Prognozowanie zapotrzebowania na energię w ujęciu Earnings at Risk (EaR) 1)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prognozowanie zapotrzebowania na energię w ujęciu Earnings at Risk (EaR) 1)"

Transkrypt

1 Prognozowanie zapotrzebowania na energię w ujęciu Earnings at Risk (EaR) 1) Autor: Mgr inż. Marek Kozłowski, mgr inż. Adam Misiorek - IASE Wrocław ( Energetyka grudzień 2005) O tym, jak istotne dla spólki dystrybucyjnej jest poprawne prognozowanie zapotrzebowania na energię, nikogo przekonywać nie trzeba. Kary" finansowe nakładane przez segment bilansujący na niedokładnie zakontraktowanych odbiorców (przy rygorystycznym rozumieniu niedokładności" jako odchylenia o zaledwie 1% od planowanego zużycia) - mogą spowodować jeśli nie straty, to przynajmniej dotkliwe ograniczenie zysków. W artykule zostanie przedstawione porównanie trzech modeli prognostycznych o różnym stopniu komplikacji, a następnie zostanie użyta stosowana powszechnie w sektorze finansowym miara ryzyka EaR (Earnings at Risk, zysk narażony na ryzyko) do zweryfikowania, jak poszczególne modele radzą sobie na rynku. Pomiar ryzyka Wartość narażona na ryzyko (Value at Risk, VaR) jest miarą potencjalnej straty portfela. Jest ona definiowana jako maksymalna strata, która powstanie w określonym okresie posiadania danego portfela (np. dzień, tydzień), przy określonym poziomie ufności (zazwyczaj 95% lub 99%). Metoda VaR jest zalecana przez Komitet Bazylejski i od wielu lat powszechnie stosowana przez instytucje finansowe na całym świecie [6]. Istnieje wiele metodologii obliczenia VaR. W metodzie historycznej wykorzystuje się dane historyczne do skonstruowania empirycznego rozkładu zwrotów z portfela. Posiadając empiryczny rozkład zwrotów, wyznacza się następnie odpowiedni jego kwantyl (zazwyczaj 1% lub 5%) i tę wartość przyjmuje się za VaR. Do potrzeb niniejszego artykułu zostanie zaadaptowana jedna z popularniejszych miar wywodzących się zvar, tj. EaR - miara określająca maksymalną potencjalną zmianę zysku, w odniesieniu do zysku zakładanego w planie finansowym [5]. Porównanie modeli prognostycznych Prognoza zapotrzebowania Do naszych obliczeń wykorzystano rzeczywiste dane dotyczące zapotrzebowania na energię elektryczną w 2004 i pierwszych miesiącach 2005 roku, pochodzące z jednego z Zakładów Energetycznych. Na podstawie posiadanych danych godzinowych wykonano prognozę zapotrzebowania na luty używając trzech modeli prognostycznych o różnym stopniu komplikacji. Wyznaczone prognozy były typu dzień naprzód" (day ahead), tzn. mając dane do godziny 24 poprzedniego dnia, wykonywano jednorazowo prognozę na cały następny dzień. Modele 1 i 2 wykorzystują dekompozycję procesu zapotrzebowania na składową deterministyczną i stochastyczną. Dekompozycję wykonano stosując metodę T (model 1) oraz TD (model 2) (szczegóły w publikacji [1]). Prognozę składowej deterministycznej utworzono stosując odpowiedni wzór, wymuszony przez konkretną metodę dekompozycji. Do składowych stochastycznych dopasowano następnie modele szeregu czasowego typu ARMA(p,q). Rzędy modeli wyznaczono na podstawie tzw. final prediction error (FPE) [3]. Dla składowej

2 stochastycznej w modelu pierwszym optymalny rząd wyniósł (4,2), natomiast w modelu drugim (4,3). Estymację parametrów wykonano metodą największej wiarygodności (maximum likelihood, ML). Mając ustalony model wraz z parametrami, za pomocą typowych metod szeregów czasowych wyznaczono prognozę. Model 3 to metoda polegająca na dopasowaniu do każdej godziny oddzielnie szeregu czasowego typu ARX, bazującego na wartościach z chwil t-24, t-48, t-168 oraz minimalnej wartości z dnia poprzedniego. Model tego typu dobrze sprawdził się przy prognozie cen opisanej w artykule [7], tam też można znaleźć jego dokładny opis. Weryfikacja prognozy na rynku Dla każdej z trzech prognoz przetestowano tzw. wariant co by było, gdyby" (what-if), czyli jaki byłby skutek wykorzystania danej prognozy do zakupu energii przez ZE. Znając rzeczywiste wartości zapotrzebowania rozpatrywanego Zakładu w lutym 2005 r. a także ceny na Giełdzie Energii (GE) oraz Rynku Bilansującym (RB) oraz przyjmując, że energia w prognozowanej wysokości została zakupiona na GE wyliczono straty poniesione przez Zakład z powodu korekty pozycji zakontraktowanej na RB [9]. Zdefiniowano następnie zysk (dla każdej godziny miesiąca) ZE jako: Na potrzeby obliczeń przyjęto wartość C OK równą 260 zł/mwh, wartość tę należy traktować jako referencyjną, bez istotnego wpływu na wnioski z rachunków. Wartość wyrażenia (K GE ± K RB ) jest rzeczywistym kosztem zakupu energii przez ZE -jeśli konieczne jest dokupienie energii na RB, w powyższym wzorze znak K RB jest dodatni (większe koszty), gdy zaś zachodzi odsprzedaż energii K RB jest opatrzony znakiem -" (pomniejszamy koszt). Koszt (K RB ), jaki Zakład ponosi na RB w wyniku korekty zakontraktowanej pozycji zależy od wielkości tzw. odchyłki, czyli różnicy pomiędzy rzeczywistym zużyciem a ilością zakontraktowaną. Jeśli zakontraktowano za mało, trzeba dokupić energię na RB, płacąc: K RB = Odchyłka <1% * GRO + Odchyłka >1% * CRO S Jeśli zaś przekontraktowano, trzeba sprzedać nadmiar energii, zyskując: K RB = Odchyłka <1% * GRO + Odchyłka >1% * CRO Z Obliczywszy zysk ZE dla każdej godziny lutego, można dla każdej z prognoz podać sumaryczny zysk miesięczny - a także skonfrontować go z teoretycznym zyskiem, który zostałby osiągnięty przy wykorzystaniu idealnej" prognozy (czyli nieobarczonej błędem).

3 Otrzymano porównywalne wartości zysku we wszystkich trzech modelach - na tej podstawie trudno jest wytypować najlepszy model, można jedynie wstępnie wskazać na model 3, ponieważ charakteryzuje się najmniejszym błędem prognozy (wyrażonym jako mean error, ME). Na marginesie zauważyć można, iż zysk osiągnięty przy użyciu prognozy idealnej" nie jest zyskiem maksymalnym - lepszy efekt osiągnie się niedokontraktowując o 1% te godziny, w których GRO będzie niższa od ceny na GE - gdyby znać te ceny z wyprzedzeniem... [2] Badanie rozkładu zysków godzinowych Mając obliczony zysk ZE dla każdej godziny, można wykonać analizę rozkładu tych wartości - osobno dla każdej metody prognostycznej. Następnie można dopasować odpowiednie rozkłady prawdopodobieństwa do otrzymanych danych. Kształt (a w szczególności skośność, silne skupienie) empirycznych estymatorów gęstości, jakimi są histogramy gęstości, uniemożliwia wybór prostego rozkładu prawdopodobieństwa. W celu dobrego dopasowania do danych musimy zastosować 4-parametrowy rozkład beta, opisany gęstością: Jednym ze sposobów oceny doboru rozkładu do danych jest tak zwany wykres kwantylowy (qq

4 plot). Zastosowano jedną z jego wersji, polegającą na zestawieniu na wykresie wartości dystrybuanty rozkładu beta nałożonych na statystyki pozycyjne z próbki z odpowiednimi kwantylami rozkładu jednostajnego. W przypadku idealnej zgodności próbki z rozkładem, otrzymuje się linię prostą (linia referencyjna - kolor czerwony). W rozpatrywanym przypadku zgodność nie jest doskonała, gdyż wyznaczona linia odchyla się od linii referencyjnej. Odchylenia nie są jednak duże, a ze względu na skomplikowany charakter próbki rozkład beta jest najlepiej dopasowującym się rozkładem (inne brane pod uwagę rozkłady wykazywały dużo większe rozbieżności). Innym sposobem jest porównanie wartości statystyk opartych na dystrybuancie empirycznej (EDF). Przykładem mogą być statystyki Kołmogorowa (D) i Kuipera (V). Ich wartości dla rozkładu beta okazały się być najmniejsze (co wskazuje na najlepsze dopasowanie). Dla najsłabiej dopasowanej próbki (model 3) wyniosły one odpowiednio 2.18 i w porównaniu do np. rozkładu normalnego, dla którego statystyki dla najlepiej dopasowanej próbki (model 2) wyniosły 2.24 i 3.75 [4]. Zysk narażony na ryzyko (EaR) Mając rozkłady zysków można policzyć wartość zysku narażonego na ryzyko", czyli taki poziom, od którego z 95-procentową pewnością zysk będzie większy. EaR można w rozpatrywanym przypadku obliczyć dwojako -tj. nieparametryczne, czyli biorąc 5% kwantyl z posorto-wanych rosnąco danych historycznych; oraz parametrycznie, czyli dopasowując rozkład prawdopodobieństwa do danych i obliczając wartość teoretyczną szukanego kwantyla [8]. Zauważyć można, że wartość nieparametrycznego EaR dla modelu 3 odbiega (korzystnie) od analogicznych wielkości dla modeli 1 i 2 - i zbliżona jest mocno do wartości idealnej".

5 Wnioski Porównanie modeli prognostycznych, wykonane przy zastosowaniu metodologii EaR, wykazało wyższość modelu 3 nad konkurentami. Potwierdza to tezę, iż modele oparte na szeregach czasowych dobrze sobie radzą w zagadnieniach modelowania i predykcji procesów energetycznych. Można mieć nadzieję, że udało się także wykazać przydatność analizy Earnings at Risk do oceny jakości prognoz. 1) Praca wykonana częściowo w ramach projektu KBN nr 4 T10B LITERATURA [1] Borgosz-Koczwara M., Kozłowski M., Misiorek A., Piesiewicz T: Analiza metod prognozowania procesu zapotrzebowania na energię elektryczną. Energetyka 2001 nr 12 [2] Borgosz-Koczwara M., Kozłowski M., Weron A.: Jak skuteczne prognozowanie pomaga odbiorcom zarządzać portfelem na rynku bilansującym? Energetyka 2002 nr 12 [3] Brockwell P.J., Davis R.A.: Time Series Theory and Methods. Springer Verlag, 2nd Edition, 1991 [4] D'Agostino R.B., Stephens M. A.: Goodness-of-Fit Tech-niques. Marcel Dekker, Inc., [5] Dowd K.: Measuring Market Risk. Willey Finance, 2002 [6] Jorion R: Value at Risk: The New Benchmark for Control-ling Market Risk. McGraw-Hill, 1997 [7] Misiorek A., Weron R.: Forecasting spot electricity prices with time series models. Proceedings of the International Conference "The European Electricity Market EEM-05", May 10-12, 2005, Łódź [8] Weron A., Weron R.: Giełda energii. Strategia zarządzania ryzykiem. CIRE, Wrocław 2000 [9] Zerka M.: Mechanizmy rynkowe w elektroenergetyce. Zagadnienia wybrane. IDWe, Warszawa, 2001

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego

Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego Radosław Pietrzyk Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego 1.

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Porównanie metod szacowania Value at Risk

Porównanie metod szacowania Value at Risk Porównanie metod szacowania Value at Risk Metoda wariancji i kowariancji i metoda symulacji historycznej Dominika Zarychta Nr indeksu: 161385 Spis treści 1. Wstęp....3 2. Co to jest Value at Risk?...3

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Zarządzanie ryzykiem finansowym

Zarządzanie ryzykiem finansowym Zarządzanie projektami Wrocław, 30 października 2013 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie Po co analizować ryzyko na rynkach finansowych?

Bardziej szczegółowo

Elastyczność popytu na rynku energii elektrycznej

Elastyczność popytu na rynku energii elektrycznej Elastyczność popytu na rynku energii elektrycznej Autor: Mgr inż. Magdalena Borgosz-Koczwara- IASE Wrocław ( Energetyka grudzień 2004) Praca wykonana w ramach projektu KBN nr 4 T10B 030 25 Analizujemy

Bardziej szczegółowo

PROGNOZOWANIE ZAPOTRZEBOWANIA A RYNEK ENERGII

PROGNOZOWANIE ZAPOTRZEBOWANIA A RYNEK ENERGII Jarosław ARABAS Politechnika Warszawska Łukasz ADAMOWICZ Transition Technologies SA PROGNOZOWANIE ZAPOTRZEBOWANIA A RYNEK ENERGII Prognozowanie zapotrzebowania na energię elektryczną stanowi jedno z podstawowych

Bardziej szczegółowo

System prognozowania rynków energii

System prognozowania rynków energii System prognozowania rynków energii STERMEDIA Sp. z o. o. Software Development Grupa IT Kontrakt ul. Ostrowskiego13 Wrocław Poland tel.: 0 71 723 43 22 fax: 0 71 733 64 66 http://www.stermedia.eu Piotr

Bardziej szczegółowo

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ryzyko i efektywność Ćwiczenia ZPI 1 Stopa zwrotu 2 Zadanie 1. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Zarządzanie ryzykiem na rynku energii elektrycznej z uwzględnieniem segmentu bilansującego, giełdowego i pozagiełdowego.

Zarządzanie ryzykiem na rynku energii elektrycznej z uwzględnieniem segmentu bilansującego, giełdowego i pozagiełdowego. INSTYTUT AUTOMATYKI SYSTEMÓW ENERGETYCZNYCH mgr inż. Marek Kozłowski 1), mgr inż. Tomasz Piesiewicz 1) IASE Wrocław prof. dr hab. Aleksander Weron 2) IASE & Politechnika Wrocławska Zarządzanie ryzykiem

Bardziej szczegółowo

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

EXPECTED SHORTFALL W OCENIE RYZYKA AKCYJNYCH FUNDUSZY INWESTYCYJNYCH

EXPECTED SHORTFALL W OCENIE RYZYKA AKCYJNYCH FUNDUSZY INWESTYCYJNYCH Radosław Pietrzyk Uniwersytet Ekonomiczny We Wrocławiu EXPECTED SHORTFALL W OCENIE RYZYKA AKCYJNYCH FUNDUSZY INWESTYCYJNYCH 1. Wstęp Rok 2008 zapoczątkował kryzys na rynkach finansowych. Duża niestabilność

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Ewa Dziawgo WYCENA POTĘGOWEJ ASYMETRYCZNEJ OPCJI KUPNA

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Ewa Dziawgo WYCENA POTĘGOWEJ ASYMETRYCZNEJ OPCJI KUPNA ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Ewa Dziawgo WYCENA POTĘGOWEJ

Bardziej szczegółowo

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and

Bardziej szczegółowo

Bankowość Zajęcia nr 5 i 6

Bankowość Zajęcia nr 5 i 6 Motto zajęć: "za złoty dukat co w słońcu błyszczy" Bankowość Zajęcia nr 5 i 6 Ryzyko bankowe Ryzyko płynności Rola bilansu i cash flow; Metoda luki: Aktywa określonego rodzaju (AOR), Pasywa określonego

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

Metody oceny ryzyka operacyjnego

Metody oceny ryzyka operacyjnego Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Zyskowność i statystyczna istotność reguł analizy technicznej

Zyskowność i statystyczna istotność reguł analizy technicznej Katarzyna Sagan nr albumu: 240006 Robert Chyliński nr albumu: 239779 Zyskowność i statystyczna istotność reguł analizy technicznej White's Reality Check Praca zaliczeniowa wykonana w ramach przedmiotu:

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

Ćwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Ćwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 Ćwiczenia Zarządzanie Ryzykiem 1 VaR to strata wartości instrumentu (portfela) taka, że prawdopodobieństwo osiągnięcia jej lub przekroczenia w określonym przedziale czasowym jest równe zadanemu poziomowi

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11 Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)

Bardziej szczegółowo

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka Pomiar ryzyka Miary obiektywne stosowane w kwantyfikacji ryzyka rynkowego towarzyszącego zaangażowaniu środków w inwestycjach finansowych obejmują: Miary zmienności, Miary zagrożenia, Miary wrażliwości.

Bardziej szczegółowo

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wprowadzenie

Testowanie hipotez statystycznych. Wprowadzenie Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

RAPORT MIESIĘCZNY. Grudzień Towarowa Giełda Energii S.A. Rynek Dnia Następnego. Średni Kurs Ważony Obrotem [PLN/MWh]

RAPORT MIESIĘCZNY. Grudzień Towarowa Giełda Energii S.A. Rynek Dnia Następnego. Średni Kurs Ważony Obrotem [PLN/MWh] RAPORT MIESIĘCZNY Towarowa Giełda Energii S.A. Rynek Dnia Następnego Średni Kurs Ważony Obrotem [PLN/MWh] 150,00 140,00 średni kurs ważony obrotem kurs max kurs min Grudzień 2003 130,00 120,00 110,00 100,00

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Katedra Demografii i Statystki Ekonomicznej

Katedra Demografii i Statystki Ekonomicznej Katedra Demografii i Statystki Ekonomicznej Wydział Informatyki i Komunikacji http://www.ue.katowice.pl/jednostki/katedry/katedry-wiik/ Skład osobowy Katedry Pracownicy: prof. zw. dr hab. Grażyna Trzpiot

Bardziej szczegółowo

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Narzędzia niezbędne do rozliczeń na otwartym rynku energii elektrycznej

Narzędzia niezbędne do rozliczeń na otwartym rynku energii elektrycznej Narzędzia niezbędne do rozliczeń na otwartym rynku energii elektrycznej 1 Wspomaganie informatyczne rozliczeń na otwartym rynku energii Narzędzia informatyczne wspomagające rozliczenia na otwartym rynku

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie

Bardziej szczegółowo

1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:

1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16 Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 30 lipca 2018 r. Poz. 1455 ROZPORZĄDZENIE MINISTRA ENERGII 1) z dnia 18 lipca 2018 r. w sprawie wykonania obowiązku mocowego, jego rozliczania i

Bardziej szczegółowo

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII Streszczenie W artykule przedstawiono

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO)

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) Łódź, dn. 23.12.2013r. OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) 1. Zamawiający Firma i adres: PL Europa S.A. NIP: 725-195-02-28 Regon: 100381252 2. Tryb udzielenia zamówienia Zgodnie z

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1

TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1 TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1 Podstawowym pojęciem dotyczącym transakcji arbitrażowych jest wartość teoretyczna kontraktu FV. Na powyższym diagramie przedstawiono wykres oraz wzór,

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Matematyka finansowa Ćwiczenia ZPI 1 Zadanie 1. Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11 Testy zgodności Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej 27. Nieparametryczne testy zgodności Weryfikacja

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO Celina Otolińska PLAN: 1. Rynek złota-krótka informacja. 2. Wartość zagrożona i dlaczego ona. 3. Badany szereg czasowy oraz jego własności. 4. Modele

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Robert M.Korona. Dr Robert M. Korona 1

Robert M.Korona. Dr Robert M. Korona 1 Robert M.Korona Dr Robert M. Korona 1 Agenda Co to jest KRI? Wartość krytyczna i progowa Opis wyzwania Wyznaczenie wartości KRI za pomocą modelu logistycznego Wyznaczenie KRI za pomocą szeregu czasowego

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Informacje, o których mowa w art. 222b Ustawy z dnia 27 maja 2004 r. o funduszach inwestycyjnych i zarządzaniu alternatywnymi funduszami inwestycyjnymi ( Ustawa ) 1. Udział procentowy aktywów, które są

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo

Bardziej szczegółowo

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Regresja kwantylowa W standardowej Metodzie Najmniejszych Kwadratów modelujemy warunkową średnią zmiennej objaśnianej: E( yi Xi) = μ ( Xi) Pokazaliśmy,

Bardziej szczegółowo

Wprowadzenie do estymacji rozkładów w SAS.

Wprowadzenie do estymacji rozkładów w SAS. Wprowadzenie do estymacji rozkładów w SAS Henryk.Maciejewski@pwr.wroc.pl 1 Plan Empiryczne modele niezawodności Estymacja parametryczna rozkładów zmiennych losowych Estymacja nieparametryczna Empiryczne

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS

KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS Bogdan RUSZCZAK Streszczenie: Artykuł przedstawia metodę komputerowej symulacji czynników ryzyka dla projektu inwestycyjnego

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Wykład 9 Testy rangowe w problemie dwóch prób

Wykład 9 Testy rangowe w problemie dwóch prób Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo