c) 3, Liczba zaokrąglona do dziesiątek tysięcy wynosi TAK NIE Liczba 3515,142 zaokrąglona do setek wynosi 3515,14.

Wielkość: px
Rozpocząć pokaz od strony:

Download "c) 3, Liczba zaokrąglona do dziesiątek tysięcy wynosi TAK NIE Liczba 3515,142 zaokrąglona do setek wynosi 3515,14."

Transkrypt

1 Klasa. System dziesiątkowy.. Powierzchnia Litwy jest równa m 2. Wielkość ta zapisana w notacji wykładniczej ma postać: A. 6, m 2 B. 6, m 2 C. 0,652 0 m 2 D m 2 2. Zapisz podane liczby w notacji wykładniczej. a) 0,007 b) c) 2 miliardy. Zapisz podane liczby bez użycia potęg. a), b) 7, 0 5. Oszacuj wyniki działań. Wstaw odpowiedni znak < lub > w kratkę. a) 5,78 + 0, b) 2,567 +, c), d) 5, Czy poprawnie zaokrąglono liczby? Wstaw znak X w odpowiednią kratkę. Liczba zaokrąglona do dziesiątek tysięcy wynosi TAK NIE Liczba 55,2 zaokrąglona do setek wynosi 55,. TAK NIE Liczba 85, zaokrąglona do części dziesiątych wynosi 85,. TAK NIE Liczba zaokrąglona do dziesiątek wynosi TAK NIE 6. Wynik pewnego pomiaru zapisano za pomocą liczby zajmującej 6 miejsc po przecinku (ostatnia z zapisanych cyfr nie jest zerem). Po zaokrągleniu wyniku do części setnych otrzymano 2. Ustal, jaki mógł być największy, a jaki najmniejszy wynik tego pomiaru. *7. Uzasadnij, że jeśli liczba naturalna ma sumę cyfr podzielną przez 90 i dwucyfrową końcówkę równą 90, to jest podzielna przez 90. Klasa. System rzymski.. Liczby CCXL i DCCXX zapisz w systemie dziesiątkowym, a liczby 85 i 99 w systemie rzymskim. 2. Na ścianie frontowej ratusza zapisano dwie daty mówiące o rozpoczęciu oraz zakończeniu jego budowy: MCDLXXVI i MDXLII. Ile lat budowano ten ratusz?. W roku 2000 dziadek Marty miał 55 lat. W którym roku urodził się dziadek? A. MCMXLV B. MCMLXV C. MDXLV D. MMLV. Wskaż liczbę mniejszą od DCXLV. A. DCLXIV B. DCLV C. CDXLV D. DCLXV 5. Oceń prawdziwość zdań. Wstaw znak X w odpowiednią kratkę. Jeżeli w liczbie MDCXL zamienimy miejscami cyfry D i C, to wartość liczby wzrośnie. Liczba zapisana w systemie rzymskim za pomocą 6 cyfr może być mniejsza niż liczba zapisana za pomocą 5 cyfr. Liczba, której zapis w systemie rzymskim zaczyna się od cyfry X, nie może być większa od 00. Zapis każdej liczby większej od 50 w systemie rzymskim zaczyna się cyfrą L. 6. Uzupełnij zdanie właściwą liczbą zapisaną w systemie dziesiątkowym. Za pomocą cyfr: L, M, D, C zapisano wszystkie możliwe liczby, używając każdej z cyfr co najmniej raz. Różnica między największą a najmniejszą z zapisanych liczb wynosi

2 Klasa. Liczby wymierne i niewymierne.. Rozwinięcie dziesiętne liczby po zaokrągleniu do części setnych jest równe: A. 2, B. 2,() C. 2,() D. 2, 2. Która z podanych liczb jest niewymierna? A. 69 B. 0,25 C. 6 D. 6. Odwrotnością liczby jest liczba: A. B. C. D.. Liczby całkowite większe od 8 i mniejsze od 5 to: A. 7, 6, 5,,, 2,, 0,, 2,, B., 2,, 0,, 2 C. 2,, 0,, 2 D. 2,, 0,, 2, 5. Znajdź dwie kolejne liczby całkowite, tak aby jedna z nich była mniejsza, a druga większa od Oszacuj: 9 metra to A. więcej niż pół metra. B. więcej niż ćwierć metra. C. mniej niż 0 cm. D. mniej niż 2 cm. 7. W kolejności od najmniejszej do największej zapisano liczby: A.,,,,,(2) B. 2,5, 2,5, 2,(5) C.,7,,6(7),,67 D.,(56),,57,,5(7) 8. Oceń prawdziwość zdań. Wstaw znak X w odpowiednią kratkę. Liczba 0,7(5) jest większa od 2 i mniejsza od. Liczba 0, jest większa od 2 i mniejsza od. 9. Oszacuj: 25 tygodnia to A. więcej niż 7 godzin. B. mniej niż 7 godzin, ale więcej niż 5 godzin. C. mniej niż 5 godzin, ale więcej niż godzina. D. mniej niż godzina. 0. Czy prawdą jest, że ułamek jest równy? Wybierz poprawną odpowiedź i poprawne uzasadnienie. TAK, NIE, ponieważ licznik i mianownik tego ułamka są równe 00, czyli ułamek jest równy 0 0 =. ułamek można skrócić najpierw przez 50, potem przez 2 i otrzymujemy =. wartość tego ułamka jest liczbą niewymierną, a jest liczbą wymierną = = = 25 5 = 5.

3 . Wstaw znak < lub >. a) 7 8 b) 0 7 c) d) Oceń prawdziwość zdań. Wstaw znak X w odpowiednią kratkę. Suma dwóch liczb niewymiernych nie może być liczbą wymierną. Różnica liczb wymiernej i niewymiernej może być liczbą wymierną. Iloczyn dwóch liczb niewymiernych nie może być liczbą wymierną. Iloraz liczb wymiernej i niewymiernej może być liczbą wymierną. *. O trzech różnych liczbach a, b, c wiemy, że abc = 0 i a + b = 0. Uzasadnij, że tylko jedna z tych liczb jest liczbą ujemną. Klasa.Podstawowe działania na liczbach. Wartość wyrażenia : + 2 wynosi: A. 2 B C. 6 6 D Oblicz: a), : 7 b),9 0,9 2. Oblicz: a) 2 8 :( ) b) ( 0) ( 8 + 5). Uzupełnij poniższe zdania, jeśli a = 2, b = 0,2. Suma liczb a i b wynosi Iloczyn liczb a i b wynosi Suma liczb a i b jest od ich iloczynu. większa / mniejsza 5. Oblicz: a) 2, 2, 5 b) : 6. W butelce było 2 litra soku. Jarek wypił 2 zostało w butelce? zawartości butelki, a Ania 0, tego, co zostało. Ile litrów soku 7. Poniższe wyrażenie należy uzupełnić, wpisując w kółkach jeden znak dodawania, jeden odejmowania i jeden mnożenia, tak aby otrzymać jak największy wynik. W jakiej kolejności powinny być wpisane te znaki? A. odejmowanie, dodawanie, mnożenie B. dodawanie, mnożenie, odejmowanie 6 5 C. mnożenie, dodawanie, odejmowanie D. dodawanie, odejmowanie, mnożenie 8. Oceń, czy poniższe równości są prawdziwe. Wstaw znak X w odpowiednią kratkę. + (,) = 20 TAK NIE 5, = 5 TAK NIE 5 6,25 = 5 TAK NIE 8 :( 0,6) = 50 TAK NIE 9. Wpisz w wykropkowanych miejscach właściwą liczbę. Suma liczb ośmiocyfrowej i dziewięciocyfrowej ma co najwyżej cyfr. Iloczyn liczb pięciocyfrowej i sześciocyfrowej ma co najmniej cyfr.

4 Klasa.Działania na potęgach i pierwias. Iloczyn 2 jest równy: A. 6 B. 7 C. 8 D Wartość wyrażenia jest równa: A. 6 B C. 0 D. 6. Liczbą przeciwną do 50 jest liczba: A. 5 2 B. 25 C. 5 2 D Oceń, czy poniższe równości są prawdziwe. Wstaw znak X w odpowiednią kratkę. 8 = TAK NIE ( 6) = ( ) TAK NIE 8 = 2 TAK NIE = 20 TAK NIE 5. Oblicz: : Oblicz. Wynik podaj z dokładnością do części dziesiątych. Przyjmij, że 2,,,7, 5 2,2. a) 0,( 20 8) b) ( 8 + 2) : 00 c) Oceń prawdziwość równości. Wstaw znak X w odpowiednią kratkę = 2 5 = = 0, 5 8. Czy prawdą jest, że = 6? Wybierz poprawną odpowiedź i poprawne uzasadnienie. lewa strona jest równa 9 5, a to jest to samo, co 6. TAK, NIE, ponieważ = 5 = 6. lewa strona jest równa 5. lewa strona jest liczbą nieparzystą, a prawa parzystą. 9. Uzasadnij, że , jest liczbą wymierną. 0. Uzupełnij luki w poniższych zdaniach liczbami wybranymi spośród: 20, 26, 0, 5. Nierówność 8 < a < 5 6 jest prawdziwa dla a = Nierówność < b < jest prawdziwa dla b = % liczby to: A. 9 B. Klasa.Obliczenia procentowe. 0 C. 00 D Oskar kupił bilet do kina za 0 zł i książkę za 5 zł. Jaki procent wydanych pieniędzy stanowi cena książki? A. 0% B. 50% C. 60% D %. Ania kupiła podręcznik do matematyki za 5 zł, co stanowiło 5% ceny kompletu książek do gimnazjum dla klasy trzeciej. Cały zestaw podręczników dla klasy trzeciej kosztuje: A. 5,75 zł B. 00 zł C. 75 zł D. 50 zł

5 . Do Gimnazjum Nr uczęszcza 000 uczniów, w tym 529 chłopców. Oblicz (z dokładnością do %), jaki procent wszystkich uczniów tego gimnazjum stanowią chłopcy. 5. W pewnej szkole w roku 20 było 200 uczniów. W roku 202 uczęszczało do tej szkoły 86 uczniów. O ile procent zmalała liczba uczniów uczęszczających do tej szkoły? 6. W głosowaniu na wójta gminy pan A zdobył 5% głosów. Pozostałych 2 głosujących wybrało pana B. Ilu wyborców wzięło udział w tym głosowaniu? 7. W pewnym prostokącie długość zmniejszono o 5%, a szerokość o 20%. Czy prawdą jest, że pole tego prostokąta zmalało o ponad 50%? 5% + 20% to więcej niż 50%. TAK, NIE, ponieważ pole tego prostokąta zmniejszono o 0,5 0,20 = 0,09, czyli o 9%. pole zmniejszonego prostokąta stanowi % pola początkowego prostokąta. ani długości, ani szerokości nie zmniejszono więcej niż o 50%. 8. Jaki procent wszystkich liczb dwucyfrowych stanowią liczby dwucyfrowe podzielne przez 5? 9. Mama upiekła 60 ciasteczek. Wojtek zjadł 20% wszystkich wypieków. Po nim przyszła Asia, która zjadła tego, co zostało. 50% pozostałych ciasteczek zjadł tata, a resztę zjadła mama. Jaki procent wszystkich ciasteczek stanowiły ciasteczka zjedzone przez mamę? 0. Pan Karol chciałby, by jego wynagrodzenie wzrastało co roku o 5%. Ile wyniosłoby wynagrodzenie pana Karola za 2 lata, jeśli obecnie zarabia on 5000 zł?. Oceń prawdziwość zdań. Wstaw znak X w odpowiednią kratkę. % liczby 57 to mniej niż 5. Liczba 5 stanowi ponad % liczby 555. Liczba, której % jest równy 0,27, jest mniejsza od 70. liczby 7800 to tyle samo co % z liczby W pewnym roztworze soli o stężeniu % zwiększono ilość wody o 5% i ilość soli o 5%. Jakie stężenie ma otrzymany roztwór?. Uzasadnij, że cena obniżona o 20%, a następnie o 5% nie jest równa cenie uzyskanej po jednorazowej obniżce o 5%. *. Uczniowie napisali pracę klasową. Oceny bardzo dobre otrzymało 0% uczniów, oceny dobre 0% uczniów, oceny dostateczne 8 uczniów, a pozostali uczniowie dostali oceny dopuszczające. Średnia wszystkich ocen z tej klasówki wynosiła,9. Ilu uczniów otrzymało poszczególne oceny? Klasa. Przekształcenia algebraiczne.. Wyrażenie 7(x 2 ) ( 5x 2 ) doprowadź do prostszej postaci. 2. Zapisz wyrażenie t(t + 2s) + 2s(t s) w najprostszej postaci.. Uzupełnij. a) 5xy 5y 2 x = ( y) b) e + e f 2 = 2e Liczba o 62% większa od liczby a to: A. 0,62a B.,8a C.,62a D. 0,8a 5. Zapisz wyrażenie (5x + 2)(x ) 5(x 2 ) w jak najprostszej postaci i oblicz jego wartość dla x =.

6 Klasa. Równania i układy.. Rozwiązując pewne równanie metodą równań równoważnych, otrzymaliśmy równość 0 =. Wnioskujemy stąd, że: A. popełniliśmy błąd w obliczeniach. B. równanie nie ma rozwiązania. C. rozwiązaniami równania są wszystkie liczby rzeczywiste. D. równanie ma dwa rozwiązania: 0 i. x + y = 0 2. Rozwiąż układ równań: 7x + 2y =. Ze wzoru V = a2 h wyznacz h.. Ania ma 5 złote w monetach dwuzłotowych i pięciozłotowych. W sumie ma 6 monet. Jaką kwotę ma Ania w dwuzłotówkach? 5. Wojtek pomyślał o pewnej liczbie. Pomnożył ją przez 5, do wyniku dodał 5, a otrzymany rezultat podzielił przez 5. Od tak otrzymanego wyniku odjął 5 i otrzymał 55. O jakiej liczbie pomyślał Wojtek? 6. Rozwiąż równania: x a) 7 = 5 b) x 2 5 = x 6 7. Ze wzoru M = (w + k) l wyznacz k. 8. Dla jakiej wartości parametru a wyrażenie (a + 2) 2 (a ) 2 przyjmuje wartość 5? 9. Jedyną liczbą spełniającą pewne równanie jest liczba. Oceń prawdziwość zdań. Wstaw znak X w odpowiednią kratkę. Jeśli do obu stron tego równania dodam 7,6, to otrzymam równanie, którego rozwiązaniem jest liczba 8,6. Jeśli obie strony tego równania pomnożę przez, to otrzymam równanie, którego rozwiązaniem jest liczba. 0. Rozwiąż równanie x + x = x x 2.. Kasia jest o 5 lat młodsza od Tomka. Za lata będzie od niego razy młodsza. Ile lat ma Tomek? 2. W numerze telefonu Magdy występują tylko dwie różne cyfry, których suma jest równa 9. Jedna z cyfr występuje cztery razy, druga dwa razy, a suma wszystkich sześciu cyfr wynosi 28. Jaki numer telefonu może mieć Magda, jeśli jest on liczbą, która czytana od końca jest równa liczbie czytanej od początku? Podaj wszystkie możliwości. x ky = p *. Niektóre współczynniki w układzie równań zastąpiono literami. Uzasadnij, że układ ma kx + y = q zawsze jedno rozwiązanie, niezależnie od wartości współczynników k, p, q. *. Jeśli zarówno długość, jak i szerokość prostokąta zwiększymy o 2 cm, to jego pole zwiększy się o 0 cm 2. Oblicz, o ile zwiększy się pole tego prostokąta, jeśli jego długość i szerokość zwiększymy o 5 cm.

W zapisie pewnej liczby w systemie rzymskim dwa znaki zastąpiono. D CC LVI Uzasadnij, że liczba ta jest mniejsza od 850.

W zapisie pewnej liczby w systemie rzymskim dwa znaki zastąpiono. D CC LVI Uzasadnij, że liczba ta jest mniejsza od 850. Zadanie. Czy prawdą jest, że liczba LXV jest mniejsza od liczby XCVIII? Wybierz odpowiedź (tak) lub (nie) i jej uzasadnienie spośród zdań A- A. liczba LXV jest mniejsza od 70, a liczba XCVIII jest większa

Bardziej szczegółowo

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy MARIUSZ WRÓBLEWSKI Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy. W każdej z zapisanych poniżej liczb podkreśl cyfrę jedności. 5 908 5 987 7 900 09 5. Oblicz, ile razy kąt prosty jest mniejszy

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

Treści nauczania wymagania szczegółowe

Treści nauczania wymagania szczegółowe Treści nauczania wymagania szczegółowe 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje, odejmuje, mnoży i dzieli

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

SZKOLNA LIGA ZADANIOWA

SZKOLNA LIGA ZADANIOWA KLASA 4 - ZESTAW ZADANIE Zmieszano dwa rodzaje cukierków czekoladowych: kg po 6zł i kg po 7zł. Jaka powinna być cena mieszanki? Za książkę i zeszyty zapłacono zł, a za taką samą książkę i 5 takich zeszytów

Bardziej szczegółowo

Potęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6

Potęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6 Potęgi str. 1/6 1. Oblicz. a) 8 2 8 b) ( 2)7 2 c) 9 ( 9) 2 d) 34 27 2. Potęgę 3 6 można zapisać jako: A. 36 B. 3 3 3 3 3 3 C. 6 6 6 D. 3 6 3. Po obliczeniu wartości 3 2 3 otrzymamy liczbę: A. 3 8 B. 9

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

KURS MATURA PODSTAWOWA

KURS MATURA PODSTAWOWA KURS MATURA PODSTAWOWA LEKCJA Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona Część : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Ile liczb całkowitych należy do przedziału,

Bardziej szczegółowo

ZBIÓR ZADAŃ - OKE. Karol (Polska) godz. 17:00 Wiktor (Kanada) godz. 9:00

ZBIÓR ZADAŃ - OKE. Karol (Polska) godz. 17:00 Wiktor (Kanada) godz. 9:00 Zadanie 1. Karol mieszka w Polsce, a jego brat Wiktor studiuje w Kanadzie. Gdy u Karola jest godzina 17:00, to u Wiktora jest dopiero 9:00 tego samego dnia. Karol (Polska) godz. 17:00 Wiktor (Kanada) godz.

Bardziej szczegółowo

( Wynik podaj w postaci ułamka nieskracalnego.

( Wynik podaj w postaci ułamka nieskracalnego. Przykładowe zadania przygotowujące do egzaminu rocznego z matematyki - klasa Część I Zad. Oblicz: 8 a) : 5 5 5 5 c) : 6,5,8 9 : 0,6,5, : 0, b) d) f) 9 : :, 5 0 5 5 0,6 6 : 0, 5 0, 0,0 5 7 :,5 6 0, 5 0,

Bardziej szczegółowo

Klasa 5. Liczby i działania

Klasa 5. Liczby i działania Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe

Bardziej szczegółowo

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury

Bardziej szczegółowo

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa:

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: LICZBY WYMIERNE I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: A. 66 B. 64 C. 46 D. 44 Zadanie 2 Wskaż jedną poprawną odpowiedź. Liczba

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 206/207 MATEMATYKA Informacje dla ucznia. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16

Jarosław Wróblewski Matematyka Elementarna, zima 2015/16 Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby naturalne i ułamki... 7 Liczby na co dzień... 12 Figury na płaszczyźnie... 19 Pola wielokątów... 24 Figury przestrzenne... 30 Procenty...

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

x Kryteria oceniania

x Kryteria oceniania Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik?

1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik? Diagnoza klasa I Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zadania otwarte 1. Na wycieczkę pojechało

Bardziej szczegółowo

Sprawdziany powtórkowe. III klasa gimnazjum. Opracował : Krzysztof Kozak auczyciel I LO, Gimnazjum nr 1, Gimnazjum nr 2 w Głogowie

Sprawdziany powtórkowe. III klasa gimnazjum. Opracował : Krzysztof Kozak auczyciel I LO, Gimnazjum nr 1, Gimnazjum nr 2 w Głogowie Sprawdziany powtórkowe III klasa gimnazjum Opracował : Krzysztof Kozak auczyciel I LO, Gimnazjum nr, Gimnazjum nr w Głogowie Liczby rzeczywiste Gr.. Do którego zbioru należą dwie liczby niewymierne? a)

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 018/019 w CKZiU NR Ekonomik w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi,

Bardziej szczegółowo

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 7

Wymagania na poszczególne oceny szkolne Klasa 7 1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016 Etap wojewódzki 20 lutego 2016 r. Godzina 11.00 Kod ucznia Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

POTĘGI I PIERWIASTKI

POTĘGI I PIERWIASTKI POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.

Bardziej szczegółowo

Lista 1 liczby rzeczywiste.

Lista 1 liczby rzeczywiste. Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki

Bardziej szczegółowo

Matematyka podstawowa I. Liczby rzeczywiste, zbiory

Matematyka podstawowa I. Liczby rzeczywiste, zbiory Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY CZAS PRACY: 120 MIN. ZADANIE 1. ZADANIE 2 Wyłacz wspólny czynnik przed nawias: x 2 3x.

EGZAMIN GIMNAZJALNY CZAS PRACY: 120 MIN. ZADANIE 1. ZADANIE 2 Wyłacz wspólny czynnik przed nawias: x 2 3x. IMIE I NAZWISKO EGZAMIN GIMNAZJALNY CO NALEŻY POĆWICZYĆ? CZ. 3 CZAS PRACY: 120 MIN. ZADANIE 1 Uprość wyrażenie (2x 3)(x + 7). ZADANIE 2 Wyłacz wspólny czynnik przed nawias: x 2 3x. ZADANIE 3 ( ) Zapisz

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

Środki dydaktyczne Zestaw zadań/pytań z działu Mnożenie i dzielenie ułamków zwykłych. Każde pytanie znajduje się na osobnej karteczce.

Środki dydaktyczne Zestaw zadań/pytań z działu Mnożenie i dzielenie ułamków zwykłych. Każde pytanie znajduje się na osobnej karteczce. Scenariusz lekcji I. Cele lekcji ) Wiadomości Uczeń zna: a) algorytm mnożenia ułamków zwykłych i liczb mieszanych przez liczby naturalne, b) sposób obliczania ułamka z liczby, c) algorytm mnożenia liczb

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas

Bardziej szczegółowo

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 5 zreformowanej szkoły podstawowej

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 5 zreformowanej szkoły podstawowej matematyka sprawdziany kompetencji dla klasy zreformowanej szkoły podstawowej Łódź 2001 Korekta Grażyna Pysznicka-Kozik Projekt okładki Jacek Wilk Skład Krzysztof Jodłowski Copyright by Piątek Trzynastego,

Bardziej szczegółowo

1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 4,5, y = 1 TAK NIE

1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 4,5, y = 1 TAK NIE 1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 0,5, y = 5 TAK NIE x = 3, y = 1 TAK NIE x = 7, y = 5 TAK NIE x = 4,5, y = 1 TAK NIE 2. Sprawdź, czy para

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII. Przedmiotowy system oceniania z matematyki w klasie VII. Ocena roczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza

Bardziej szczegółowo

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019

Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w

Bardziej szczegółowo

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (

Bardziej szczegółowo

SZKOLNA LIGA ZADANIOWA

SZKOLNA LIGA ZADANIOWA KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

rozszerzające (ocena dobra) podstawowe (ocena dostateczna)

rozszerzające (ocena dobra) podstawowe (ocena dostateczna) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

SUMA PUNKTÓW: 126 I (0, 2) 10 II (2, 5) 5 III 25 IV

SUMA PUNKTÓW: 126 I (0, 2) 10 II (2, 5) 5 III 25 IV POTEGI I PIERWIASTKI SUMA PUNKTÓW: 126 ZADANIE 1 (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 10 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 1 Liczba (0, 4) 5 jest równa liczbom A) II i IV B) I i II

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie) Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 23 lutego 2013 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test

Bardziej szczegółowo

NaCoBeZU z matematyki dla klasy 7

NaCoBeZU z matematyki dla klasy 7 NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby

Bardziej szczegółowo

Matematyka. Repetytorium szóstoklasisty

Matematyka. Repetytorium szóstoklasisty Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

Zadanie 1.1. Zadanie 1.2. Zadanie 1.3. Zadanie 1.4. Zadanie 1.5. Zadanie 1.6. Zadanie 1.7. Zadanie 1.8. Zadanie Zadanie 1.9

Zadanie 1.1. Zadanie 1.2. Zadanie 1.3. Zadanie 1.4. Zadanie 1.5. Zadanie 1.6. Zadanie 1.7. Zadanie 1.8. Zadanie Zadanie 1.9 Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Liczba dwie całe i cztery tysięczne zapisana cyframi to: A. 2, B. 2,00 C. 2,0 D. 2 Liczba 3 zapisana w postaci dziesiętnej 100 to: A.,03 B.,3 C.,003 D. 3 Zadanie

Bardziej szczegółowo

Suma ( ) 0,3 jest równa:

Suma ( ) 0,3 jest równa: Liczby i działania Zadania zamknięte: Zadanie. (0-p.) Dane są liczby: 9 ; - 8,5 ; - 4, ; 6,5. Która z nich ma wartość bezwzględną mniejszą od 5? A) -9. B) 6,5 C) -8,5 D) 4, Zadanie. (0-p.) Ile liczb całkowitych

Bardziej szczegółowo

Skrypt 1. Liczby wymierne dodatnie. Liczby naturalne, całkowite i wymierne - przypomnienie wiadomości

Skrypt 1. Liczby wymierne dodatnie. Liczby naturalne, całkowite i wymierne - przypomnienie wiadomości Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 1 Liczby wymierne dodatnie Liczby naturalne,

Bardziej szczegółowo

KURS MATURA ROZSZERZONA część 1

KURS MATURA ROZSZERZONA część 1 KURS MATURA ROZSZERZONA część 1 LEKCJA 1 Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 10 2 2019 684 168 2 Dane

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 204/205 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 5 stycznia 205 r. 20 minut Informacje dla ucznia.

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)

Bardziej szczegółowo

WPISUJE UCZEŃ GRUDZIEŃ Czas pracy: 90 minut PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA

WPISUJE UCZEŃ GRUDZIEŃ Czas pracy: 90 minut PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1..).

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby naturalne... 7 Ułamki zwykłe, część I... 12 Ułamki zwykłe, część II... 17 Figury na płaszczyźnie... 22 Ułamki dziesiętne... 27 Procenty...

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

WYPEŁNIA KOMISJA KONKURSOWA

WYPEŁNIA KOMISJA KONKURSOWA WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz

Bardziej szczegółowo

Szkolna Liga Matematyczna zestaw nr 4 dla klasy 3

Szkolna Liga Matematyczna zestaw nr 4 dla klasy 3 zestaw nr 4 dla klasy 3 Muchy mają po 6 nóg. Ile par butów potrzebuje rodzina much złożona z mamy, taty i dziecka? Jeśli teraz wskazówka minutowa zegarka jest na czwórce, to za ile minut będzie na ósemce?

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 3 czerwca 017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Strona 1 z 8 1. Wprowadzenie do matematyki. Pojęcia

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Matematyka test dla uczniów klas drugich

Matematyka test dla uczniów klas drugich Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 2011/20 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko kl... Zadanie 1. Liczba 5 1, 75 jest równa liczbie 6 7 1 A. 2

Bardziej szczegółowo

lekcje powtórzeniowe Matematyka z plusem

lekcje powtórzeniowe Matematyka z plusem lekcje powtórzeniowe Podręcznik Matematyka 5 został dopuszczony przez MEN do użytku szkolnego i wpisany do wykazu podręczników. Zestaw dla ucznia składa się z podręcznika i ćwiczeń dostępnych w trzech

Bardziej szczegółowo

KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6

KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 Wiesława Janista, Elżbieta Mrożek, Marta Szymańska W tym roku szkolnym kontynuujemy cykl materiałów przeznaczonych dla słabych uczniów. Zadania układają: Elżbieta

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Wymagania na poszczególne oceny szkolne z matematyki dla klas siódmych ''Matematyka" Szkoła Podstawowa im. Jana Pawła II w Mętowie Rok szkolny 2017/2018 Klasa 7a, 7b Nauczyciel: Małgorzata Łysakowska Ocena

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 1 Zadania liczby rzeczywiste cz.1

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 1 Zadania liczby rzeczywiste cz.1 1 TEST WSTĘPNY 1. (2p) Liczbę zapisano w postaci ułamka dziesiętnego i zaokrąglono z dokładnością do jednego miejsca po przecinku. Błąd bezwzględny otrzymanego przybliżenia jest równy. Błąd względny otrzymanego

Bardziej szczegółowo

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy

Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy Powtórka przed klasowką nr 3 - ułamki (kl. 6) - zestaw łatwy MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawne dokończenie zdania. Drugą potęgą liczby jest A. B. C. D. 2. Zamień podany

Bardziej szczegółowo

Zadanie 1.2. Zadanie 1.4. Zadanie 1.6. Zadanie 1.8

Zadanie 1.2. Zadanie 1.4. Zadanie 1.6. Zadanie 1.8 Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Liczba o x większa od y to: A. y x C. y x B. xy D. x + y Iloczyn liczb 2a i b to: A. 2a + b C. 2ab B. 2a b D. 2a b Zadanie 1.3 Zadanie 1.4 Wojtek chce kupić x

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo