Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Wielkość: px
Rozpocząć pokaz od strony:

Download "Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015"

Transkrypt

1 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego stopnia z liczb ujemnych..a.. Oblicz: a) : 5 ; b) :6 : 5.a.. Oblicz: a) b) c) : 4 0 d) 5 4.a.. Wynik obliczeń : (,4), to: A) 0 B) 5 C) 6 D) 75.a.4. Wartość podwojonej różnicy kwadratów liczb i wynosi: 8 : e 5 : A) 8 B) 6 C) 44 D) 6.a.5. Podwojony kwadrat sumy liczb 5 i ma wartość: A8 4 5 B 8 C 4 D 8 8 5

2 .a.6. Iloraz sumy liczb 7 i przez ich różnicę ma wartość: A B C D a.7. Suma dwóch liczb wynosi 5. Jeżeli pierwszą liczbę zwiększymy dwukrotnie i weźmiemy drugiej liczby, to suma zwiększy się o 7. Szukane liczby to: A 6 i 9 B 9 i 6 C 8 i 7 D 7 i 8.a.8. Pan Andrzej jechał samochodem z Poznania do Warszawy przez pierwsze trzy godziny z prędkością 70 km/h, a następnie przyspieszył i kolejne dwie godziny jechał z prędkością 90 km/h. Zatem podróż pan Andrzej odbył ze średnią prędkością: A 78 km/h B 80 km/h C 8 km/h D 76 km/h.a.9. Która z poniższych liczb jest większa od? A 0,0 B C ( ) D.a.0. Liczbą odwrotną do liczby jest: A B C D.a.. Do jakiej potęgi należy podnieść aby otrzymać A B - C 4 D 0,5.a.. Suma liczby odwrotnej do -,5 i przeciwnej do jest równa: A 5 B 4,5 C D - 4 b) badam, czy wynik obliczeń jest liczbą wymierną. 4.b.. Wskaż liczby niewymierne w zbiorze: ; 0,(); 64; ; ; 0; ;,4; b.. Rozstrzygnij, czy liczby 7 b są wymierne czy niewymierne. 9 a oraz

3 .b.. Oblicz wartość wyrażenia: a) ( b).b.4. Porównaj liczby 5 6 oraz 6 5..b.5. Liczba jest elementem zbioru: A (; ) \ ( ) B W \ C C ( ) \ W D (; ) \ < ) c) wyznaczam rozwinięcia dziesiętne; znajduję przybliżenia liczb..c.. Liczbę,749 zaokrąglij z dokładnością do: a) całości b) części dziesiątych c) części setnych.c.. O liczbach a i b wiemy, że a 7,5 i jest to przybliżenie z nadmiarem, a błąd bezwzględny tego przybliżenia wynosi 0,4, oraz że b 8,5 i jest to przybliżenie z niedomiarem, a błąd bezwzględny tego przybliżenia wynosi 0,6. a) znajdź liczby a i b. b) oblicz sumę liczb a i b. Otrzymany wynik zaokrąglij do pierwszego miejsca po przecinku, a następnie oblicz błąd bezwzględny i błąd względny otrzymanego przybliżenia..c.. Ułamek okresowy zamień na nieskracalny ułamek zwykły, 6 0,4 6 c),(). a) 0 b).c.4. Dane są liczby x 0, 5 oraz 0, 6 y. Znajdź rozwinięcie dziesiętne liczby x y..c.5. Liczba 0,(45) po zamianie na ułamek zwykły jest równa: A B C D

4 d) stosuję pojęcie procentu i punktu procentowego w obliczeniach..d.. Oprocentowanie kredytu mieszkaniowego w BR wynosiło dotychczas 6%. Zarząd banku podniósł wysokość oprocentowania tego kredytu o 0%. O ile punktów procentowych wzrosło oprocentowanie kredytu mieszkaniowego?.d.. Jeden bok prostokąta zmniejszono o 5%, a drugi zwiększono o 5%. Pole tak otrzymanego prostokąta: A) zmniejszyło się o 6,5% B) zwiększyło się o 6,5% C) nie zmieniło się D) stanowi 0,75 pola pierwszego prostokąta.d.. Liczba dodatnia b jest mniejsza od liczby a o 6 %. O ile procent liczba a jest większa od liczby b..d.4. Cenę produktu zmniejszono o 0%, a potem podwyższono o 0% i wynosi ona 49,50 zł. Jaką cenę miał produkt przed tymi zmianami?.d.5. Na diagramie przedstawiono wyniki ankiety przeprowadzonej w III SP wśród 0 uczniów na temat Czym się interesujesz?. Wyniki przedstawiono na diagramie. Odpowiedz na pytania: a) Ile osób interesuje się sportem? b) Jaki jest procent uczniów lubiących czytać książki? c) Ile osób lubi TV i komputer?.d.6. Do 0% roztworu soli kuchennej dolano,5 kg wody. Stężenie otrzymanego roztworu wynosi: A 6% B 8% C,5% D 7,5%.d.7. Nektarynki i brzoskwinie kosztują tyle samo. Jeśli nektarynki zdrożeją o 4% a brzoskwinie o 8%, to koszyk zawierający kg

5 nektarynek i dwa kg brzoskwiń zdrożeje o: A 4% B % C 6% D 0%.d.8. Jakim procentem liczby a jest 00? A B C D.d.9. Cena towaru nie uległa zmianie, jeśli najpierw: A podniesiono ją o 0% a następnie nową cenę obniżono o 0% B obniżono ją o 0%, a następnie nową cenę podniesiono o 0% C obniżono ją o 0%, a następnie nową cenę podniesiono o 5% D obniżono ją o 0%, a następnie nową cenę podniesiono o 5%.d.0. Kontroler jakości akceptuje przeciętnie 5 wyrobów na 0 wyprodukowanych. Jaki procent wyrobów jest przyjmowany do sprzedaży? A 5% B 5% C 75% D % e) posługuję się pojęciem osi liczbowej i przedziału liczbowego; zaznaczam przedziały na osi liczbowej..e.. Zaznacz na osi liczbowej i zapisz w postaci przedziału zbiór wszystkich liczb rzeczywistych, których odległość na osi liczbowej od liczby (-) jest mniejsza niż 4..e.. Liczba 6,5 stanowi 75% liczby a. Sprawdź, czy liczba a należy do przedziału (-6;..e.. Zaznacz na osi liczbowej liczby i 0,5. Podaj dwie liczby, które leżą pomiędzy nimi..e.4. Jakim liczbom odpowiadają punkty A, B i C, zaznaczone na osi? A B C.e.5 Elementami zbioru A = [(-; 8) \ <5; 9)] N są:

6 A {-; -; -; 0; ; ; ; 4} B {0; ; ; ; 4; 5} C {0; ; ; ; 4} D {; ; ; 4; 5}.e.6. Zbiór X = <-0; 00> C jest: A przedziałem obustronnie domkniętym B podzbiorem zbioru liczb wymiernych C zbiorem o parzystej liczbie elementów D zbiorem o skończonej liczbie elementów f) wykorzystuję pojęcie wartości bezwzględnej i jej interpretację geometryczną, zaznaczam na osi liczbowej zbiory opisane za pomocą równań i nierówności..f.. Rozwiąż nierówność: x. Zaznacz zbiór rozwiązań na osi liczbowej, a następnie wskaż wśród rozwiązań nierówności a) liczby naturalne b) najmniejszą liczbę pierwszą.f.. Rozwiązanie nierówności x 4 A) jest takie samo jak suma rozwiązań dwóch nierówności: x 5 lub x 4. B) to przedział <; 5> C) to zbiór liczb mniejszych od 5 D) to zbiór liczb większych od..f.. Na osi liczbowej zaznaczono zbiór rozwiązań nierówności : A) x B) x C) x D) x.f.4. Zapisz podane zdanie w postaci równania lub nierówności i rozwiąż to równanie lub nierówność: a) Odległość na osi liczbowej między liczbą a liczbą x wynosi 5. b) Odległość na osi liczbowej między liczbą x a liczbą 5 jest mniejsza lub równa 7. c) Odległość na osi liczbowej między liczbą x a liczbą o mniejszą od x wynosi 4.

7 .f.6. Znajdź liczby spełniające jedną lub drugą nierówność Nierówności to: x i x..f.7. Oblicz f.8. Oblicz: a) ( 8 ) ( b) Liczbę 4 6 8) 0 można zapisać W podobny sposób oblicz f.9. Rozwiąż równania i nierówności. a) x b) 5x c) x d) 0x 4 0 e) x f) x 5 g) x 8 h) 7x 0.f.0. Jaką najmniejszą wartość może mieć wyrażenie x? A. 0 B. C. D. 6..f.. Korzystając z graficznej interpretacji wartości bezwzględnej zapisz nierówność, której rozwiązaniem są liczby rzeczywiste należące do danego przedziału. A. x B. x C. x 5 D. x.f.. Jeżeli, to A B ( C D ( ).f.. Wartość wyrażenia dla x= -5 jest równa: A -4 B -0 C - D -6.f.4. Najmniejszą liczbą całkowitą spełniającą nierówność jest liczba:

8 A - 4 B - C - 5 D 0.f.5. Który układ równań przedstawia treść zadania: Obwód prostokąta wynosi 00 cm. Jeden z boków jest 5 razy dłuższy od drugiego. A { B { ( ) C { D { ( ) g) obliczam potęgi o wykładnikach wymiernych oraz stosuję prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych..g.. Oblicz: a) 49 8 b) c) 8 49 d) 4 6) 6 5 ( e) ( 6 : 6) f) ,5 9.g.. Przedstaw w postaci potęgi o podstawie wyrażenie: 48 Przyjmując, że zapisz przybliżenie otrzymanej liczby w postaci 66. k a 0 g) h) i), gdzie a ; 0), a k jest liczbą całkowitą :4 j),5.g.. Liczba 9 7 jest równa 4 A) B).g.4. Porównaj liczby C) D)

9 a) 4 5 i 6 b) 5 i 4 9.g.5 Liczba x jest równa 49, gdy 6 5 ( 7) A x = B x = C x = 4 ( 7) 7 6 D x = - 7.g.6. Czwarta część liczby 8 7 ma wartość: A 4 08 B 4 C 7 D 6 h) znam definicję logarytmu i stosuję w obliczeniach wzory na logarytm iloczynu, logarytm potęgi, logarytm ilorazu. 0.h. Oblicz log ab, wiedząc, że log0a 00 i log 00. b.h.. Stosując własności działań na logarytmach, oblicz: a) log 5 log 5 log 5 5 log 7 log h.. Oblicz x. a) log x log 4 log5 log 6 b) log x log 40 log 5 c) log x 0,5log 5 0,5log c) log 8 x log 8 0,4 log 8 log 85.h.4. Wartość wyrażenia log 40,5 + log jest równa: A 8 B 4,5 C 8,5 D 4.h.5 Wyrażenie x = log (log 4 log ) jest równe: A log 6 B C 7 D.h.6. Jeżeli log 8 = x, to A x = B x = - C x = -4 D x = 4

10

11. Liczby rzeczywiste

11. Liczby rzeczywiste . Liczby rzeczywiste Zdający: Wymagania, jakie stawia przed Tobą egzamin maturalny z przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 3 czerwca 017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Strona 1 z 8 1. Wprowadzenie do matematyki. Pojęcia

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik?

1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik? Diagnoza klasa I Zestaw zawiera zadania z wcześniejszych diagnoz. Zadania zaczerpnięto z dostępnych zbiorów zadao różnych wydawnictw oraz arkuszy maturalnych CKE. Zadania otwarte 1. Na wycieczkę pojechało

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste

Skrypt 31. Powtórzenie do matury Liczby rzeczywiste Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Skrypt 4. Liczby rzeczywiste: Opracowanie L5

Skrypt 4. Liczby rzeczywiste: Opracowanie L5 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 4 Liczby rzeczywiste: 26.

Bardziej szczegółowo

LICZBY - Podział liczb

LICZBY - Podział liczb 1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

( Wynik podaj w postaci ułamka nieskracalnego.

( Wynik podaj w postaci ułamka nieskracalnego. Przykładowe zadania przygotowujące do egzaminu rocznego z matematyki - klasa Część I Zad. Oblicz: 8 a) : 5 5 5 5 c) : 6,5,8 9 : 0,6,5, : 0, b) d) f) 9 : :, 5 0 5 5 0,6 6 : 0, 5 0, 0,0 5 7 :,5 6 0, 5 0,

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum

Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum I. Liczby rzeczywiste 1. Liczby naturalne 2. Liczby całkowite. 3. Liczby wymierne 4. Rozwinięcie dziesiętne liczby

Bardziej szczegółowo

Trening czyni mistrza zdaj maturę na piątkę

Trening czyni mistrza zdaj maturę na piątkę Trening czyni mistrza zdaj maturę na piątkę ZESTAW I Liczby rzeczywiste Zdający demonstruje poziom opanowania powyższych umiejętności, rozwiązując zadania, w których: a) planuje i wykonuje obliczenia na

Bardziej szczegółowo

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (wrzesień)

KLASA I LO Poziom podstawowy (wrzesień) (wrzesień) 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2) oblicza

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 018/019 w CKZiU NR Ekonomik w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,

Bardziej szczegółowo

1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:

1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli: WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 7

Wymagania na poszczególne oceny szkolne Klasa 7 1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY

Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania dostosowano do sześciostopniowej skali ocen. I. Liczby rzeczywiste zna cechy

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

rozszerzające (ocena dobra) podstawowe (ocena dostateczna)

rozszerzające (ocena dobra) podstawowe (ocena dostateczna) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

SPRAWDZIAN NR Zapisz obliczenia i sformułuj odpowiedź. 2. Zapisz nierówność, którą opisują przedziały liczbowe przedstawione na osi liczbowej.

SPRAWDZIAN NR Zapisz obliczenia i sformułuj odpowiedź. 2. Zapisz nierówność, którą opisują przedziały liczbowe przedstawione na osi liczbowej. SPRAWDZIAN NR 1 MIROSŁAW OŁOWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. 15% pewnej liczby wynosi 9. Oblicz 60% tej liczby. 2. Zapisz nierówność, którą opisują przedziały liczbowe przedstawione na osi liczbowej.

Bardziej szczegółowo

Umiejętności/treści Zadania Uwagi/terminy

Umiejętności/treści Zadania Uwagi/terminy Umiejętności/treści Zadania Uwagi/terminy ) Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego stopnia

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

KURS MATURA PODSTAWOWA

KURS MATURA PODSTAWOWA KURS MATURA PODSTAWOWA LEKCJA Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona Część : TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie Ile liczb całkowitych należy do przedziału,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100

7 zaokr aglamy do liczby 3,6. Bład względny tego przybliżenia jest równy A) 0,8% B) 0,008% C) 8% D) 100 ZADANIE 1 (1 PKT) Dane sa zbiory A = ( 6 7, 6) i B = N liczb naturalnych dodatnich. Wówczas iloczyn zbiorów A B jest równy A) {1, 2,, 4, 5} B) (, 5 C) {1, 2,, 4, 5, 6} D) (, 6) ZADANIE 2 (1 PKT) Jeśli

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału

Plan wynikowy z rozkładem materiału Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

NaCoBeZU z matematyki dla klasy 7

NaCoBeZU z matematyki dla klasy 7 NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Wymagania na poszczególne oceny szkolne z matematyki dla klas siódmych ''Matematyka" Szkoła Podstawowa im. Jana Pawła II w Mętowie Rok szkolny 2017/2018 Klasa 7a, 7b Nauczyciel: Małgorzata Łysakowska Ocena

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

BAZA ZADAŃ KLASA 1 TECHNIKUM

BAZA ZADAŃ KLASA 1 TECHNIKUM LICZBY RZECZYWISTE BAZA ZADAŃ KLASA TECHNIKUM. Znajdź liczbę odwrotną i liczbę przeciwną do liczby jeśli a). Wyznacz NWD(x, y), jeśli: a) x = 780, y = 6 b) x = 0, y = 6 c) x = 700, y = 60 d) x = 96, y

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 1 Zadania liczby rzeczywiste cz.1

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 1 Zadania liczby rzeczywiste cz.1 1 TEST WSTĘPNY 1. (2p) Liczbę zapisano w postaci ułamka dziesiętnego i zaokrąglono z dokładnością do jednego miejsca po przecinku. Błąd bezwzględny otrzymanego przybliżenia jest równy. Błąd względny otrzymanego

Bardziej szczegółowo

Szkoła podstawowa. podstawowe (ocena dostateczna) rozszerzające (ocena dobra) I PÓŁROCZE

Szkoła podstawowa. podstawowe (ocena dostateczna) rozszerzające (ocena dobra) I PÓŁROCZE Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie

Bardziej szczegółowo

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r.

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r. Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 016/017r. Ocena dopuszczająca: Temat lekcji Uczeń: Elementy logiki matematycznej rozpoznaje spójniki logiczne, zna wartości logiczne

Bardziej szczegółowo

PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018

PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018 PLAN WYNIKOWY NAUCZANIA MATEMATYKI W LICEUM PLASTYCZNYM ZAKRES PODSTAWOWY 2017/2018 Wstęp Plan wynikowy kształcenia matematycznego jest opracowany na podstawie programu nauczania matematyki w liceach i

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA I dt

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA I dt Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr Ekonomik w Zielonej Górze KLASA I dt I. Pierwiastki (w tym usuwanie niewymierności), potęgi, działania

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka 1 lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy S t r o n a 1 DZIAŁANIA NA POTĘGACH Zadanie 1. Przedstaw liczbę w postaci potęgi liczby 2: Zadanie 2. Przedstaw liczbę w postaci potęgi liczby 2: Zadanie 3. Zadanie 4. Zadanie 5. Czwarta część liczby,

Bardziej szczegółowo

MATeMAtyka 1. Plan wynikowy: Zakres podstawowy i rozszerzony

MATeMAtyka 1. Plan wynikowy: Zakres podstawowy i rozszerzony MATeMAtyka 1 lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające - dopuszczający;

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Temat (rozumiany jako lekcja) Lekcja organizacyjna I. Działania na liczbach

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I w roku szkolnym 016/017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi,

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Wymagania i plan wynikowy z matematyki dla klasy I BO

Wymagania i plan wynikowy z matematyki dla klasy I BO Wymagania i plan wynikowy z matematyki dla klasy I BO Lekcja Liczba Treści z podstawy godzin programowej I. Liczby rzeczywiste (9 h) 1. Liczby naturalne 1 Przypomnienie ze szkoły podstawowej ułatwiające

Bardziej szczegółowo

Matematyka podstawowa I. Liczby rzeczywiste, zbiory

Matematyka podstawowa I. Liczby rzeczywiste, zbiory Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH

PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia

Bardziej szczegółowo

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2018/2019. Kryteria oceny

Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2018/2019. Kryteria oceny Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 018/019 Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era Kryteria oceny Znajomość pojęć, definicji, własności oraz wzorów objętych

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa VII

Wymagania edukacyjne matematyka klasa VII Wymagania edukacyjne matematyka klasa VII OCENA DOPUSZCZAJĄCA Dział I Liczby - zna znaki używane do zapisu liczb w systemie rzymskim - rozpoznaje liczby podzielne przez 2, 5, 10, 100, 3, 9, 4 - rozpoznaje,

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać

Bardziej szczegółowo