Systemy agentowe. Uczenie ze wzmocnieniem. Jędrzej Potoniec

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy agentowe. Uczenie ze wzmocnieniem. Jędrzej Potoniec"

Transkrypt

1 Systemy agentowe Uczenie ze wzmocnieniem Jędrzej Potoniec

2 Uczenie ze wzmocnieniem (ang. Reinforcement learning) dane Środowisko, w którym można wykonywać pewne akcje, które są nagradzane lub karane, ale nie koniecznie od razu.

3 Uczenie ze wzmocnieniem (ang. Reinforcement learning) dane Środowisko, w którym można wykonywać pewne akcje, które są nagradzane lub karane, ale nie koniecznie od razu. zadanie Znaleźć politykę, która w długiej perspektywie czasowej maksymalizuje nagrody.

4 Przykładowe środowiska, kary i nagrody A. Ge ron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

5 Polityka (ang. policy) Dowolny algorytm, który mówi, jaką akcję wykonać.

6 Polityka (ang. policy) Dowolny algorytm, który mówi, jaką akcję wykonać. Polityka stochastyczna jeżeli jest w tym aspekt losowości.

7 Przykład polityki A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

8 Toy example: cart pole

9 Toy example: cart pole Cel: wózek na środku, wahadło w pionie

10 Toy example: cart pole Cel: wózek na środku, wahadło w pionie Akcje: siła 1 w lewo, siła 1 w prawo A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

11 Polityka za pomocą sieci neuronowej A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

12 Obliczanie nagrody A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

13 Policy gradient: REINFORCE 1 Zagraj w grę kilkukrotnie, w każdym kroku oblicz gradient wzmacniający wybraną akcję (tj. tak, jakby wybrana akcja była najlepsza możliwa)

14 Policy gradient: REINFORCE 1 Zagraj w grę kilkukrotnie, w każdym kroku oblicz gradient wzmacniający wybraną akcję (tj. tak, jakby wybrana akcja była najlepsza możliwa) 2 Oblicz nagrodę każdej akcji:

15 Policy gradient: REINFORCE 1 Zagraj w grę kilkukrotnie, w każdym kroku oblicz gradient wzmacniający wybraną akcję (tj. tak, jakby wybrana akcja była najlepsza możliwa) 2 Oblicz nagrodę każdej akcji: 1 Uwzględnij przyszłe nagrody przez discount ratio

16 Policy gradient: REINFORCE 1 Zagraj w grę kilkukrotnie, w każdym kroku oblicz gradient wzmacniający wybraną akcję (tj. tak, jakby wybrana akcja była najlepsza możliwa) 2 Oblicz nagrodę każdej akcji: 1 Uwzględnij przyszłe nagrody przez discount ratio 2 Dokonaj normalizacji odejmując średnią i dzieląc przez odchylenie standardowe (po wszystkich zdyskontowanych nagrodach)

17 Policy gradient: REINFORCE 1 Zagraj w grę kilkukrotnie, w każdym kroku oblicz gradient wzmacniający wybraną akcję (tj. tak, jakby wybrana akcja była najlepsza możliwa) 2 Oblicz nagrodę każdej akcji: 1 Uwzględnij przyszłe nagrody przez discount ratio 2 Dokonaj normalizacji odejmując średnią i dzieląc przez odchylenie standardowe (po wszystkich zdyskontowanych nagrodach) 3 Pomnóż gradienty przez odpowiadające im znormalizowane nagrody

18 Policy gradient: REINFORCE 1 Zagraj w grę kilkukrotnie, w każdym kroku oblicz gradient wzmacniający wybraną akcję (tj. tak, jakby wybrana akcja była najlepsza możliwa) 2 Oblicz nagrodę każdej akcji: 1 Uwzględnij przyszłe nagrody przez discount ratio 2 Dokonaj normalizacji odejmując średnią i dzieląc przez odchylenie standardowe (po wszystkich zdyskontowanych nagrodach) 3 Pomnóż gradienty przez odpowiadające im znormalizowane nagrody 4 Uśrednij i zaaplikuj gradienty

19 Proces decyzyjny Markowa A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017

20 Q-Value iteration Q k (s, a) wartość akcji a w stanie s w kroku k T (s, a, s ) prawdopodobieństwo przejścia s s przy akcji a R(s, a, s ) nagroda za przejście s s przy akcji a γ discount ration

21 Q-Value iteration Q k (s, a) wartość akcji a w stanie s w kroku k T (s, a, s ) prawdopodobieństwo przejścia s s przy akcji a R(s, a, s ) nagroda za przejście s s przy akcji a γ discount ration Q k+1 (s, a) s T (s, a, s ) [ ] R(s, a, s ) + γ max Q k (s, a ) a

22 Q-Value iteration Q k (s, a) wartość akcji a w stanie s w kroku k T (s, a, s ) prawdopodobieństwo przejścia s s przy akcji a R(s, a, s ) nagroda za przejście s s przy akcji a γ discount ration Q k+1 (s, a) s T (s, a, s ) [ ] R(s, a, s ) + γ max Q k (s, a ) a π (s) = arg max Q (a) a

23 Q-Value iteration Q k (s, a) wartość akcji a w stanie s w kroku k T (s, a, s ) prawdopodobieństwo przejścia s s przy akcji a R(s, a, s ) nagroda za przejście s s przy akcji a γ discount ration Q k+1 (s, a) s T (s, a, s ) [ ] R(s, a, s ) + γ max Q k (s, a ) a π (s) = arg max Q (a) a Eleganckie, ale kompletnie niepraktyczne

24 Q-Learning ( ) Q k+1 (s, a) (1 α)q k (s, a) + α r + γ max Q k (s, a ) a

25 Approximate Q-Learning Funkcja celu w uczeniu: y(s, a) = r + γ max a Q(s, a ) Q(s, a) to funkcja, której się uczymy (realizowana np. przez sieć neuronową) s to stan do którego przejdziemy po wykonaniu a w s

26 DeepMind Deep Q-Learning to samo co przed chwilą (prawie)

27 DeepMind Deep Q-Learning to samo co przed chwilą (prawie) replay memory

28 DeepMind Deep Q-Learning to samo co przed chwilą (prawie) replay memory dwie sieci: online i target

29 DeepMind Deep Q-Learning to samo co przed chwilą (prawie) replay memory dwie sieci: online i target online się uczy

30 DeepMind Deep Q-Learning to samo co przed chwilą (prawie) replay memory dwie sieci: online i target online się uczy target oblicza Q(s, a )

31 DeepMind Deep Q-Learning to samo co przed chwilą (prawie) replay memory dwie sieci: online i target online się uczy target oblicza Q(s, a ) okresowo kopiujemy online do target

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow 2017 Perceptron { 1 z 0 step(z) = 0 w przeciwnym przypadku

Bardziej szczegółowo

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec

Systemy agentowe. Sieci neuronowe. Jędrzej Potoniec Systemy agentowe Sieci neuronowe Jędrzej Potoniec Złe wieści o teście To jest slajd, przy którym wygłaszam złe wieści. Perceptron (Rossenblat, 1957) A. Géron, Hands-On Machine Learning with Scikit-Learn

Bardziej szczegółowo

SPOTKANIE 11: Reinforcement learning

SPOTKANIE 11: Reinforcement learning Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)

Bardziej szczegółowo

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa

Bardziej szczegółowo

Uczenie ze wzmocnieniem aplikacje

Uczenie ze wzmocnieniem aplikacje Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 23 maja 2014 Problem decyzyjny Markova

Bardziej szczegółowo

Uczenie ze wzmocnieniem aplikacje

Uczenie ze wzmocnieniem aplikacje Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 22 maja 2013 Problem decyzyjny Markova

Bardziej szczegółowo

Systemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec

Systemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec Systemy agentowe Uwagi organizacyjne Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa Zasady oceniania

Bardziej szczegółowo

Problemy Decyzyjne Markowa

Problemy Decyzyjne Markowa Problemy Decyzyjne Markowa na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2013 Sekwencyjne problemy decyzyjne Cechy sekwencyjnego

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Temporal Difference learning Uczenie oparte na różnicach czasowych Problemy predykcyjne (wieloetapowe) droga do

Bardziej szczegółowo

Problemy Decyzyjne Markowa

Problemy Decyzyjne Markowa na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2015 na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki,

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Uczenie ze wzmocnieniem Na podstawie: AIMA ch2 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 20 listopada 203 Problem decyzyjny Markova 3 + 2 0.8 START 0. 0. 2 3 4 MDP bez modelu przejść

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 3 START 3

Bardziej szczegółowo

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie

Bardziej szczegółowo

Wprowadzenie do sieci neuronowych i zagadnień deep learning

Wprowadzenie do sieci neuronowych i zagadnień deep learning Wprowadzenie do sieci neuronowych i zagadnień deep learning Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Deep learning Anna Sztyber 1 / 28 Deep learning

Bardziej szczegółowo

Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN

Wstęp do głębokich sieci neuronowych. Paweł Morawiecki IPI PAN Wstęp do głębokich sieci neuronowych Paweł Morawiecki IPI PAN Liczba projektów z głębokim uczeniem rośnie bardzo szybko liczba projektów w firmie Google 4000 3000 2000 1000 2012 2013 2014 2015 2016 2017

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Przypomnienia (1) Do tych czas: stan X t u, gdzie u cel aktualizacji: MC : X t G t TD(0) : X y R t+1 + γˆv(x t,

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 16 listopada 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 3 START 3

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4 Ćwiczenia laboratoryjne - 4 Projektowanie i harmonogramowanie produkcji metoda CPM-COST Ćw. L. 4 Metody analizy sieciowej 1) Deterministyczne czasy trwania czynności są określane jednoznacznie (jedna liczba)

Bardziej szczegółowo

Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie:

Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie: Spis treści 1 Uczenie ze wzmocnieniem 2 Proces decyzyjny Markowa 3 Jak wyznaczyć optymalną strategię? 3.1 Algorytm iteracji funkcji wartościującej 3.2 Algorytm iteracji strategii 4 Estymowanie modelu dla

Bardziej szczegółowo

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba

Wrocław University of Technology. Uczenie głębokie. Maciej Zięba Wrocław University of Technology Uczenie głębokie Maciej Zięba UCZENIE GŁĘBOKIE (ang. deep learning) = klasa metod uczenia maszynowego, gdzie model ma strukturę hierarchiczną złożoną z wielu nieliniowych

Bardziej szczegółowo

Machine learning Lecture 6

Machine learning Lecture 6 Machine learning Lecture 6 Marcin Wolter IFJ PAN 11 maja 2017 Deep learning Convolution network Zastosowanie do poszukiwań bozonu Higgsa 1 Deep learning Poszczególne warstwy ukryte uczą się rozpoznawania

Bardziej szczegółowo

Uczenie maszynowe w zastosowaniu do fizyki cząstek

Uczenie maszynowe w zastosowaniu do fizyki cząstek Uczenie maszynowe w zastosowaniu do fizyki cząstek Wykorzystanie uczenia maszynowego i głębokich sieci neuronowych do ćwiczenia 3. M. Kaczmarczyk, P. Górski, P. Olejniczak, O. Kosobutskyi Instytut Fizyki

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Wstęp do Robotyki c W. Szynkiewicz, 2009 1 Sztuczna inteligencja Inteligencja to zdolność uczenia się i rozwiązywania problemów Główne działy sztucznej inteligencji: 1. Wnioskowanie: Wykorzystanie logiki

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x

Bardziej szczegółowo

METODA PERT. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA PERT. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA PERT Maciej Patan Programowanie sieciowe. Metoda PERT 1 WPROWADZENIE PERT (ang. Program Evaluation and Review Technique) Metoda należy do sieci o strukturze logicznej zdeterminowanej Parametry opisujace

Bardziej szczegółowo

Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b]

Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Dagna Bieda, Piotr Jarecki, Tomasz Nachtigall, Jakub Ciesiółka, Marek Kubiczek Metoda Monte Carlo Metoda Monte

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński Katowice GPW 2013 Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową Jan Studziński 1 1. Wstęp Cel pracy Usprawnienie zarządzania siecią wodociągową za pomocą nowoczesnych

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

STRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA

STRATEGIA DOBORU PARAMETRÓW SIECI NEURONOWEJ W ROZPOZNAWANIU PISMA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2016 Seria: ORGANIZACJA I ZARZĄDZANIE z. 96 Nr kol. 1963 Wiktor WALENTYNOWICZ wiktorwalentynowicz@hotmail.com Ireneusz J. JÓŹWIAK Politechnika Wrocławska Wydział Informatyki

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 O projekcie nr 2 roboty (samochody, odkurzacze, drony,...) gry planszowe, sterowanie (optymalizacja; windy,..) optymalizacja

Bardziej szczegółowo

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Wrocław University of Technology SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Szymon Zaręba Studenckie Koło Naukowe Estymator 179226@student.pwr.wroc.pl 23.11.2012 Rozkład dwupunktowy i dwumianowy Rozkład

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

SPOTKANIE 3: Regresja: Regresja liniowa

SPOTKANIE 3: Regresja: Regresja liniowa Wrocław University of Technology SPOTKANIE 3: Regresja: Regresja liniowa Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 22.11.2013 Rozkład normalny Rozkład normalny (ang. normal

Bardziej szczegółowo

Metody selekcji cech

Metody selekcji cech Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

SVM: Maszyny Wektorów Podpieraja cych

SVM: Maszyny Wektorów Podpieraja cych SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

PRZEKSZTAŁCANIE WZORÓW!

PRZEKSZTAŁCANIE WZORÓW! PRZEKSZTAŁCANIE WZORÓW! Przekształcanie wzorów sprawia na początku kłopoty. Wielu uczniów omija zadania gdzie trzeba to zrobić, albo uczy się niepotrzebnie na pamięć tych samych wzorów w innych postaciach.

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Laboratorium 11. Regresja SVM.

Laboratorium 11. Regresja SVM. Laboratorium 11 Regresja SVM. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>. 3. Z

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów):

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Ok. Średnia to środek zbioru. Zazwyczaj mamy podane także odchylenie

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Analiza czasowo-kosztowa

Analiza czasowo-kosztowa Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMÓW UCZENIA SIĘ ZE WZMOCNIENIEM WE WSPOMAGANIU PROCESÓW PODEJMOWANIA DECYZJI PODCZAS MANEWROWANIA STATKIEM

ZASTOSOWANIE ALGORYTMÓW UCZENIA SIĘ ZE WZMOCNIENIEM WE WSPOMAGANIU PROCESÓW PODEJMOWANIA DECYZJI PODCZAS MANEWROWANIA STATKIEM PRACE WYDZIAŁU NAWIGACYJNEGO nr 22 AKADEMII MORSKIEJ W GDYNI 2008 MIROSŁAW ŁĄCKI Akademia Morska w Gdyni Katedra Nawigacji ZASTOSOWANIE ALGORYTMÓW UCZENIA SIĘ ZE WZMOCNIENIEM WE WSPOMAGANIU PROCESÓW PODEJMOWANIA

Bardziej szczegółowo

Excel: niektóre rozkłady ciągłe (1)

Excel: niektóre rozkłady ciągłe (1) MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany

Bardziej szczegółowo

Symulacyjne metody wyceny opcji amerykańskich

Symulacyjne metody wyceny opcji amerykańskich Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

A=8; B=9; C=6. Min. Czas trwania Tgr. Wykonanie schematu pracy urządzenia w zespole

A=8; B=9; C=6. Min. Czas trwania Tgr. Wykonanie schematu pracy urządzenia w zespole 1. Cel projektu Zapoznanie się z moŝliwością wspomagania przedsięwzięć związanych z organizacyjno- technicznym przygotowaniem prototypu wyrobu. ZłoŜoność tego typu zagadnień, wymaga stosowania metod wspomagających,

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING

AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING Magdalena Wiercioch Uniwersytet Jagiello«ski 3 kwietnia 2014 Plan Uczenie gª bokie (deep learning) Auto-enkodery Rodzaje Zasada dziaªania Przykªady

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy

Bardziej szczegółowo

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE W metodach CPM i PERT zwraca się uwagę jedynie na analizę ilościowa Równie ważne zagadnienie aspekt ekonomiczny

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

Pamięć i uczenie się Behawioryzm. Uczenie się jako wytwarzanie odruchów warunkowych

Pamięć i uczenie się Behawioryzm. Uczenie się jako wytwarzanie odruchów warunkowych Pamięć i uczenie się Behawioryzm. Uczenie się jako wytwarzanie odruchów warunkowych W 2 dr Łukasz Michalczyk 1 behawioryzm to kierunek psychologii skupiający się na badaniu zachowania, o r a z pomijaniu

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w

Bardziej szczegółowo

XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych

XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O górnym ograniczeniu zysku ze strategii handlowej opartej na kointegracji XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych Zależność kointegracyjna

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

10. Techniki minimalizacji a sieci neuronowe

10. Techniki minimalizacji a sieci neuronowe 10. Techniki minimalizacji a sieci neuronowe 10-1 Błąd aproksymacji 10-2 Minimalizacja kosztu 10-3 Tryby minimalizacji 10-4 Metoda największego spadku 10-5 Gradient sprzężony 10-6 Metoda Newtona 10-7 Metody

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Algorytmy stochastyczne Wykład 12, Uczenie parametryczne w sieciach bayesowskich

Algorytmy stochastyczne Wykład 12, Uczenie parametryczne w sieciach bayesowskich Algorytmy stochastyczne Wykład 2, Uczenie parametryczne w sieciach bayesowskich Jarosław Piersa 204-05-22 Zagadnienie uczenia sieci bayesowskich Problem mamy strukturę sieci bayesowskiej węzły, stany i

Bardziej szczegółowo

data mining machine learning data science

data mining machine learning data science data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe

Bardziej szczegółowo

Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych

Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Probabilistic Topic Models Jakub M. TOMCZAK Politechnika Wrocławska, Instytut Informatyki 30.03.2011, Wrocław Plan 1. Wstęp

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji: Krzyżówka liczbowa Dobrze poukładany człowiek Na podstawie pracy Justyny

Bardziej szczegółowo

6.3 Ekwiwalent za urlop

6.3 Ekwiwalent za urlop Moduł 6: Płatne i niepłatne absencje pracownicze 6.3 Ekwiwalent za urlop Materiał jest elementem Kursu: Płace, należącego do Akademii Moniki Smulewicz. Wszelkie prawa zastrzeżone. Ekwiwalent za urlop Pracownik,

Bardziej szczegółowo