data mining machine learning data science
|
|
- Bronisław Walczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1
2 Machine Learning / Data mining / Data science Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i jej praktycznego wdrażania. Algorytmy pozwalają na zautomatyzowanie procesu pozyskiwania i analizy danych do ulepszania i rozwoju własnego systemu. KISIM, WIMiIP, AGH 2
3 Machine Learning Data Mining pozyskiwanie wiedzy przez człowieka Machine Learning odbiorcą jest maszyna, celem usprawnienie działania. Metody (przykładowe): Indukcja drzew decyzyjnych Uczenie Bayesowskie (Bayesian Learning) Uczenie z przykładów (Instance-based Learning) (np. knn) Clustering Support vector machines (SVM) Analiza asocjacji (Association rule learning) Sieci neuronowe Algorytmy genetyczne Wnioskowanie epizodyczne (CBR) Uczenie przez wzmacnianie (Reinforcement Learning) KISIM, WIMiIP, AGH 3
4 Knowledge Discovery from Data(KDD) data wrangling feature engineering KISIM, WIMiIP, AGH 4
5 KISIM, WIMiIP, AGH 5
6 data science interdyscyplinarny obszar mający na celu zamienić dane w wartość. Dane mogą posiadać strukturę lub nie, mogą być BIG lub SMALL, dynamiczne lub statyczne. Wartość może być dostarczona przez predykcję, wspomaganie decyzji, uczenie maszynowe, wizualizację. Data science obejmuje ekstrakcję, przetwarzanie, eksplorację, transformację, przechowywanie i reużytkowanie, obliczenia, mining and learning, prezentację i zastosowanie wyników z uwzględnieniem etycznych, społecznych, prawnych i biznesowych aspektów KISIM, WIMiIP, AGH 6
7 data scientist mistrz danych? KISIM, WIMiIP, AGH 7
8 Przykładowe algorytmy z zakresu Data Mining wizualizacja, wykresy metody predykcji, regresji metody statystyczne, modele szeregów czasowych ARIMA, analiza ANOVA analiza skupień, clustering modele drzew decyzyjnych» (klasyfikacyjne/regresyjne, CART) sieci neuronowe metody klasyfikacji:» najbliższych sąsiadów, naiwny klasyfikator Bayesa algorytmy indukcji reguł analiza asocjacji analiza składowych głównych PCA metoda wektorów nośnych SVM komponenty wariacyjne (VEPAC) metody uczenia maszynowego metody ewolucyjne logika rozmyta zbiory przybliżone data mining indukcja drzew (CART, CHAID) Grupowanie (k-średnich; EM) SVM, ANN RoughSets NeuroFuzzy (ANFIS) MARSplines, ANOVA, VEPAC KISIM, WIMiIP, AGH 8
9 Analiza (odkrywanie) Asocjacji Association rule learning
10 Analiza koszykowa w sklepie internetowym Cross-selling
11 Odkrywanie asocjacji Celem procesu odkrywania asocjacji jest znalezienie interesujących zależności lub korelacji, nazywanych ogólnie asocjacjami, pomiędzy danymi w dużych zbiorach danych. Wynikiem procesu odkrywania asocjacji jest zbiór reguł asocjacyjnych opisujących znalezione zależności lub korelacje między danymi. zastosowania odkrytych asocjacji: planowanie kampanii promocyjnych rozmieszczenie stoisk w supermarketach planowanie programów lojalnościowych opracowania koncepcji katalogu
12 Ufność i wsparcie informację o tym, że większość klientów, którzy kupują MS Windows kupują również MS Office można zapisać za pomocą następującej reguły asocjacyjnej: windows office [support = 15%, confidence = 75%]» Wsparcie 15% oznacza, że wśród zbadanych transakcji windows i office występują razem w piętnastu procentach,» wiarygodność 75% oznacza, że wśród klientów kupujących windows 75% klientów również kupuje office.
13 Przykład bazy transakcyjnej i reguły asocjacyjnej
14 Przykład bazy transakcyjnej i reguły asocjacyjnej
15 Przykład bazy transakcyjnej i reguły asocjacyjnej
16 Ocena reguł kryteria dla reguł interesujących W jaki sposób system eksploracji danych, odkrywając reguły asocjacyjne, może określić, które ze znalezionych reguł są interesujące dla użytkownika? Reguły o dużym wsparciu niekoniecznie muszą okazać się interesujące reguły te są z reguły dobrze znane użytkownikom. Podobnie rzecz ma się w odniesieniu do reguł o wysokim współczynniku ufności. ciąża = 1 płeć = kobieta przetoczenie ponad 2,5 jednostek krwi prowadzi często do komplikacji pooperacyjnych Przydatność reguły potrafi określić tylko i wyłącznie użytkownik.
17 Przykłady wizualizacji
18 Przykłady wizualizacji
19 Przykłady wizualizacji
20 Zmniejszanie minsup -coraz więcej reguł. -na początku reguły oczywiste i znane, - później ciekawe i wcześniej niezauważane. -Warto zacząć również od reguł najmocniejszych i później zmniejszać poziom minconf
21 Ocena reguł kryteria dla reguł interesujących W jaki sposób system eksploracji danych, odkrywając reguły asocjacyjne, może określić, które ze znalezionych reguł są interesujące dla użytkownika? Reguły o dużym wsparciu niekoniecznie muszą okazać się interesujące reguły te są z reguły dobrze znane użytkownikom. Podobnie rzecz ma się w odniesieniu do reguł o wysokim współczynniku ufności. ciąża = 1 płeć = kobieta przetoczenie ponad 2,5 jednostek krwi prowadzi często do komplikacji pooperacyjnych Przydatność reguły potrafi określić tylko i wyłącznie użytkownik.
22 Przykład Dane MarketBasket, Ponad 60 tys transakcji, ponad 600 kategorii produktów
23 Niesekwencyjna analiza asocjacji Wszystkie reguły, a więc też cały model, zapisywane są w bazie danych (.dbs). Domyślnie baza ta jest przechowywana w pliku C:\Documents and Settings\USER\My Documents\Default.dbs. 23
24 minsup 0,1 minconf 0,5 minsup 0,05 minconf 0,5 24
25 25
26 26
27 KISIM, WIMiIP, AGH 27
28 Adult KISIM, WIMiIP, AGH 28
29 KISIM, WIMiIP, AGH 29
30 KISIM, WIMiIP, AGH 30
31 STATISTICA SAL (Sequence, Association and Link Analysis) STATISTICA SAL to zbiór technik analitycznych przeznaczonych do znajdowania w zbiorach danych reguł, jakim podlegają koszyki zakupów.» wykrywanie reguł asocjacji (ustalanie reguł, które produkty kupowane są razem, analiza niesekwencyjna),» analiza sekwencji (badanie, w jakiej kolejności zjawiska zachodzą po sobie),» analiza skojarzeń (połączeń, dzięki niej można, np. analizując dane dotyczące klientów, wnioskować o tym, co będą oni chcieli kupić, bazując na informacjach o wcześniejszych ich zakupach).
32 STATISTICA SAL (Sequence, Association and Link Analysis) wykorzystuje technikę budowania drzew, do wydobywania z danych reguł sekwencji i asocjacji. dla zmiennych wielokrotnych odpowiedzi/dychotomii, jak i zmiennych ciągłych. równolegle poszukiwane są reguły sekwencyjne jak i reguły asocjacji. reguły sekwencji i asocjacji znajdowane są równocześnie w więcej niż jednym wymiarze. Analiza skupień: Moduł może wykonywać analizę typu hierarchicznego grupowania na bazie pojedynczych połączeń, co pozwala wykryć prawdopodobne grupowanie się produktów. Ma to szczególnie praktyczne zastosowania, np. W sprzedaży detalicznej.
33 KISIM, WIMiIP, AGH 33
34 minsup = 0,4 minsup = 0,3 brak reguł >50K w konkluzji minsup = 0,2 minconf=0,1 KISIM, WIMiIP, AGH 34
35 minsup = 0,2 minconf=0,1 KISIM, WIMiIP, AGH 35
36 minsup = 0,2 minconf=0,1 KISIM, WIMiIP, AGH 36
37 KISIM, WIMiIP, AGH minsup = 0,1 minconf=0,1 37
38 KISIM, WIMiIP, AGH 38
39 KISIM, WIMiIP, AGH 39
40 KISIM, WIMiIP, AGH 40
41 Algorytm Apriori (R) Apriori wykonane w środowisku R na zbiorze Adult minsup = 0,4 minconf = 0,7 Interesują nas reguły, które w konkluzji mają: race=white lub sex=male
42 Algorytm Apriori (R) sortujemy reguły po wskaźniku lift. wyświetlamy 5 najlepszych reguł
43 Association rules viewers 43
44 arulesviz R library association rule learning with 44
45 Text mining with RapidMiner 45
46 NewsMapping 46
47 47
48 48
49 Odkrywanie wzorców sekwencji Mining Sequential Patterns
50 Eksploracja wzorców sekwencji Wzorce sekwencji stanowią klasę wzorców symbolicznych opisujących zależności występujące pomiędzy zdarzeniami zachodzącymi w pewnym przedziale czasu. W przypadku wzorców symbolicznych zdarzenia są opisane wartościami atrybutów kategorycznych. W przypadku, gdy zdarzenia są opisane wartościami numerycznymi mówimy o przebiegach czasowych lub o analizie trendów. W przypadku analizy trendów, najczęściej stosuje się metody analizy przebiegów czasowych lub metody predykcji. Przykłady:» klient, który wypożyczył tydzień temu film Gwiezdne Wojny, w ciągu tygodnia wypożyczy Imperium Kontratakuje, a następnie, w kolejnym tygodniu Powrót Jedi» użytkownik, który odczytał strony A i B, przejdzie, w kolejnych krokach, do strony D, a następnie, strony F
Machine Learning. KISIM, WIMiIP, AGH
Machine Learning KISIM, WIMiIP, AGH 1 Machine Learning Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i jej praktycznego wdrażania. Algorytmy pozwalają na zautomatyzowanie procesu
Ewelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining 0LNRáDM0RU]\ Marek Wojciechowski Instytut Informatyki PP Eksploracja danych 2GNU\ZDQLHZ]RUFyZZGX*\FK
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe Machine Learning. Krzysztof Regulski, WIMiIP, KISiM, B5, pok.
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe Machine Learning Krzysztof Regulski, WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy
Metody eksploracji danych. Reguły asocjacyjne
Metody eksploracji danych Reguły asocjacyjne Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Analiza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
Odkrywanie asocjacji
Odkrywanie asocjacji Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Odkrywanie asocjacji wykład 1 Wykład jest poświęcony wprowadzeniu i zaznajomieniu się z problemem odkrywania reguł asocjacyjnych.
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
Implementacja metod eksploracji danych - Oracle Data Mining
Implementacja metod eksploracji danych - Oracle Data Mining 395 Plan rozdziału 396 Wprowadzenie do eksploracji danych Architektura Oracle Data Mining Możliwości Oracle Data Mining Etapy procesu eksploracji
Eksploracja danych (data mining)
Eksploracja (data mining) Tadeusz Pankowski www.put.poznan.pl/~pankowsk Czym jest eksploracja? Eksploracja oznacza wydobywanie wiedzy z dużych zbiorów. Eksploracja badanie, przeszukiwanie; np. dziewiczych
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
Proces odkrywania wiedzy z baz danych
Proces odkrywania wiedzy z baz danych Wydział Informatyki Politechnika Białostocka Marcin Czajkowski email: m.czajkowski@pb.edu.pl Świat pełen danych Świat pełen danych Możliwości analizowania i zrozumienia
Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Grzegorz Harańczyk, StatSoft Polska Sp. z o.o.
CO Z CZYM I PO CZYM, CZYLI ANALIZA ASOCJACJI I SEKWENCJI W PROGRAMIE STATISTICA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Jednym z zagadnień analizy danych jest wyszukiwanie w zbiorach danych wzorców,
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Odkrywanie wzorców sekwencji
Odkrywanie wzorców sekwencji Sformułowanie problemu Algorytm GSP Eksploracja wzorców sekwencji wykład 1 Na wykładzie zapoznamy się z problemem odkrywania wzorców sekwencji. Rozpoczniemy od wprowadzenia
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Odkrywanie asocjacji
Odkrywanie asocjacji Cel odkrywania asocjacji Znalezienie interesujących zależności lub korelacji, tzw. asocjacji Analiza dużych zbiorów danych Wynik procesu: zbiór reguł asocjacyjnych Witold Andrzejewski,
Metody Eksploracji Danych. Klasyfikacja
Metody Eksploracji Danych Klasyfikacja w wykładzie wykorzystano: 1. materiały dydaktyczne przygotowane w ramach projektu Opracowanie programów nauczania na odległość na kierunku studiów wyższych Informatyka
Analiza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Metody eksploracji danych Rok akademicki: 2015/2016 Kod: OWT-1-607-s Punkty ECTS: 4 Wydział: Odlewnictwa Kierunek: Wirtotechnologia Specjalność: - Poziom studiów: Studia I stopnia Forma i
Reguły asocjacyjne w programie RapidMiner Michał Bereta
Reguły asocjacyjne w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Reguły asocjacyjne mają na celu odkrycie związków współwystępowania pomiędzy atrybutami. Stosuje się je często do danych
Inżynieria biomedyczna
Inżynieria biomedyczna Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna studia międzywydziałowe współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.
Ćwiczenie 5. Metody eksploracji danych
Ćwiczenie 5. Metody eksploracji danych Reguły asocjacyjne (association rules) Badaniem atrybutów lub cech, które są powiązane ze sobą, zajmuje się analiza podobieństw (ang. affinity analysis). Metody analizy
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006
Metadane. Data Maining. - wykład VII Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Plan 1. Metadane 2. Jakość danych 3. Eksploracja danych (Data mining) 4. Sprawy róŝne
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Analityka danych publicznych dla diagnoz i prognoz dotyczących osób niepełnosprawnych
XI Konferencja Naukowa Bezpieczeostwo w Internecie. Analityka danych Analityka danych publicznych dla diagnoz i prognoz dotyczących osób niepełnosprawnych Ewa Marzec UKSW Uwagi historyczne Rosnące rozmiary
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
Laboratorium 11. Regresja SVM.
Laboratorium 11 Regresja SVM. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>. 3. Z
WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
SPOTKANIE 2: Wprowadzenie cz. I
Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie
dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych
DATA BIZNES. Adam Wiatkowski Algorytmy uczenia maszynowego w zastosowaniach maszynowych
DATA SCIENCE @ BIZNES Adam Wiatkowski Algorytmy uczenia maszynowego w zastosowaniach maszynowych AGENDA 1. Wiadomości ogólne problemy uczenia maszynowego 2. Charakterystyka algorytmów 3. Analiza regresji
Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Implementacja wybranych algorytmów eksploracji danych na Oracle 10g
Implementacja wybranych algorytmów eksploracji danych na Oracle 10g Sławomir Skowyra, Michał Rudowski Instytut Informatyki Wydziału Elektroniki i Technik Informacyjnych, Politechnika Warszawska S.Skowyra@stud.elka.pw.edu.pl,
Krzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com
XI Konferencja PLOUG Kościelisko Październik 2005 Zastosowanie reguł asocjacyjnych, pakietu Oracle Data Mining for Java do analizy koszyka zakupów w aplikacjach e-commerce. Integracja ze środowiskiem Oracle
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
OPIS PRZEDMIOTU ZAMÓWIENIA. Część nr 8 OPROGRAMOWANIE DO ANALIZ MARKETINGOWYCH (pom. nr 1.21)
Zamówienie publiczne współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Regionalnego Programu Operacyjnego Województwa Mazowieckiego 2007-2013 w związku
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Data Mining Kopalnie Wiedzy
Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali
Sztuczna Inteligencja a Industry 4.0
Sztuczna Inteligencja a Industry 4.0 (z perspektywy Katedry Informatyki Stosowanej i Modelowania) Jan Kusiak Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej
Hurtownie danych. Analiza zachowań użytkownika w Internecie. Ewa Kowalczuk, Piotr Śniegowski. Informatyka Wydział Informatyki Politechnika Poznańska
Hurtownie danych Analiza zachowań użytkownika w Internecie Ewa Kowalczuk, Piotr Śniegowski Informatyka Wydział Informatyki Politechnika Poznańska 2 czerwca 2011 Wprowadzenie Jak zwiększyć zysk sklepu internetowego?
Odkrywanie reguł asocjacyjnych. Rapid Miner
Odkrywanie reguł asocjacyjnych Rapid Miner Zbiory częste TS ID_KLIENTA Koszyk 12:57 1123 {mleko, pieluszki, piwo} 13:12 1412 {mleko, piwo, bułki, masło, pieluszki} 13:55 1425 {piwo, wódka, wino, paracetamol}
Szczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
1. Odkrywanie asocjacji
1. 2. Odkrywanie asocjacji...1 Algorytmy...1 1. A priori...1 2. Algorytm FP-Growth...2 3. Wykorzystanie narzędzi Oracle Data Miner i Rapid Miner do odkrywania reguł asocjacyjnych...2 3.1. Odkrywanie reguł
Wielopoziomowe i wielowymiarowe reguły asocjacyjne
Wielopoziomowe i wielowymiarowe reguły asocjacyjne Wielopoziomowe reguły asocjacyjne Wielowymiarowe reguły asocjacyjne Asocjacje vs korelacja Odkrywanie asocjacji wykład 3 Kontynuując zagadnienia związane
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
SPOTKANIE 1: Wprowadzenie do uczenia maszynowego
Wrocław University of Technology SPOTKANIE 1: Wprowadzenie do uczenia maszynowego Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 18.10.2013 Początki uczenia maszynowego Cybernetyka
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
FINALYSE Wykrywanie wyłudzeń w zautomatyzowanych systemach decyzyjnych. Kongres Antyfraudowy. Amsterdam I Brussels I Luxembourg I Warsaw
FINALYSE Wykrywanie wyłudzeń w zautomatyzowanych systemach decyzyjnych Kongres Antyfraudowy Amsterdam I Brussels I Luxembourg I Warsaw 10-2017 AGENDA Wprowadzenie Wyzwania Best Practise Korzyści Confidential
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2014/2015 Analiza asocjacji i sekwencji Analiza asocjacji Analiza asocjacji polega na identyfikacji
Co to jest klasyfikacja? Klasyfikacja a grupowanie Naiwny klasyfikator Bayesa
Co to jest klasyfikacja? Klasyfikacja a grupowanie Naiwny klasyfikator Bayesa Odkrywanie asocjacji Wzorce sekwencji Analiza koszykowa Podobieństwo szeregów temporalnych Klasyfikacja Wykrywanie odchyleń
Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych
Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja
PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY
PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY Piotr Wójtowicz, Grzegorz Migut StatSoft Polska Jakie są różnice pomiędzy osobami prawidłowo regulującymi swoje zobowiązania a niechętnie spłacającymi swoje długi,
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Mikołaj Morzy, Marek Wojciechowski: "Integracja technik eksploracji danych z systemem zarządzania bazą danych na przykładzie Oracle9i Data Mining"
Mikołaj Morzy, Marek Wojciechowski: "Integracja technik eksploracji danych z systemem zarządzania bazą danych na przykładzie Oracle9i Data Mining" Streszczenie Eksploracja danych znajduje coraz szersze
Eksploracja danych PROCES EKSPLORACJI DANYCH. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych PROCES EKSPLORACJI DANYCH Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Meta-uczenie co to jest?
Meta-uczenie co to jest? Uczenie się tego jak się uczyć Uwolnienie się od uciażliwego doboru MODELU i PAREMETRÓW modelu. Bachotek05/1 Cele meta-uczenia Pełna ale kryterialna automatyzacja modelowania danych
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI
METODY INŻYNIERII WIEDZY ASOCJACYJNA REPREZENTACJA POWIĄZANYCH TABEL I WNIOSKOWANIE IGOR CZAJKOWSKI CELE PROJEKTU Transformacja dowolnej bazy danych w min. 3 postaci normalnej do postaci Asocjacyjnej Grafowej
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia.
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Szkolenia SAS Cennik i kalendarz 2017
Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS
SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS Dotyczy cyklu kształcenia 2014-2018 Realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Metody Inżynierii Wiedzy
Metody Inżynierii Wiedzy Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Mateusz Burcon Kraków, czerwiec 2017 Wykorzystane technologie Python 3.4
Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl
Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po
Wydział Informatyki i Zarządzania SWD NS 3. Marek Lubicz. kbo.pwr.edu.pl/pracownik/lubicz
Wydział Informatyki i Zarządzania SWD NS 3 Marek Lubicz marek.lubicz@pwr.wroc.pl kbo.pwr.edu.pl/pracownik/lubicz SWD 2016 MLubicz 2 Analityka biznesowa Analityka Biznesowa to wykorzystanie: danych, technologii
Rok akademicki: 2030/2031 Kod: ZZP MK-n Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne
Nazwa modułu: Komputerowe wspomaganie decyzji Rok akademicki: 2030/2031 Kod: ZZP-2-403-MK-n Punkty ECTS: 3 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: Marketing Poziom studiów: Studia II stopnia
IX EKSPLORACJA DANYCH
Zastosowanie drzew decyzyjnych do analizy danych Artur Soroczyński Politechnika Warszawska Instytut Technologii Materiałowych Terminologia Datamining Drzewa decyzyjne Plan wykładu Przykład wykorzystania
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces