( ) ( ) LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP I. 1. Oblicz sumę liczb a i b. 2. Oblicz liczbę, której 2,5% wynosi:
|
|
- Bogdan Dziedzic
- 9 lat temu
- Przeglądów:
Transkrypt
1 LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP I. Oblicz sumę liczb a i b, a 0 0, b. Oblicz liczbę, której,% wynosi 0, 0,. Na osi liczbowej zilustruj zbiór tych liczb x, które spełniają nierówność b x a ( ), 6 a 0,,6, b. Oblicz 0% wartości wyrażenia a) ( ) 0, 0,0 0, b), Wyznacz cyfry a, b tak, aby liczba ab była podzielna przez. 6. Każdy z ułamków ; ; ; 0 przedstaw w postaci sumy pewnej liczby ułamków o licznikach równych i różnych mianownikach.
2 . O ile suma liczb i jest większa od ilorazu liczb i?. a) Podaj najmniejszą liczbę, która po zaokrągleniu do dziesiątek ma wartość 60. b) Jaka jest najmniejsza liczba naturalna, która po zaokrągleniu do setek wynosi 00? c) Podaj największą liczbę, która po zaokrągleniu do tysięcy ma wartość Zastąp literę odpowiednią liczbą, aby zachodziła równość a) b) c) d) e) * * a * * b 6 * * c 0 * d * e * 0 f) * f 0. Oblicz * *. Do ponumerowania stron słownika potrzeba było cyfr. (Zakładamy, że wszystkie strony ksiązki numerujemy kolejno,,, ). Ile stron ma ten słownik?. Pięć pająków łapie pięć much w ciągu pięciu godzin. Ile much zostanie złapanych przez sto pająków w ciągu stu godzin?. Połowa z liczby przeciwnej do kwadratu odwrotności pewnej liczby równa się. Jaka to liczba?. Oblicz x z równania a) (,00x ) 0, [ 0 ] 0,0,, 0,x b) 6,, 0,0 0,
3 . Oblicz Każdy z następujących ułamków przedstaw w postaci ułamnka zwykłego a) 0,() b) 0,() c) 0,() d) 0,(). Jaka jest -ta cyfra po przecinku w rozwinięciu dziesiętnym liczby?. Koń zjada kopkę siana w ciągu dwóch dób, krowa w ciągu trzech dób, owca w ciągu sześciu dób. W jakim czasie zjedzą tę kopkę wszystkie trzy zwierzęta razem?. Basen pływacki ma trzy rury odpływowe. Pierwsza opróżnia basen w ciągu godzin, druga w czasie godzin, a trzecia w czasie godzin. W ciągu jakiego czasu opróżni się basen, gdy wszystkie rury będą czynne? 0. Pewną działkę Piotr przekopuje w ciągu godzin, Andrzej w ciągu 0 godzin, a Michał w ciągu godzin. W jakim czasie przekopia te działkę pracując razem?. Oblicz ( ). Oblicz 6 0, 0,, 0,6 (, 0,6) 0, 0,. Który z poniższych ułamków jest najmniejszy, a który największy 0 ; ;?
4 . Na przyjęcie urodzinowym Jasia przybyło jego przyjaciół. Pierwszemu z nich mama Jasia ukroiła 6 całego tortu, drugiemu reszty, trzeciemu tego co zostało, czwartemu pozostałego kawałka. Resztę tortu podzieliła równo pomiędzy Jasia i piątego z przyjaciół. Który z obecnych na przyjęciu chłopców otrzymał największy kawałek?. Oblicz sumę Oblicz wartość wyrażeń a) b). Który z ułamków,. jest największy?. Jaś wypił 6 filiżanki kawy i uzupełnił ją mlekiem. Następnie wypił tej filiżanki i znowu dolał mleka do pełna. Potem wypił połowę tej filiżanki i uzupełnił ponownie mlekiem, po czym wypił całą jej zawartość. Czego Jaś wypił więcej kawy czy mleka?. Oblicz liczbę a, której % stanowi ( ) ( ),,,6 0. Oblicz a) b). Oblicz * * *
5 . Oblicz, ( 0,) ( ) ( 0,). Oblicz,,,,,,, ( 0,) *0 ) *( 0,,. Oblicz wartość liczbową wyrażenia 0 ( ). Staw zarasta rzęsą. Co dwa dni obszar zarośnięty rzęsą podwaja się. Cały staw zarósł rzęsą w ciągu dni. Po ilu dniach ćwierć stawu byłą zarośnięta rzęsą? 6. Oblicz, ( ) *. Oblicz ( ) (,,). Oblicz. Oblicz *0,06 ( 0,) (,6,) * ( 0,) ( 0,) *(,,) 0. Oblicz 0, 0, [ ] a) ( ) ( 0, ) *
6 * b) 6 Zadania z fizyki klasa I etap I Zad. Tomek może unieść ciało masie nie większej niż 0 kg. Ładunek o jakiej maksymalnej masie może przewieść Tomek za pomocą taczki, w której odległość pomiędzy osią obrotu a rączkami wynosi 0cm a odległość pomiędzy osią obrotu a środkiem ciężkości ładunku wypełniającego taczkę wynosi 0 cm. Zad. Na dźwigni dwustronnej zawieszono odważnik o mkg. Długość ramienia dźwigni od strony zawieszonej masy jest równa 0cm. Jakiej siły należy użyć by zrównoważyć dźwignię jeśli jej ramię ma długość 0cm? Zapisz obliczenia. Zad. Na jednym końcu huśtawki będącej dźwignią dwustronna o długości m, podpartej na środku, usiadło dziecko o masie 0 kg. Jak daleko od drugiego końca powinno usiąść dziecko o masie 0 kg, aby huśtawka była w równowadze? Zad. sążeń, [m] łokieć 0,6 [m] stopa 0, [m] cal, [cm] Uzupełnij zdania, zapisz wszystkie obliczenia. Sążeń ma. łokcie. Łokieć ma. stopy., cala to. [cm]
7 Zad. Na nici wisi nieruchomo jabłko. Nitka działa na jabłko siłą o wartości [N]. a) Narysuj wektor ilustrujący tę siłę, przyjmując skalę, w której wektor o długości [cm] odpowiada sile o wartości [N]. b) Narysuj w tej samej skali siłę, z jaką Ziemia przyciąga jabłko. c) Skąd wiesz, jaki jest ciężar jabłka? Zad. 6 Wykresy pokazują zależności wydłużeń trzech różnych sprężyn od działających na nie sił. Tabela powinna zawierać dane dotyczące tylko jednej z nich. a) Jakiego wykresu dotyczą dane zawarte w tabeli? b) Uzupełnij tabelę. Brakujące dane odczytaj z odpowiedniego wykresu. c) Oblicz masę odważników przy wydłużeniu sprężyny 6 cm Zad. Oblicz siłę ciężkości ciał fizycznych a) Kota o masie kg b) Kanarka o masie 00 g c) Słonia o masie, t Zad. Przedstaw graficznie w jednej skali siły F o wartości N i działającej poziomo w prawo, F o wartości 6 N i działającej pionowo do góry oraz F o wartości 0 N i działającej do dołu w lewo pod katem.
8 Zad. Na rysunku pokazano jabłko oraz wektor przedstawiający jego ciężar. a) Korzystając z zamieszczonej skali, oblicz ciężar jabłka. b) Oblicz masę jabłka. c) Gdyby jabłko to znalazło się na powierzchni Księżyca, z jaką siłą Księżyc przyciągałby je do siebie? Siła ciężkości na Księżycu wynosi,6 N/kg. d) Jaką masę miałoby tam jabłko? Zad. 0 Dwa króliki ciągną marchewkę w przeciwne strony jeden z siłą o wartości 0 [N], a drugi z siłą o wartości [N]. Oblicz wartość siły wypadkowej działającej na marchew i określ, w którą stronę działa. Zapisz obliczenia. Zad. Zamień jednostki fizyczne na jednostki z układu SI. Zapisz obliczenia. a) 0 µm b) g c) kn d), km e) h min f) ms Zad. Zamień jednostki fizyczne na jednostki z układu SI. Zapisz obliczenia. a) µg b) dag c) 6 mm d) 0 km e) 6h 0 min f) kn
9 Zad. W zawodach przeciągania liny biorą udział dwie rodziny Kowalskich i Nowaków. Mimo ogromnego wysiłku obu drużyn, żadnej z rodzin nie udało się przeciągnąć liny na swoją korzyść. a) Co można powiedzieć o siłach działających na linę? b) Jaką wartość ma siła, z jaką rodzina Nowaków działa na linę? Zad. Tabelka przedstawia wyniki pomiarów wydłużenia sprężyny pod wpływem sił o różnych wartościach. a) Zaznacz wyniki pomiarów jako punkty na arkuszu. b) Określ na podstawie wyników pomiarów wydłużenie sprężyny pod wpływem działania na nią siły o wartości 0 [N]. c) Wiedząc, że po powieszeniu na sprężynie odważnika, sprężyna wydłużyła się o 60 [mm], określ ciężar i masę tego odważnika. Zad. Dwa konie ciągną wóz w tę samą stronę. Jeden z siłą o wartości 00 [N], a drugi z siłą o wartości [N]. Oblicz wartość siły wypadkowej działającej na wóz i określ, w którą stronę działa siła. a) Co można powiedzieć o siłach działających na linę? b) Jaką wartość ma siła, z jaką rodzina Klusków działa na linę?
10 Zad. 6 Przyjrzyj się rysunkowi. a) Jaką wartość ma siła rozciągająca sprężynę? b) Jak nazywa się przyrząd do pomiaru siły? c) Zapisz pomiar z niepewnością pomiarową Zad. Promień wału kołowrotu wynosi 0 cm, a długość korby 0 cm. Jaki ciężar możemy podnieść za jego pomocą działającego na korbę z siłą 00 N? Zad. Oblicz z jaką siłą Ziemia przyciąga a) pszczołę o masie 0,g b) lwa o masie, t c) sikorki o masie 0,0 kg Zad. a) Jaki musi być długi klucz do odkręcania śrub w kole samochodu, jeżeli szerokość śruby wynosi cm, a siła dokręcenia śruby w kole wynosi 000N, a osoba odkręcająca śruby w kole dysponuje max siłą 00N. b) Aby odkręcić śrubę w kole samochodu użyto siły 00N. Jak zmieni się ta siła jeżeli do Zad. 0 okręcania kół weźmiemy klucz razy dłuższy /zakładamy przykładamy na końcu klucza że siłę w obu przypadkach Jaką siłą musi działać Basia na ramię kołowrotu, aby wyciągnąć ze studni wiadro z wodą o ciężarze F 0N. Ramię kołowrotu ma długość r 60cm, a promień wału na który nawija się lina r cm.
LIGA MATEMATYCZNO-FIZYCZNA KLASA VII ETAP I Rok szk. 2017/ Oblicz sumę liczb a i b. 2. Oblicz liczbę, której 2,5% wynosi:
LIGA MATEMATYCZNO-FIZYCZNA KLASA VII ETAP I Rok szk. 0/. Oblicz sumę liczb a i b, a 0 0, b. Oblicz liczbę, której,% wynosi 0, 0,. Na osi liczbowej zilustruj zbiór tych liczb x, które spełniają nierówność
LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP I. 1. Oblicz sumę liczb a i b. 2.Oblicz. 3.Oblicz. O ile suma liczb. 4.Oblicz. 5.Oblicz
LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP I. Oblicz sumę liczb a i b, a b.oblicz 0, 0,.Oblicz 0, 0 O ile suma liczb i jest większa od ilorazu liczb i?.oblicz.oblicz 0000 6. Każdy z następujących ułamków
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy
Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawne dokończenie zdania. Drugą potęgą liczby jest A. B. C. D. 2. Zamień podany
SZKOLNA LIGA ZADANIOWA
KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o
Liczby i działania str. 1/6
Liczby i działania str. 1/6 1. Rysunek, na którym zacieniowano 4 figury, to rysunek: 2. Odwrotnością liczby 1 1 jest: 6 B. 6 C. 1 1 D. 1 1 3. Odwrotnością liczby 2 7 jest: 2 7 B. 3 1 2 C. 7 2 D. 2 7 4.
OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R.
OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. Pytania mogą posłużyć do rozegrania I etapu konkursu rozgrywającego się w macierzystej szkole gimnazjalistów - kandydatów. Matematyka Zad. 1 Ze wzoru wynika,
Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.
Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało
Test powtórzeniowy nr 1
Test powtórzeniowy nr 1 Grupa A... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Na wykresie przedstawiono zależność
KURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA 1 Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 10 2 2019 684 168 2 Dane
Test powtórzeniowy nr 1
Test powtórzeniowy nr 1 Grupa C... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność
Test powtórzeniowy nr 1
Test powtórzeniowy nr 1 Grupa B... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność
Imię i nazwisko: ... WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2012/2013 ETAP I SZKOLNY
(pieczątka szkoły) Imię i nazwisko:.................................. Klasa.................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI Z ASTRONOMIĄ DLA UCZNIÓW GIMNAZJUM
Klasa 5. Liczby i działania
Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie
SPRAWDZIAN Z MATEMATYKI KLASA I
Imię i Nazwisko:.. Klasa:. SPRAWDZIAN Z MATEMATYKI KLASA I POZIOM PODSTAWOWY Czas pracy 100 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 11 stron (zadania 1 19). 2. Arkusz zawiera 13 zadań
ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016. Imię i nazwisko:
(pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP I SZKOLNY Informacje:
Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy
MARIUSZ WRÓBLEWSKI Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy. W każdej z zapisanych poniżej liczb podkreśl cyfrę jedności. 5 908 5 987 7 900 09 5. Oblicz, ile razy kąt prosty jest mniejszy
Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości
Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości Zad.1 Za pomocą mierników elektronicznych, mierzących czas z dokładnością do 0,01(s), trójka uczniów mierzyła
Zadania z fizyki. Promień rażenia ładunku wybuchowego wynosi 100 m. Pewien saper pokonuje taką odległość z. cm. s
c) 6(3x - 2) + 5(1-3x) = 7(x + 2) 3(1-2x) d) - 4)(5x + 3) + (4x - 3)(6x + 3) = (6x - 6)(8x + 3) + (9x 2-10) Zadanie 1. Zadania z fizyki Działająca na motocykl siła, której źródłem jest jego silnik, ma
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 ETAP OKRĘGOWY
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 7 zadań. 2. Przed rozpoczęciem
Materiał powtórzeniowy dla klas pierwszych
Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną
tej samej drogi. Który z chłopców jest bliżej celu?
Zestaw zadań...... imię i nazwisko lp. w dzienniku str. 1/2 grupa A...... klasa data 1. Zapisz, jakie części figur zostały zacieniowane. 1 2 3 2. Jedną czwartą sernika podzielono na trzy równe kawałki.
LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV
LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)
Produkt Woda Białko Tłuszcze Węglowodany Orzechy laskowe Fasola
IMIE I NAZWISKO ZADANIE ( PKT) Suma dwóch liczb niewymiernych A) jest zawsze liczba niewymierna nie może być liczba wymierna C) może być liczba całkowita D) nie może być liczba całkowita ZADANIE 2 ( PKT)
ZADANIE 2 (1 PKT) Największy wspólny dzielnik liczb 120 i 180, to A) 90 B) 60 C) 30 D) 20
IMIE I NAZWISKO ZADANIE ( PKT) Wymień które liczby ze zbioru { ; 4 ; ; 4; ; } ; 2π;, (). 6 sa liczbami wymiernymi. ZADANIE 2 ( PKT) Największy wspólny dzielnik liczb 20 i 0, to A) 90 60 C) 0 D) 20 ZADANIE
Pomiar siły ciężkości. Jest to nauka o zależności- im jestem bardziej obciążony tym trudniej mi skoczyć wyżej.
Pomiar siły ciężkości Jest to nauka o zależności- im jestem bardziej obciążony tym trudniej mi skoczyć wyżej. Bhp pracy w pracowni fizyki (zachowaj ostrożność podczas ćwiczenia) Jeden uczeń z grupy wbija
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019
.. pieczątka szkoły (dotyczy etapu szkolnego) Nr identyfikacyjny spma - 2018/2019 (numer porządkowy z kodowania) Nr identyfikacyjny - wyjaśnienie sp szkoła podstawowa, symbol przedmiotu MA matematyka,
Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015
Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA
BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego
KURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
TEMAT 21: Maszyny proste.
TEMAT 21: Maszyny proste. Większość osób kojarzy pojęcie "maszyna" jako skomplikowaną mechanicznie konstrukcję jak np. obrabiarka, wiertarka czy inne urządzenie posiadające napęd. Tymczasem, w fizyce maszyną
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje
14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)
Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 206/207 MATEMATYKA Informacje dla ucznia. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.
Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1
Energia mechaniczna 2012/2012
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Siła
Potęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6
Potęgi str. 1/6 1. Oblicz. a) 8 2 8 b) ( 2)7 2 c) 9 ( 9) 2 d) 34 27 2. Potęgę 3 6 można zapisać jako: A. 36 B. 3 3 3 3 3 3 C. 6 6 6 D. 3 6 3. Po obliczeniu wartości 3 2 3 otrzymamy liczbę: A. 3 8 B. 9
KONKURS MATEMATYCZNY organizowany przez Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli
KONKURS MATEMATYCZNY organizowany przez Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli Zespół Szkół Elektronicznych w Lublinie i PWSZ w Zamościu ETAP I 03.12.2010r. ZADANIA DLA KLASY I Czas pracy
ZJAWISKO PIEZOELEKTRYCZNE.
ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny
3. Wpisz brakujące liczby: a) Wstążkę o długości 7,5 m przecięto na 5 równych części. Każda część ma długość...
Zestaw zadań...... imię i nazwisko lp. w dzienniku str. 1/3 grupa A...... klasa data 1. Podkreśl ilorazy równe 0,7. 2,8 : 4 7,7 : 11 0,42 : 6 0,98 : 14 2. Oblicz średnią arytmetyczną liczb 5,5; 3,4 i 7,9.
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015. Imię i nazwisko:
(pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP I SZKOLNY Informacje:
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo
Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty
Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze
( Wynik podaj w postaci ułamka nieskracalnego.
Przykładowe zadania przygotowujące do egzaminu rocznego z matematyki - klasa Część I Zad. Oblicz: 8 a) : 5 5 5 5 c) : 6,5,8 9 : 0,6,5, : 0, b) d) f) 9 : :, 5 0 5 5 0,6 6 : 0, 5 0, 0,0 5 7 :,5 6 0, 5 0,
e) 4,3 0,2 f) 0,7 0,08 Za zakupione owoce pani Ania zapłaciła 5,10 zł. prawda fałsz
Zestaw zadań str. 1/...... imię i nazwisko lp. w dzienniku...... klasa data 1. Największą liczbą jest wynik działania: A. 2,4 +,2 B. 9,7 4,2 C. 400 : 1000 D. 1,9 2. Oblicz w pamięci: a) 218 + 82 c) 07
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE REJONOWE
ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE
LIGA ZADANIOWA ETAP V ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 23 MARCA 2012R.
ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 23 MARCA 2012R. KLASA IV Zad. 1 Jeżeli liczbę lat pana Wiekowego pomnożymy przez 6 i do wyniku dodamy 38, to otrzymamy 500. Oblicz,
1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik?
Diagnoza klasa I Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zadania otwarte 1. Na wycieczkę pojechało
LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP IV
LIGA MATEMATYCZNO-FIZYCZNA KLASA I ETAP IV Zad. Janek oszczędza, aby kupić komputer, który kosztuje 5400 zł. Zapytany, ile już zgromadził pieniędzy, odpowiedział : Nawet gdybym miał o jedną piątą więcej
Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej
Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby
ZADANIA KOŁO FIZYCZNE 1
ZADANIA KOŁO FIZYCZNE 1 EWA LUTKIEWICZ IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na specjalnie przygotowanym torze testowano nowy samochód. Na wykresie przedstawiono zależność prędkości tego samochodu od czasu
Szkolny Mistrz Matematyki Zestaw drugi - listopad
Szkolny Mistrz Matematyki Zestaw drugi - listopad Zadanie. Oblicz, pamiętając o kolejności wykonywania działań: a) 4 ( + ) : = c) ( + ) = b) + (7 6 7) = d) 0 0 : [(6 + ) : ( )] = Zadanie. Zapisz za pomocą
Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. strona 1. Imię i nazwisko:... Klasa:... W prostokącie zamalowano:
strona 1 Imię i nazwisko:... Klasa:... Zadanie 1. W prostokącie zamalowano: A. figury C. figury B. figury D. figury Zadanie 2. W kole zamalowano: A. figury C. figury B. figury D. figury Zadanie 3. Wypisz
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
Skrypt 31. Powtórzenie do matury Liczby rzeczywiste
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury
ZASADY DYNAMIKI NEWTONA
ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często
Zadania z ułamkami. Obliczenia czasowe
Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
KONKURS MATEMATYCZNO FIZYCZNY 26 listopada 2009 r. Klasa II
...... imię i nazwisko ucznia... szkoła KONKURS MATEMATYCZNO FIZYCZNY 26 listopada 2009 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 14 zadań. Pierwsze 10 to zadania zamknięte. Rozwiązanie
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.
4. Ułamki zwykłe i dziesiętne
4. Ułamki zwykłe i dziesiętne Zadanie 1. Porównaj ułamki 2 i 4. Który ułamek jest większy? Wybierz odpowiedź A lub oraz jej 6 uzasadnienie I lub II. A. 4 6 jest większym ułamkiem, ponieważ. Ułamki są równe,
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego)
Włodzimierz Wolczyński 09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015
Etap wojewódzki 21 lutego 2015 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 6 zadań. 2. Przed rozpoczęciem
Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d)
Blok I: Wyrażenia algebraiczne I. Obliczyć a) 9 9 9 9 ) 7 y y dla y = z, jeśli = 0 4, y = 0 0.7 i z = y 64 7) ) 7) 7 7 I. Uprościć wyrażenia a) 48 6 4 dla 0 5) 4 dla 0 ) 4 ) dla 0 45 4 y ) dla yz 0 I.
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ IV. PRACA, MOC, ENERGIA
DZIAŁ IV. PRACA, MOC, ENERGIA Wielkość fizyczna Jednostka wielkości fizycznej Wzór nazwa symbol nazwa symbol Praca mechaniczna W W F S dżul J Moc Energia kinetyczna Energia potencjalna grawitacji (ciężkości)
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje
WOJEWÓDZKI KONKURS PRZEDMIOTOWY
Pieczątka szkoły Kod ucznia Suma punktów Numer zadania 1-17 18 19 20 Liczba punktów WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 5 LISTOPADA 2014R. 1. Test konkursowy
FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
3 zawartości szklanki obliczył, że w pozostałej
Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Zadanie 1. ( 0-5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe.
Zadanie 1. ( -5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe. a) Liczby: 1,15 i 3 1: są równe. P F b) Liczba 5 5 5 jest większa od liczby 6 6. 6 P F c) Średnia
Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=
Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
c) 3, Liczba zaokrąglona do dziesiątek tysięcy wynosi TAK NIE Liczba 3515,142 zaokrąglona do setek wynosi 3515,14.
Klasa. System dziesiątkowy.. Powierzchnia Litwy jest równa 65 200 000 000 m 2. Wielkość ta zapisana w notacji wykładniczej ma postać: A. 6,52 0 0 m 2 B. 6, 52 0 0 m 2 C. 0,652 0 m 2 D. 652 0 8 m 2 2. Zapisz
Zadania egzaminacyjne z fizyki.
Zadania egzaminacyjne z fizyki. Zad1 Gdy Ala z I a zapyta Cię: Skąd się wzięła ta piękna tęcza na niebie?, odpowiesz: A. to odbicie światła słonecznego od powierzchni kropli deszczu B. to rozszczepienie
Test sprawdzający wiedzę z matematyki z klasy siódmej listopad Czas: 100 min
Imię i nazwisko... Test sprawdzający wiedzę z matematyki z klasy siódmej listopad Czas: 100 min 1. W pewnej szkole podstawowej dziewczęta stanowią 60% wszystkich uczniów. Ilu chłopców chodzi do tej szkoły,
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
ETAP I - szkolny. 24 listopada 2017 r. godz
XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Podstawy niepewności pomiarowych Ćwiczenia
Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =