Uczenie ze wzmocnieniem aplikacje
|
|
- Michał Brzeziński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 22 maja 2013
2 Problem decyzyjny Markova START
3 Rozwiązanie problemu decyzyjnego Markova
4 nieznany MDP brak f. nagrody i modelu przejść 3???? 2 1??? START??? 0.1?? ?
5 Uczenie ze wzmocnieniem Uczenie: pasywne ocena użyteczności danej polityki π aktywne znalezienie optymalnej polityki π eksploracja!
6 Rodzaje uczenia 1 Uczenie nadzorowane (nauczyciel) 1 klasyfikacja: atrybuty [znana!] klasa decyzyjna 2 regresja: atrybuty [znana!] wartość 2 Uczenie nienadzorowane (brak nauczyciela) 1 atrybuty [nieznana!] wartość/klasa 3 Uczenie ze wzmocnieniem (krytyk) 1 akcja wzmocnienie (kara / nagroda)
7 Podejścia do uczenia ze wzmocnieniem Równanie Bellman a: Trzy podejścia: U(s) = R(s) + γ max U(s )P(s s, a) a A s 1 agent odruchowy (policy search) uczy się polityki π : S A 2 agent z funkcją użyteczności uczy się f. użyteczności U(s) przykłady: adaptatywne programowanie dynamiczne (ADP), uczenie różnicowe (TDL) 3 agent z funkcją Q uczy się funkcji Q(s, a) przykład: Q-learning Który agent potrzebuje modelu świata?[zadanie 1]
8 Reguły uczenia Uczenie różnicowe U π (s) U π (s) + α ( R(s) + γu π (s ) U π (s) ) α współczynnik uczenia Reguła modyfikacji Q-Learning Q(s, a) Q(s, a) + α ( R(s) + γmax a Q(s, a ) Q(s, a) )
9 Liczba stanów ADP działa rozsądnie dla problemów wielkości rzędu stanów. tryktrak: szachy: Nie da się explicite rozważać tylu stanów
10 Aproksymator funkcji Inna reprezentacja niż tablica (Q lub U). Np. liniowa kombinacja jakichś cech f 1,..., f n : Û θ (s) = θ 1 f 1 (s) + θ 2 f 2 (s) + + θ n f n (s) Uczymy się tylko parametrów θ.
11 Przypomnienie Generalizacja Szukanie polityki Przykład U θ (s) = θ1 l pionk o w (s) + θ2 l figur w centrum(s)+ θ3 hetman?(s) + θ4 szach?(s) 1040 stanów 6 parametrów Aplikacje
12 Aproksymator funkcji Aproksymator funkcji musi być łatwo obliczalny. Cechy: 1 kompresja (mała liczba stanów) 2 możliwość uogólniania wiedzy (stany odwiedzone vs. nieodwiedzone) 1 Przykład: co stan mistrzowski gracz w tryktraka Kompromis: wielkość przestrzeni (jakoś aproksymacji) vs. czas nauki
13 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności START Przykład. Dla naszego świata 4 3, niech: Û θ (x, y) = θ 0 + θ 1 x + θ 2 y (θ 0, θ 1, θ 2 ) = (0.5, 0.2, 0.1) = [zadanie 2] Wykonaliśmy przebieg od stanu (1, 1) i otrzymaliśmy sumaryczne wzmocnienie u(1, 1) = 0.4. Wniosek: Û θ (1, 1) = 0.8 to za dużo.
14 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności START Przykład. Dla naszego świata 4 3, niech: Û θ (x, y) = θ 0 + θ 1 x + θ 2 y (θ 0, θ 1, θ 2 ) = (0.5, 0.2, 0.1) = [zadanie 2] Wykonaliśmy przebieg od stanu (1, 1) i otrzymaliśmy sumaryczne wzmocnienie u(1, 1) = 0.4. Wniosek: Û θ (1, 1) = 0.8 to za dużo.
15 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności Definiujemy funkcję błędu: E(s) = 1 ) 2 (Ûθ (s) u(s) 2 Minimalizujemy błąd zgodnie z gradientem: θ i θ i α E(s) = θ i α θ i = θ i + α ( ) ) (Ûθ (s) u(s) θ i ( u(s) Û θ (s) ) Ûθ (s) θ i
16 Reguła Widrow-Hoff a Bezpośrednia estymacja użyteczności U nas: więc w naszym przykładzie: ( ) Ûθ (s) θ i θ i + α u(s) Û θ (s) θ i Û θ (x, y) = θ 0 + θ 1 x + θ 2 y, θ 0 θ 0 + α(u(s) Û θ (s)) θ 1 θ 1 + α(u(s) Ûθ(s))x θ 2 θ 2 + α(u(s) Ûθ(s))y
17 Przykład Bezpośrednia estymacja użyteczności Niech: (θ 0, θ 1, θ 2 ) = (0.5, 0.2, 0.1) u(1, 1) = 0.4 Pytania: θ 0 θ 0 + α(u(s) Û θ (s)) θ 1 θ 1 + α(u(s) Û θ (s))x θ 2 θ 2 + α(u(s) Ûθ(s))y 1 Ile będą wynosić parametry (θ 0, θ 1, θ 2 ) po aktualizacji (α = 0.25)? [zadanie 3] 2 Ile wyniesie Ûθ(1, 1) po aktualizacji parametrów?[zadanie 4] 3 Chcieliśmy, aby Û θ (1, 1) się zmieniło. Czy zmieniło się także Û θ (1, 2)? [zadanie 5]
18 Przykład Generalizacja Agent uczy się szybciej z aproksymatorem funkcji, bo może generalizować START Jeśli aproksymator funkcji ma postać Û θ (x, y) = θ 0 + θ 1 x + θ 2 y, to szybciej dla świata z nagrodą +1 w polu (10, 10). A co by było, gdyby +1 było w polu (5, 5)?[zadanie 6] Możemy dodać do Û θ (x, y) składnik θ 3 f 3, gdzie f 3 = (x 5) 2 + (y 5) 2 4
19 Uczenie różnicowe Wersja oryginalna U π (s) U π (s) + α ( R(s) + γu π (s ) U π (s) ) Z aproksymatorem funkcji ( ) θ i θ i + α R(s) + γûθ(s ) Ûθ(s) Û θ (s) θ i
20 Q-learning Wersja oryginalna Q(s, a) Q(s, a) + α ( R(s) + γmax a Q(s, a ) Q(s, a) ) Z aproksymatorem funkcji θ i θ i + α ( R(s) + γmax a ˆQ θ (s, a ) ˆQ θ (s, a) ) ˆQ θ (s, a) θ i
21 Szukanie polityki (ang. policy search) Polityka π : S A Chcemy reprezentować π nie dla każdego stanu, ale w sposób bardziej zwięzły (np. zestaw parametrów θ) Np. możemy reprezentować politykę π jako zestaw aproksymatorów funkcji Q: π(s) = max a ˆQ θ (s, a), gdzie ˆQ θ jest np. sumą jakichś funkcji ważoną parametrami θ (vide poprzednia sekcja) Szukanie polityki = dostosowuj θ, tak aby poprawiać działanie π. Czyli: ucz się funkcji ˆQθ. Czy to jest to samo, co Q-learning?[zadanie 7]
22 Reprezentacja polityki π(s) = max a ˆQ θ (s, a) W Q-learning u (z aproksymatorem funkcji) szukamy ˆQ θ, które jest możliwie bliskie Q. W szukaniu polityki szukamy θ, które powoduje, że π działa dobrze. Przykład: Czy ˆQ θ (s, a) = Q (s, a)/10 jest optymalnym rozwiązaniem?[zadanie 8] Problem: π(s) jest nieciągłą funkcją parametrów θ, jeśli akcje są dyskretne czasem minimalna zmiana w θ może spowodować, że π(s) przeskoczy z jednej akcji na inną. dlatego uczenie gradientowe π nie jest możliwe.
23 Polityka stochastyczna Dlatego używa się polityki stochastycznej π θ (s, a), reprezentującej prawd. wybrania akcji a w stanie s. Reprezentacja z użyciem funkcji softmax: π θ (s, a) = e ˆQ θ (s,a)/τ / a e ˆQ θ (s,a )/τ prawd. wyboru akcji b Zaleta: różniczkowalna softmax (a = 10) τ = 1 τ = 2 τ = b
24 Warcaby (Artur Samuel, 1959) liniowa aproksymator funkcji: 16 cech wariant uczenia różnicowego (TDL)
25 Tryktak (Gerry Tesauro, 1992) TD-Gammon: wcześniej: uczenie ze wzmocnieniem było tylko teoretyczną ciekawostką Teraz: 2000 cytowań Poziom mistrzowski
26 Tryktak (Gerry Tesauro, 1992) Początkowo: uczył sieć neuronową reprezentującą Q(s, a) za pomocą przykładów od ekspertów żmudne, słaby program Potem: gra z samym sobą (ang. self-play) Uczenie różnicowe (TDL), kara/nagroda: ostatni stan Wejście (cechy): 24 wartości ( surowy stan planszy) + 40 węzłów w warstwie ukrytej 200,000 gier uczących (2 tygodnie uczenia)
27 Balansowanie tyczką / odwrócone wahadło (Michie, Chambers, 1968) ang. pole balanding / inverted pendulum Problem ciągły Co jest stanem?[zadanie 9] Jakie akcje są możliwe? Algorytm Boxes: Dyskretyzacja w pudełka Potrzeba jedynie 30 prób uczących, aby balansować przez godzinę Bez symulatora Negatywne wzmocnienie za ostatni (s, a) przed upadkiem. Dwie tyczki, Podwójna tyczka, Potrójna tyczka, UAV
28 Sterowanie dźwigami wind (Crites i Barto, 1996) ang. elevator dispatching problem Źródło: sutton/book/ebook/node111.html 4 windy, 10 pięter, przestrzeń stanów: ca stanów. Przestrzeń akcji? Pewne uproszczenia: każda winda osobno: Multi Agent Reinforcement Learning Q-learning Stan reprezentowany przez sieć neuronową: 47 wejść, 20 węzłów ukrytych i 2 wyjścia
Uczenie ze wzmocnieniem aplikacje
Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 23 maja 2014 Problem decyzyjny Markova
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Na podstawie: AIMA ch2 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 20 listopada 203 Problem decyzyjny Markova 3 + 2 0.8 START 0. 0. 2 3 4 MDP bez modelu przejść
Uczenie ze wzmocnieniem
Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 3 START 3
Uczenie ze wzmocnieniem
Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 3 START 3
SPOTKANIE 11: Reinforcement learning
Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)
Problemy Decyzyjne Markowa
Problemy Decyzyjne Markowa na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2013 Sekwencyjne problemy decyzyjne Cechy sekwencyjnego
Systemy agentowe. Uczenie ze wzmocnieniem. Jędrzej Potoniec
Systemy agentowe Uczenie ze wzmocnieniem Jędrzej Potoniec Uczenie ze wzmocnieniem (ang. Reinforcement learning) dane Środowisko, w którym można wykonywać pewne akcje, które są nagradzane lub karane, ale
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Problemy Decyzyjne Markowa
na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2015 na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki,
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 O projekcie nr 2 roboty (samochody, odkurzacze, drony,...) gry planszowe, sterowanie (optymalizacja; windy,..) optymalizacja
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Uczenie si e ze wzmocnieniem
Uczenie sie ze wzmocnieniem W wielu dziedzinach trudno jest sformu lować precyzyjne funkcje oceny, pozwalajace agentowi ocenić skuteczność, lub poprawność jego akcji, z wyjatkiem gdy osiagnie on stan docelowy.
Uczenie si e ze wzmocnieniem
Uczenie sie ze wzmocnieniem W wielu dziedzinach trudno jest sformu lować precyzyjne funkcje oceny, pozwalajace agentowi ocenić skuteczność, lub poprawność jego akcji, z wyjatkiem gdy osiagnie on stan docelowy.
Uczenie si e ze wzmocnieniem wst ep 1 Uczenie si e ze wzmocnieniem wst ep 2. Agent wykonuje przebiegi uczace
Uczenie sie ze wzmocnieniem W wielu dziedzinach trudno jest sformu lować precyzyjne funkcje oceny, pozwalajace agentowi ocenić skuteczność, lub poprawność jego akcji, z wyjatkiem gdy osiagnie on stan docelowy.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Przypomnienia (1) Do tych czas: stan X t u, gdzie u cel aktualizacji: MC : X t G t TD(0) : X y R t+1 + γˆv(x t,
Uczenie ze wzmocnieniem generalizacja i zastosowania
Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Sztuczna inteligencja
Wstęp do Robotyki c W. Szynkiewicz, 2009 1 Sztuczna inteligencja Inteligencja to zdolność uczenia się i rozwiązywania problemów Główne działy sztucznej inteligencji: 1. Wnioskowanie: Wykorzystanie logiki
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
DOPASOWYWANIE KRZYWYCH
DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.
Kurs z NetLogo - część 4.
Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe
Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń
Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
I EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Metody Inteligencji Sztucznej i Obliczeniowej
Metody Inteligencji Sztucznej i Obliczeniowej Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 marca 2015 Prowadzący dr inż. Wojciech Jaśkowski, wojciech.jaskowski@cs.put.poznan.pl, p.
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Optymalizacja reguł decyzyjnych względem pokrycia
Zakład Systemów Informatycznych Instytut Informatyki, Uniwersytet Śląski Chorzów, 9 grudzień 2014 Wprowadzenie Wprowadzenie problem skalowalności dla optymalizacji reguł decyzjnych na podstawie podejścia
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Metody selekcji cech
Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Temporal Difference learning Uczenie oparte na różnicach czasowych Problemy predykcyjne (wieloetapowe) droga do
Wojciech Jaśkowski. 6 marca 2014
Instytut Informatyki, Politechnika Poznańska 6 marca 2014 Prowadzący dr inż., wojciech.jaskowski@cs.put.poznan.pl, p. 1.6.1 (tel. 3020) Plan ramowy Daty: 7.03, 14.03, 21.03, 28.03, 4.04, 11.04, [Wielkanoc],
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Systemy ekspertowe. Generowanie reguł minimalnych. Część czwarta. Autor Roman Simiński.
Część czwarta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa
WYKŁAD 3. Klasyfikacja: modele probabilistyczne
Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że
Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Definicja Ilorazem różnicowym funkcji f w punkcie a nazywamy
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017
Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VII: Modelowanie uczenia się w sieciach neuronowych Uczenie się sieci i trening nienaruszona struktura sieci (z pewnym ale ) nienaruszone
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML Piotr Skrzypczyński Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Politechnika
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie:
Spis treści 1 Uczenie ze wzmocnieniem 2 Proces decyzyjny Markowa 3 Jak wyznaczyć optymalną strategię? 3.1 Algorytm iteracji funkcji wartościującej 3.2 Algorytm iteracji strategii 4 Estymowanie modelu dla
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
SID Wykład 7 Zbiory rozmyte
SID Wykład 7 Zbiory rozmyte Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Wstęp Language Ontological Commitment Epistemological Commitment (What exists in the world) (What an agent
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej
OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak
OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy