Uczenie ze wzmocnieniem aplikacje
|
|
- Liliana Wojciechowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 23 maja 2014
2 Problem decyzyjny Markova START
3 Rozwiązanie problemu decyzyjnego Markova
4 nieznany MDP brak f. nagrody i modelu przejść 3???? 2 1??? START??? 0.1?? ?
5 Uczenie ze wzmocnieniem Uczenie: pasywne ocena użyteczności danej polityki π aktywne znalezienie optymalnej polityki π eksploracja!
6 Rodzaje uczenia 1 Uczenie nadzorowane (nauczyciel) 1 klasyfikacja: stan [znana!] klasa decyzyjna 2 regresja: stan [znana!] wartość 2 Uczenie nienadzorowane (brak nauczyciela) 1 stan [nieznana!] klasa 3 Uczenie ze wzmocnieniem (krytyk) 1 stan [nieznana a priori!] kara / nagroda (wzmocnienie)
7 Podejścia do uczenia ze wzmocnieniem Równanie Bellman a: U(s) = R(s) + γ max a A(s) s U(s )P(s s, a) Podejścia: 1 agent odruchowy (direct policy search) uczy się polityki π : S A np. algorytm ewolucyjny 2 agent z funkcją użyteczności uczy się f. użyteczności U(s) np. adaptatywne programowanie dynamiczne (ADP), uczenie różnicowe (TDL) 3 agent z funkcją Q uczy się funkcji Q(s, a) np. Q-learning Który agent potrzebuje modelu świata?[zadanie 1]
8 Reguły uczenia TD-Learning U π (s) U π (s) + α ( R(s) + γu π (s ) U π (s) ) α współczynnik uczenia
9 Reguły uczenia TD-Learning U π (s) U π (s) + α ( R(s) + γu π (s ) U π (s) ) α współczynnik uczenia Q-Learning Q(s, a) Q(s, a) + α ( R(s) + γmax a Q(s, a ) Q(s, a) ) α współczynnik uczenia
10 Approksymator funkcji Liczba stanów: ADP działa rozsądnie dla problemów wielkości rzędu stanów. tryktrak (backgammon): szachy: Nie da się explicite rozważać tylu stanów
11 Approksymator funkcji Liczba stanów: ADP działa rozsądnie dla problemów wielkości rzędu stanów. tryktrak (backgammon): szachy: Nie da się explicite rozważać tylu stanów Aproksymator funkcji: Inna funkcja użyteczności stanu niż tablica Q lub U. Stan reprezentowany jako cechy f 1,..., f n. Aproksymator funkcji Û θ to np. liniowa kombinacja cech Û θ (s) = θ 1 f 1 (s) + θ 2 f 2 (s) + + θ n f n (s) Uczymy się tylko wartości parametrów θ = (θ 1, θ 2,..., θ n ).
12 Przypomnienie Generalizacja Aplikacje Bezpośrednie szukanie polityki Przykład ˆ θ (s) = θ1 pionk o w (s) + θ2 figur w centrum(s)+ U θ3 hetman?(s) + θ4 szach?(s) 1040 stanów 4 parametry
13 Aproksymator funkcji Aproksymator funkcji: musi być łatwo obliczalny,
14 Aproksymator funkcji Aproksymator funkcji: musi być łatwo obliczalny, kompresuje (dużą) przestrzeń stanów w (małą) liczbę parametrów, uogólniania wiedzę (stany odwiedzone vs. nieodwiedzone), Przykład: co stan mistrzowski gracz w tryktraka
15 Aproksymator funkcji Aproksymator funkcji: musi być łatwo obliczalny, kompresuje (dużą) przestrzeń stanów w (małą) liczbę parametrów, uogólniania wiedzę (stany odwiedzone vs. nieodwiedzone), Przykład: co stan mistrzowski gracz w tryktraka Kompromis: wielkość przestrzeni (jakość aproksymacji) vs. czas nauki
16 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności START Przykład Dla naszego świata 4 3, niech: Û θ (x, y) = θ 0 + θ 1 x + θ 2 y Jeśli θ = (0.5, 0.2, 0.1), to ile wynosi Û θ (1, 1)?[zadanie 2]
17 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności START Przykład Dla naszego świata 4 3, niech: Û θ (x, y) = θ 0 + θ 1 x + θ 2 y Jeśli θ = (0.5, 0.2, 0.1), to ile wynosi Û θ (1, 1)?[zadanie 2] Wykonaliśmy próbę od stanu (1, 1) i otrzymaliśmy wzmocnienie u(1, 1) = 0.4. Wniosek: Û θ (1, 1) = 0.8 to za dużo.
18 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności Niech funkcja błędu: E(s) = 1 ) 2 (Ûθ (s) u(s) 2 Szukamy takich parametrów, które minimalizują błąd (gradient):
19 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności Niech funkcja błędu: E(s) = 1 ) 2 (Ûθ (s) u(s) 2 Szukamy takich parametrów, które minimalizują błąd (gradient): θ i θ i α E(s) θ i ( ) ) (Ûθ (s) u(s) = θ i α θ i ( ) Ûθ (s) = θ i + α u(s) Û θ (s) θ i
20 Przykład Bezpośrednia estymacja użyteczności Przykład dla 4x3: ( ) Ûθ (s) θ i θ i + α u(s) Û θ (s) θ i Û θ (x, y) = θ 0 + θ 1 x + θ 2 y,
21 Przykład Bezpośrednia estymacja użyteczności Przykład dla 4x3: więc: ( ) Ûθ (s) θ i θ i + α u(s) Û θ (s) θ i Û θ (x, y) = θ 0 + θ 1 x + θ 2 y, θ 0 θ 0 + α(u(s) Û θ (s)) θ 1 θ 1 + α(u(s) Û θ (s))x θ 2 θ 2 + α(u(s) Ûθ(s))y
22 Przykład Bezpośrednia estymacja użyteczności Niech: (θ 0, θ 1, θ 2 ) = (0.5, 0.2, 0.1) u(1, 1) = 0.4 Pytania: θ 0 θ 0 + α(u(s) Û θ (s)) θ 1 θ 1 + α(u(s) Û θ (s))x θ 2 θ 2 + α(u(s) Ûθ(s))y 1 Ile będą wynosić wartości parametrów (θ 0, θ 1, θ 2 ) po aktualizacji (α = 0.25)? [zadanie 3]
23 Przykład Bezpośrednia estymacja użyteczności Niech: (θ 0, θ 1, θ 2 ) = (0.5, 0.2, 0.1) u(1, 1) = 0.4 Pytania: θ 0 θ 0 + α(u(s) Û θ (s)) θ 1 θ 1 + α(u(s) Û θ (s))x θ 2 θ 2 + α(u(s) Ûθ(s))y 1 Ile będą wynosić wartości parametrów (θ 0, θ 1, θ 2 ) po aktualizacji (α = 0.25)? [zadanie 3] 2 Ile wyniesie Ûθ(1, 1) po aktualizacji parametrów?[zadanie 4]
24 Przykład Bezpośrednia estymacja użyteczności Niech: (θ 0, θ 1, θ 2 ) = (0.5, 0.2, 0.1) u(1, 1) = 0.4 Pytania: θ 0 θ 0 + α(u(s) Û θ (s)) θ 1 θ 1 + α(u(s) Û θ (s))x θ 2 θ 2 + α(u(s) Ûθ(s))y 1 Ile będą wynosić wartości parametrów (θ 0, θ 1, θ 2 ) po aktualizacji (α = 0.25)? [zadanie 3] 2 Ile wyniesie Ûθ(1, 1) po aktualizacji parametrów?[zadanie 4] 3 Chcieliśmy, aby Û θ (1, 1) się zmieniło. Czy zmieniło się także Û θ (1, 2)? [zadanie 5]
25 Wybór aproksymatora wiedza dziedzinowa Generalizacja Agent uczy się szybciej z aproksymatorem funkcji, bo może generalizować. 2 1 START 1 Jeśli aproksymator funkcji ma postać Û θ (x, y) = θ 0 + θ 1 x + θ 2 y, to szybciej dla świata z nagrodą +1 w polu (10, 10). A co by było, gdyby +1 było w polu (5, 5)?[zadanie 6] 4
26 Wybór aproksymatora wiedza dziedzinowa Generalizacja Agent uczy się szybciej z aproksymatorem funkcji, bo może generalizować. 2 1 START 1 Jeśli aproksymator funkcji ma postać Û θ (x, y) = θ 0 + θ 1 x + θ 2 y, to szybciej dla świata z nagrodą +1 w polu (10, 10). A co by było, gdyby +1 było w polu (5, 5)?[zadanie 6] Wiedza dziedzinowa: możemy dodać do Û θ (x, y) składnik θ 3 f 3, gdzie 2 2 4
27 Uczenie różnicowe Wersja oryginalna U π (s) U π (s) + α ( R(s) + γu π (s ) U π (s) ) Z aproksymatorem funkcji ( ) θ i θ i + α R(s) + γûθ(s ) Ûθ(s) Û θ (s) θ i
28 Q-learning Wersja oryginalna Q(s, a) Q(s, a) + α ( R(s) + γmax a Q(s, a ) Q(s, a) ) Z aproksymatorem funkcji θ i θ i + α ( R(s) + γmax a ˆQ θ (s, a ) ˆQ θ (s, a) ) ˆQ θ (s, a) θ i
29 Warcaby (Artur Samuel, 1959) liniowa aproksymator funkcji: 16 cech wariant uczenia różnicowego (TDL)
30 Tryktak (Gerry Tesauro, 1992) TD-Gammon: wcześniej: uczenie ze wzmocnieniem było tylko teoretyczną ciekawostką Teraz: 2000 cytowań Poziom mistrzowski
31 Tryktak (Gerry Tesauro, 1992) Początkowo: uczył sieć neuronową reprezentującą Q(s, a) za pomocą przykładów od ekspertów żmudne, słaby program Potem: gra z samym sobą (ang. self-play) Uczenie różnicowe (TDL), kara/nagroda: tylko za ostatni stan Wejście (cechy): 24 wartości ( surowy stan planszy) + 40 węzłów w warstwie ukrytej 200,000 gier uczących (2 tygodnie uczenia)
32 Balansowanie tyczką / odwrócone wahadło (Michie, Chambers, 1968) ang. pole balanding / inverted pendulum Problem ciągły Co jest stanem?[zadanie 7] Jakie akcje są możliwe?
33 Balansowanie tyczką / odwrócone wahadło (Michie, Chambers, 1968) ang. pole balanding / inverted pendulum Problem ciągły Co jest stanem?[zadanie 7] Jakie akcje są możliwe? Algorytm Boxes: Dyskretyzacja w pudełka Potrzeba jedynie 30 prób uczących, aby balansować przez godzinę Bez symulatora Negatywne wzmocnienie za ostatni (s, a) przed upadkiem. Dwie tyczki, Podwójna tyczka, Potrójna tyczka, UAV
34 Sterowanie dźwigami wind (Crites i Barto, 1996) ang. elevator dispatching problem Źródło: sutton/book/ebook/node111.html 4 windy, 10 pięter, przestrzeń stanów: ca stanów. Przestrzeń akcji? Pewne uproszczenia: każda winda osobno: Multi Agent Reinforcement Learning Q-learning Stan reprezentowany przez sieć neuronową: 47 wejść, 20 węzłów ukrytych i 2 wyjścia
35 Bezpośrednie szukanie polityki Polityka π : S A Chcemy reprezentować π nie dla każdego stanu, ale w sposób bardziej zwięzły (np. zestaw parametrów θ) Np. możemy reprezentować politykę π jako zestaw aproksymatorów funkcji Q: π(s) = max a ˆQ θ (s, a), gdzie ˆQ θ jest np. sumą jakichś funkcji ważoną parametrami θ (vide poprzednia sekcja) Szukanie polityki = dostosowuj θ, tak aby poprawiać działanie π. Czyli: ucz się funkcji ˆQ θ. Czy to jest to samo, co Q-learning?[zadanie 8]
36 Reprezentacja polityki π(s) = max a ˆQ θ (s, a) W Q-learning u (z aproksymatorem funkcji) szukamy ˆQ θ, które jest możliwie bliskie Q. W szukaniu polityki szukamy θ, które powoduje, że π działa dobrze. Przykład: Czy ˆQ θ (s, a) = Q (s, a)/10 jest optymalnym rozwiązaniem?[zadanie 9] Problem: π(s) jest nieciągłą funkcją parametrów θ, jeśli akcje są dyskretne czasem minimalna zmiana w θ może spowodować, że π(s) przeskoczy z jednej akcji na inną. dlatego uczenie gradientowe π nie jest możliwe.
37 Polityka stochastyczna Dlatego używa się polityki stochastycznej π θ (s, a), reprezentującej prawd. wybrania akcji a w stanie s. Reprezentacja z użyciem funkcji softmax: π θ (s, a) = e ˆQ θ (s,a)/τ / a e ˆQ θ (s,a )/τ prawd. wyboru akcji b softmax (a = 10) τ = 1 τ = 2 τ = b
Uczenie ze wzmocnieniem aplikacje
Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 22 maja 2013 Problem decyzyjny Markova
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Na podstawie: AIMA ch2 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 20 listopada 203 Problem decyzyjny Markova 3 + 2 0.8 START 0. 0. 2 3 4 MDP bez modelu przejść
Uczenie ze wzmocnieniem
Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 3 START 3
Uczenie ze wzmocnieniem
Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 3 START 3
SPOTKANIE 11: Reinforcement learning
Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)
Problemy Decyzyjne Markowa
Problemy Decyzyjne Markowa na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2013 Sekwencyjne problemy decyzyjne Cechy sekwencyjnego
Systemy agentowe. Uczenie ze wzmocnieniem. Jędrzej Potoniec
Systemy agentowe Uczenie ze wzmocnieniem Jędrzej Potoniec Uczenie ze wzmocnieniem (ang. Reinforcement learning) dane Środowisko, w którym można wykonywać pewne akcje, które są nagradzane lub karane, ale
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Problemy Decyzyjne Markowa
na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2015 na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki,
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Przypomnienia (1) Do tych czas: stan X t u, gdzie u cel aktualizacji: MC : X t G t TD(0) : X y R t+1 + γˆv(x t,
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 O projekcie nr 2 roboty (samochody, odkurzacze, drony,...) gry planszowe, sterowanie (optymalizacja; windy,..) optymalizacja
Uczenie ze wzmocnieniem generalizacja i zastosowania
Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Uczenie si e ze wzmocnieniem
Uczenie sie ze wzmocnieniem W wielu dziedzinach trudno jest sformu lować precyzyjne funkcje oceny, pozwalajace agentowi ocenić skuteczność, lub poprawność jego akcji, z wyjatkiem gdy osiagnie on stan docelowy.
Uczenie si e ze wzmocnieniem
Uczenie sie ze wzmocnieniem W wielu dziedzinach trudno jest sformu lować precyzyjne funkcje oceny, pozwalajace agentowi ocenić skuteczność, lub poprawność jego akcji, z wyjatkiem gdy osiagnie on stan docelowy.
Uczenie si e ze wzmocnieniem wst ep 1 Uczenie si e ze wzmocnieniem wst ep 2. Agent wykonuje przebiegi uczace
Uczenie sie ze wzmocnieniem W wielu dziedzinach trudno jest sformu lować precyzyjne funkcje oceny, pozwalajace agentowi ocenić skuteczność, lub poprawność jego akcji, z wyjatkiem gdy osiagnie on stan docelowy.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
W rozpatrywanym tu przyk ladowym zagadnieniu 4x3 b edziemy przyjmować. Uczenie si e ze wzmocnieniem pasywne 3. γ = 1.
Uczenie si e ze wzmocnieniem W wielu dziedzinach trudno jest sformu lować precyzyjne funkcje oceny, pozwalaj ace agentowi ocenić skuteczność, lub poprawność jego akcji, z wyj atkiem gdy osi agnie on stan
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Kurs z NetLogo - część 4.
Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada
DOPASOWYWANIE KRZYWYCH
DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.
WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Sztuczna inteligencja
Wstęp do Robotyki c W. Szynkiewicz, 2009 1 Sztuczna inteligencja Inteligencja to zdolność uczenia się i rozwiązywania problemów Główne działy sztucznej inteligencji: 1. Wnioskowanie: Wykorzystanie logiki
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Metody Inteligencji Sztucznej i Obliczeniowej
Metody Inteligencji Sztucznej i Obliczeniowej Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 marca 2015 Prowadzący dr inż. Wojciech Jaśkowski, wojciech.jaskowski@cs.put.poznan.pl, p.
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
I EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Wojciech Jaśkowski. 6 marca 2014
Instytut Informatyki, Politechnika Poznańska 6 marca 2014 Prowadzący dr inż., wojciech.jaskowski@cs.put.poznan.pl, p. 1.6.1 (tel. 3020) Plan ramowy Daty: 7.03, 14.03, 21.03, 28.03, 4.04, 11.04, [Wielkanoc],
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Temporal Difference learning Uczenie oparte na różnicach czasowych Problemy predykcyjne (wieloetapowe) droga do
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML Piotr Skrzypczyński Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Politechnika
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Metody selekcji cech
Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VII: Modelowanie uczenia się w sieciach neuronowych Uczenie się sieci i trening nienaruszona struktura sieci (z pewnym ale ) nienaruszone
Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Modelowanie Niepewności
Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca 2014 Na podstawie: AIMA, ch13 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 marca
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe
Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017
Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x
WYKŁAD 3. Klasyfikacja: modele probabilistyczne
Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Systemy ekspertowe. Generowanie reguł minimalnych. Część czwarta. Autor Roman Simiński.
Część czwarta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie:
Spis treści 1 Uczenie ze wzmocnieniem 2 Proces decyzyjny Markowa 3 Jak wyznaczyć optymalną strategię? 3.1 Algorytm iteracji funkcji wartościującej 3.2 Algorytm iteracji strategii 4 Estymowanie modelu dla
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Na podstawie: AIMA, ch13. Wojciech Jaśkowski. 15 marca 2013
Na podstawie: AIMA, ch13 Instytut Informatyki, Politechnika Poznańska 15 marca 2013 Źródła niepewności Świat częściowo obserwowalny Świat niedeterministyczny Także: Lenistwo i ignorancja (niewiedza) Cel:
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Meta-uczenie co to jest?
Meta-uczenie co to jest? Uczenie się tego jak się uczyć Uwolnienie się od uciażliwego doboru MODELU i PAREMETRÓW modelu. Bachotek05/1 Cele meta-uczenia Pełna ale kryterialna automatyzacja modelowania danych
Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Systemy agentowe. Uwagi organizacyjne. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa Zasady oceniania
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI mgr inż. Karol Walędzik k.waledzik@mini.pw.edu.pl prof. dr hab. inż. Jacek
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
Wrocław University of Technology. Uczenie głębokie. Maciej Zięba
Wrocław University of Technology Uczenie głębokie Maciej Zięba UCZENIE GŁĘBOKIE (ang. deep learning) = klasa metod uczenia maszynowego, gdzie model ma strukturę hierarchiczną złożoną z wielu nieliniowych