 7) NWW(47, 3) 47 3 NWW(7 13, 13) 13 NWW(7, 1) NWW(n, n 1) n(n 1) NWW((2n 1)(n 1), n 1) (n 1) NWW(2n 1, 1) (n 1)(2n 1)] 1.4. D(a) a, D(b) b i D(c)c. NWD(a, b, c)d(a) D(b) D(c). D(a) D(b) D(c). D(c) - NWD(a, b) - NWD(a, b) a i b D(a) D(b) (D(a) D(b)) D(c) D(a) D(b) D(c) a b, to NWD(a, b, c) NWD(a, b a, c) - D(a) D(b) D(a) D(b a). D(a) D(b)) D(c) D(a) D(b a)) D(c) - NWD(a, b, c) a i b a, b, c. NWD(234, 567, 890) NWD(234, , ) NWD(234, 99, 188) NWD(99, , ) NWD(99, 36, 89) NWD(36, , ) NWD(36, 27, 17) NWD(17, 10, 2) NWD(2, 0, 1) NWD(1, 0, 0) 1

Podzielność liczb. Podzielność liczb

Podzielność liczb. Podzielność liczb Euclides i kwestie podzielności liczb Definicja Niech a, b Z. Mówimy, że liczba a > 0 dzieli liczbę b, albo a b, jeżeli istnieje taka całkowita liczba c, że b = ac. Definicja a b a > 0 i b = ac, c całkowite.

Bardziej szczegółowo

ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu:

ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu: ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu: Rys1 Ćwiczenie 2 Podaj jaki ciąg znaków zostanie wypisany po wykonaniu

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach

Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) Chińskie twierdzenie o resztach Wybrane zagadnienia algorytmiki i programowania I 27 października 2010 Największy wspólny dzielnik - definicja

Bardziej szczegółowo

n ó g, S t r o n a 2 z 1 9

n ó g, S t r o n a 2 z 1 9 Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.

Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p. Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4

Algorytmy i struktury danych. Wykład 4 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych

Bardziej szczegółowo

Paweł Gładki. Algebra. pgladki/

Paweł Gładki. Algebra.  pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A

Bardziej szczegółowo

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016

Bardziej szczegółowo

7. M i s a K o ł o

7. M i s a K o ł o S U P 4 1 2 v. 2 0 16 G R I L L K O C I O Ł E K 5 R E D N I C A 4 2 c m, R U C H O M Y S U P 4 1 2 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w n i P a

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

Rozwiązywanie umów o pracę

Rozwiązywanie umów o pracę Ryszard Sadlik Rozwiązywanie umów o pracę instruktaż, wzory, przykłady Ośrodek Doradztwa i Doskonalenia Kadr Sp. z o.o. Gdańsk 2012 Wstęp...7 Rozdział I Wy po wie dze nie umo wy o pra cę za war tej na

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

M A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300

M A T E M A T Y K A 8 KURSÓW OPISY KURSÓW. Rok szkolny 2015/2016. klasa III Zakres Trymestr I. Podstawowy 104 105 300 M A T E M A T Y K A Podział kursów w procesie nauczania: -podstawowe 5 kursów (300 godzin) -rozszerzone 8 kursów (480 godzin) MATURA zakres podstawowy 5 KURSÓW PP: 101,102,103,104,105 MATURA zakres rozszerzony

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia

Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y

Bardziej szczegółowo

Liturgia eucharystyczna. Modlitwa nad darami œ

Liturgia eucharystyczna. Modlitwa nad darami œ Msza święta Liturgia eucharystyczna K. Pa - nie, nasz Bo - że, niech ta O - fia - ra, któ - rą skła - da - my...... Przez Chry - stu - sa, Pa - na na - sze - go. Modlitwa nad darami... Któ - ry ży - e

Bardziej szczegółowo

Technologia i Zastosowania Satelitarnych Systemów Lokalizacyjnych GPS, GLONASS, GALILEO Szkolenie połączone z praktycznymi demonstracjami i zajęciami na terenie polig onu g eodezyjneg o przeznaczone dla

Bardziej szczegółowo

O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

Instrukcja zarządzania systemem informatycznym przetwarzającym dane osobowe w Chorągwi Dolnośląskiej ZHP Spis treści

Instrukcja zarządzania systemem informatycznym przetwarzającym dane osobowe w Chorągwi Dolnośląskiej ZHP Spis treści C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 5 d o U c h w a ł y n r 2 2 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. I n

Bardziej szczegółowo

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie

Bardziej szczegółowo

Równania diofantyczne

Równania diofantyczne Równania diofantyczne Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej

Bardziej szczegółowo

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim Zad 1. (5pkt/12min) W prognozie pogody podano, że obecnie nad morzem jest piękna, bezwietrzna pogoda, ale za ponad pięć godzin, wiatr może osiągnąć tam prędkość 90km/h, a w górach może wiać nawet z prędkością

Bardziej szczegółowo

1 8 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M E C H A N I K - O P E R A T O R P O J A Z D Ó W I M A S Z Y N R O L N I C Z Y C H K o d z k l a s y f i k a c j i

Bardziej szczegółowo

Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach.

Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach. Kongruencje Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej Spis

Bardziej szczegółowo

h P. Wst 290 Ogrody Nauk i Sztuk nr 2017 (7)

h P. Wst 290 Ogrody Nauk i Sztuk nr 2017 (7) doi: 10.15503/onis2017.289.299 Dzi ko z ni nos ra no i sto niu zna zny ro si duka i M Je U s W s P.U s 1, 50-137 W m.je @wp.pl A strakt Te. I j j j ó m s m s - s j s m s s b m s ó s s j. K j j j s h s

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

INSTRUKCJE WEJŚCIA I WYJŚCIA

INSTRUKCJE WEJŚCIA I WYJŚCIA INSTRUKCJE WEJŚCIA I WYJŚCIA Zadanie nr 1 Napisz algorytm za pomocą a i schematów blokowych. Algorytm ma wczytywać z klawiatury wartości dwóch liczb, obliczać sumę tych liczb i wyświetlać jej wartość na

Bardziej szczegółowo

Zagadnienia transportowe

Zagadnienia transportowe Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne

Bardziej szczegółowo

2 ), S t r o n a 1 z 1 1

2 ), S t r o n a 1 z 1 1 Z a k r e s c z y n n o c i s p r z» t a n i a Z a ł» c z n i k n r 1 d o w z o r u u m o w y s t a n o w i» c e g o z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w

Bardziej szczegółowo

Koszty obciążenia społeczeństwa. Ewa Oćwieja Marta Ryczko Koło Naukowe Ekonomiki Zdrowia IZP UJ CM 2012

Koszty obciążenia społeczeństwa. Ewa Oćwieja Marta Ryczko Koło Naukowe Ekonomiki Zdrowia IZP UJ CM 2012 Koszty obciążenia społeczeństwa chorobami układu krążenia. Ewa Oćwieja Marta Ryczko Koło Naukowe Ekonomiki Zdrowia IZP UJ CM 2012 Badania kosztów chorób (COI Costof illnessstudies) Ekonomiczny ciężar choroby;

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Podstawowe elementy programu. patrz: następne 2 slajdy. Podstawowe elementy programu. Komendy proste:

Podstawowe elementy programu. patrz: następne 2 slajdy. Podstawowe elementy programu. Komendy proste: Podstawowe elementy programu Zestaw komend stojący do dyspozycji programisty zależy od języka programowania; jest ograniczony; jestnatylebogaty,żedajesięznichzłożyć(jakzklocków)sensowne programy Umiejętność

Bardziej szczegółowo

Malowanki wiejskie. OB OKI / agodne ręce lata. œ œ œ # œ œ. œ œ œ # œœ œ œ. œ œ œ œ. j œ œ œ # œ œ œ. j œ. & œ # œ œ œ œ œœ. œ & œ i. œ i I. œ # œ.

Malowanki wiejskie. OB OKI / agodne ręce lata. œ œ œ # œ œ. œ œ œ # œœ œ œ. œ œ œ œ. j œ œ œ # œ œ œ. j œ. & œ # œ œ œ œ œœ. œ & œ i. œ i I. œ # œ. Maloanki ieskie na sopan lu mezzo-sopan z fotepianem Rok postania: 1990 aykonanie: aszaska siedzia ZAiKS-u, 1991 OB OKI / agodne ęe lata Muzyka: ezy Baue S oa: Kazimiea I akoizóna iano q = a (uato) I i

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

Zawód: złotnik-j u b il e r I Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z a kr e s w ia d om oś c i i u m ie j ę tnoś c i w ła ś c i

Zawód: złotnik-j u b il e r I Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z a kr e s w ia d om oś c i i u m ie j ę tnoś c i w ła ś c i 1 5 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i Z Ł O dla zawodu T N I K -J U B I L E R K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z

Bardziej szczegółowo

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Funkcje i procedury rekurencyjne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 6 Podstawy programowania 2 Temat: Funkcje i procedury rekurencyjne Przygotował: mgr inż. Tomasz Michno Wstęp teoretyczny Rekurencja (inaczej nazywana rekursją, ang. recursion)

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16 DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

Liturgia eucharystyczna. Modlitwa nad darami œ

Liturgia eucharystyczna. Modlitwa nad darami œ Msza święta Liturgia eucharystyczna # Modlitwa nad darami " # # K. Pa - nie, nasz Bo - że, niech ta O - fia - ra, któ - rą skła - da - my...... Przez Chry - stu - sa, Pa - na na - sze - go. lub... Któ

Bardziej szczegółowo

MINERA Y W numerze: Czytaj str. 4. Czytaj dalej na str. 2. Czytaj str. 10. Czytaj dalej na str.

MINERA Y   W numerze: Czytaj str. 4. Czytaj dalej na str. 2. Czytaj str. 10. Czytaj dalej na str. W numerze: r zn r - - - - Czytaj str. 4 e e - - - - - Czytaj str. 10 MINERA Y W Rutyl, kwarc i hematyt, Bahia, Brazylia, wys. 7 cm W e e zm n : ner u u ur - - - - - - - - - - - 1. Lokalizacja - - - - -

Bardziej szczegółowo

Algebra i jej zastosowania - konspekt wykładu

Algebra i jej zastosowania - konspekt wykładu Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2018/2019 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Pierścienie Euklidesa

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

RPMP /17

RPMP /17 Ustalenie wartości szacunkowej zamówienia RFI/01/10/2018 Nazwa Projektu: Opracowanie i wdrożenie strategii działalności międzynarodowej przedsiębiorstwa w zakresie rozwoju eksportu na rynkach zagranicznych.

Bardziej szczegółowo

Elementy teorii liczb. Matematyka dyskretna

Elementy teorii liczb. Matematyka dyskretna Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

Ronda, skrzyżowania i inne trudne zjawiska (3 pytania) 1. Korzystając z pasa rozpędowego

Ronda, skrzyżowania i inne trudne zjawiska (3 pytania) 1. Korzystając z pasa rozpędowego Ronda, skrzyżowania i inne trudne zjawiska (3 pytania) 1. Korzystają z pasa rozpędowego a. można jadą nim wyprzedza ć samohody jadą e po naszej lewej stronie (Nie. Pas rozpędowy nie służy do wyprzedzania

Bardziej szczegółowo

5. Rekurencja. Przykłady

5. Rekurencja. Przykłady 5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.

Bardziej szczegółowo

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr I. Wyrażenia wymierne: funkcja wymierna - Dziedzina wyrażenia wymiernego. - Skarcenie

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

PRÓG RENTOWNOŚCI i PRÓG

PRÓG RENTOWNOŚCI i PRÓG PRÓG RENTOWNOŚCI i PRÓG WYPŁACALNOŚCI (MB) Próg rentowności (BP) i margines bezpieczeństwa Przychody Przychody Koszty Koszty całkowite Koszty stałe Koszty zmienne BP Q MB Produkcja gdzie: BP próg rentowności

Bardziej szczegółowo

UCHWAŁA NR 1 Nadzwyczajnego Walnego Zgromadzenia Spółki ABS Investment S.A. z siedzibą w Bielsku-Białej z dnia 28 lutego 2013 roku

UCHWAŁA NR 1 Nadzwyczajnego Walnego Zgromadzenia Spółki ABS Investment S.A. z siedzibą w Bielsku-Białej z dnia 28 lutego 2013 roku UCHWAŁA NR 1 w sprawie: wyboru Przewodniczącego Walnego Zgromadzenia Działając na podstawie art. 409 1 kodeksu spółek handlowych oraz 32 ust. 1 Statutu Spółki Nadzwyczajne Walne Zgromadzenie Spółki ABS

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE I. Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania (WSO)

Bardziej szczegółowo

Tajemnice liczb pierwszych i tych drugich

Tajemnice liczb pierwszych i tych drugich Tajemnice liczb pierwszych i tych drugich Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby całkowite stworzył dobry Bóg, wszystko inne wymyślili ludzie Leopold Kronecker (1823-1891) Liczby

Bardziej szczegółowo

Funkcje arytmetyczne

Funkcje arytmetyczne Funkcje arytmetyczne wersja robocza Jacek Cichoń Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Liczbami naturalnymi nazywany tutaj zbiór N = {1, 2, 3...}. Zbiór liczb ierwszych oznaczamy

Bardziej szczegółowo

Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie

Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie ń ń ż Ä Ä ż ń Ę Ę ľ Ä ŕ ż ń ř ő ő Ę ż ż ń Ę Ź ř ý ż É ż Ę ń ń ń Ę ľ ż Ż ń ż ż ż Ę ż ć ć ý ż Ę ż ż ý ć Ę ż ć ć ż Ę Ę Ę ż ż ć ź Ą Ł Ł Ł Ł ľ Ł Ł Ł ź ý ľ ż Ł ż Ł ń ý ż ż Ł Ł ý ľ Ł ż Ł Á Ż Ż Ł Ę Ź ż ż ż Á ż

Bardziej szczegółowo

3 KOLĘDY POLSKIE (wiązanka kolędowa)

3 KOLĘDY POLSKIE (wiązanka kolędowa) orno lto enor ss V riste 4 3 e trnqillo qè᪼ 4 3 4 3 4 3 3 KOLĘDY OLKIE (wiąznk kolędow) # e zs m l sie ńki, le ży # Kowlewski 9 # # # # n V # # ł cze z zim n, nie d # ł cze z zim n, # # nie d wśród st

Bardziej szczegółowo

GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB

GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB U N I W E R S Y T E T S Z C Z E C I Ń S K I GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB SZCZECIN 1999 SPIS TREŚCI Przedmowa...................................................5

Bardziej szczegółowo

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )

Bardziej szczegółowo

or rowerowy la ka e o Pumptrack Warszawa

or rowerowy la ka e o Pumptrack Warszawa or rowerowy la ka e o Pumptrack Warszawa Co to jest pumptrack?!? film: www.bit.ly/pumptrackwarszawa Pumptrack to zap tlo y tor o kszta cie falistym o az y... ...prze e wszystkim a rowerze ale tak e a rolkac

Bardziej szczegółowo

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ. Warszawa, dnia 5 stycznia 2012 r. Pozycja 15. z dnia 19 grudnia 2011 r.

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ. Warszawa, dnia 5 stycznia 2012 r. Pozycja 15. z dnia 19 grudnia 2011 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 5 stycznia 2012 r. Pozycja 15 1) z dnia 19 grudnia 2011 r. Na podstawie art. 14b 7 ustawy z dnia 29 sierpnia 1997 r. Ordynacja podatkowa (Dz. U.

Bardziej szczegółowo

C z y p a m i ę t a s z?

C z y p a m i ę t a s z? C z y p a m i ę t a s z? Liczby naturalne porządkowe, Przykłady: 0,1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne do nich i 0. Przykłady:, -3, -1, 0, 17, Liczby wymierne można przedstawid

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści

Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u

Bardziej szczegółowo

7 4 / m S t a n d a r d w y m a g a ± û e g z a m i n m i s t r z o w s k i dla zawodu K U C H A R Z * * (dla absolwent¾w szk¾ ponadzasadniczych) K o d z k l a s y f i k a c j i z a w o d ¾ w i s p e c

Bardziej szczegółowo

Uchwała Nr XIII\54\2015 Rady Gminy Polska Cerekiew z dnia 26 listopada 2015 r. w sprawie określenia wysokości stawek podatku od środków transportowych

Uchwała Nr XIII\54\2015 Rady Gminy Polska Cerekiew z dnia 26 listopada 2015 r. w sprawie określenia wysokości stawek podatku od środków transportowych Uchwała Nr XIII\54\2015 w sprawie określenia wysokości stawek podatku od środków transportowych Na podstawie art. 18 ust. 2 pkt 8 i art. 40 ust. 1 ustawy z dnia 8 marca 1990 r. o samorządzie gminnym (t.j.

Bardziej szczegółowo

WOJEWÓDZKI IN S P EKT OR A T OC H R ON Y ŚR ODOWIS KA W KR A KOWIE M 2 0 0 2 U RAPORT O STANIE ŚRODOWISK A W WOJ EWÓ DZ TWIE AŁ OPOL SK IM W ROK BIBLIOTEKA MON ITOR IN G U ŚR OD OW IS KA K r a k ó w 2003

Bardziej szczegółowo

INFORMACJA Z KONTROLI PRAWIDŁOWOŚCI ETYKIETOWANIA OPON POD KĄTEM EFEKTYWNOŚCI PALIWOWEJ I INNYCH ZASADNICZYCH PARAMETRÓW

INFORMACJA Z KONTROLI PRAWIDŁOWOŚCI ETYKIETOWANIA OPON POD KĄTEM EFEKTYWNOŚCI PALIWOWEJ I INNYCH ZASADNICZYCH PARAMETRÓW DIH-83-4( 1)/16/AB INFORMACJA Z KONTROLI PRAWIDŁOWOŚCI ETYKIETOWANIA OPON POD KĄTEM EFEKTYWNOŚCI PALIWOWEJ I INNYCH ZASADNICZYCH PARAMETRÓW Warszawa, 25 luty 2016 r. I. WSTĘP Zgodnie z Planem Kontroli

Bardziej szczegółowo

Szkolny zestaw podręczników od 1 września 2015 roku. Szkoła Podstawowa w Stęszewie

Szkolny zestaw podręczników od 1 września 2015 roku. Szkoła Podstawowa w Stęszewie Szkolny zestaw od 1 września 2015 roku Szkoła Podstawowa w Stęszewie Klasa Przedmiot/ zajęcia Nr dopuszczenia MEN Uwagi Edukacja wczesnoszkolna PODRĘCZNIK MINISTERIALNY I New English Adwenture1 z em 680/1/2014

Bardziej szczegółowo

Powiatowy Urząd Pracy w Trzebnicy. w powiecie trzebnickim w 2008 roku Absolwenci w powiecie trzebnickim

Powiatowy Urząd Pracy w Trzebnicy. w powiecie trzebnickim w 2008 roku Absolwenci w powiecie trzebnickim Powiatowy Urząd Pracy w Trzebnicy Załącznik do Monitoringu zawodów deficytowych i nadwyżkowych w powiecie trzebnickim w 2008 roku Absolwenci w powiecie trzebnickim Trzebnica, wrzesień 2009 Opracowanie:

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

Algebra i jej zastosowania - konspekt wykładu

Algebra i jej zastosowania - konspekt wykładu Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2016/2017 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 2 13 Ciało ułamków

Bardziej szczegółowo

Wersja testu A 25 września 2011

Wersja testu A 25 września 2011 1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)

Bardziej szczegółowo

Oto niezbędne i zarazem podstawowe informacje dla osoby, która chce rozliczyć się z podatku z zagranicy!

Oto niezbędne i zarazem podstawowe informacje dla osoby, która chce rozliczyć się z podatku z zagranicy! Oto niezbędne i zarazem podstawowe informacje dla osoby, która chce rozliczyć się z podatku z zagranicy! 1. Czym jest zwrot podatku? Zwrot podatku jest w praktyce rocznym rozliczeniem podatkowym, dokonywanym

Bardziej szczegółowo