Określenie współrzędnych terenowych punktów metodą przestrzennego wcięcia w przód na podstawie zdjęć lotniczych (metoda zdjęć ekwiwalentnych).

Wielkość: px
Rozpocząć pokaz od strony:

Download "Określenie współrzędnych terenowych punktów metodą przestrzennego wcięcia w przód na podstawie zdjęć lotniczych (metoda zdjęć ekwiwalentnych)."

Transkrypt

1 Oreśleie współrędh ereowh puów meodą presreego więi w pród podswie djęć loih (meod djęć ewiwleh). I. Weie elemeów orieji ewęrej djęć loih meod więi wse 1. odsw eoree leŝość pomięd weormi: w presrei predmioowej dl puu ereowego i presrei orowej dl oru puu djęiu ( ou epioh w środu ruów mer), wrić moŝ worsują rówie olierośi: λ A 1 lu w posi odwroej: A 1 pr m A -1 A T λ Gdie: - weor w presrei orowej, - weor w presrei predmioowej, λ -współi slow, A - mier orou ułdu djęi do ułdu ereowego., współręde łowe puu, odległość orow,, współręde ereowe puu,,, współręde środ ruów (iewidome) A eleme mier orou ędąe fują reh iewidomh ąów. Gdie: osφ osφ osω siω osω siω siω osφ siω osω siω osω osω osφ

2 ier A -1 moŝ rówieŝ pisć w posi reh podmier: 1 1 T A A i [ 1i,i, 3i ] 3 Współi slow λ jes róŝ dl Ŝdego weor. W rowiąwm gdieiu ie jes m pore jomość ego współi, dlego moŝem welimiowć go rówi olierośi. 1 F1 3 3 F owŝse rówi są ieliiowe (ąowe eleme orieji ewęrej ω, ϕ, κ w elemeh ij mier A) rowijm je w sereg i róŝiujem fuje F 1 i F e wględu posuiwe eleme orieji ewęrej pomiięiem wrów wŝsego rędu. Ormujem wóws podswowe rówi oserwje dl rowiąi gdiei oreślei elemeów orieji ewęrej: δ 1 δ d d 1 d δ δ d δ 1 δ d d dω dφ dκ F1 () δω δφ δκ dω dφ dκ F () δω δφ δκ uwgi lierję rówń iewidommi są prros do prjęh poąowh wrośi iewidomh (elemeów orieji ewęrej djęi). DuŜe prliŝeie h poąowh wrośi iewidomh powoduje oieość woi olień drode ierjej. Jedoe rowiąie usm dspoują rem pumi ereowmi i odpowidjąmi im ormi djęiu. W prpdu więsej ilośi puów po prwej sroie rówń pojwią się poprwi v, v i gdieie rowiąujem sosują meodę jmiejsh wdrów.. omir współrędh lowh puów orolh i puów wh worsiem VSD. omir puów orolh esowh djęih loih wow jes worsiem Video Sereo Digiier (VSD) prująego w rie mooompror. red ropoęiem włśiwego pomiru puów orolh leŝ pomierć i łowe [i] wpisują lwiur ih e współręde łowe (e meri lirji mer). Nsępie wouje się orieję wewęrą [lwis F5] wierją rsformję iliiową jo fuję do rsformji ułdu orowego (piselowego) ułd łow. rogrm wouje wsępie rsformję Helmer (rsformj pre podoieńswo) podswie wiów órej moŝ swierdić wsępowie łędów gruh. JeŜeli łęd po rsformji Helmer ie prerją 1.5 pisel moŝ uć, Ŝe rsformj doelow (iliiową) jes poprw. W im prpdu leŝ powórć pomir ów iłowh dl órh swierdoo jwięse odhłi. omir 5 puów orolh or puów wh wouje się worsiem lwis [j], umer puu wpisw jes lwiur. o ońeiu pr VSD wii pomiru wssih puów (rówo w ułdie orowm j i łowm) pise są w pliu Nwdi.or, umiesom w logu room.

3 3. Olieie elemeów orieji ewęrej djęi loiego (foogrmere więie wse) Foogrmere więie wse, godie eorią podą w p.1 reliuje progrm WCWSTEC.EE. Dmi ieędmi do reliji ego di są: - współręde łowe 5 foopuów or (de e umoŝliwiją reosruję wiąi promiei ruująh), - współręde ereowe 5 foopuów, or - prliŝoe eleme orieji ewęrej djęi. e wględu o, Ŝe rówi oserwje powsł w wiu rowiięi w sereg fuji ieliiowej, o iewidommi ie są wielośi elemeów orieji ewęrej djęi, le ih prros w sosuu do prliŝoh wrośi poąowh. Sąd isieje oieość oreślei prliŝoh wrośi elemeów orieji (,,, ω,φ,κ). oiewŝ seregowe djęi loie wowe są, jo djęi prwie pioowe moŝem prjąć, Ŝe prliŝoe wrośi ąów są rówe ero. rliŝoe współręde, środ ruów moŝem prjąć jo współręde, foopuu leŝąego jliŝej środ djęi (wsr dołdośią do l m). Nomis prliŝoą współrędą środ ruów wm sępująo: - wierm dw pomieroh foopuów leŝąe w preiwległh roŝih djęi, - e współrędh łowh dl h puów olim ih wjemą odległość djęiu d - e współrędh ereowh dl h puów lim poiomą odległość pomięd pumi w ereie D mją d, D i. moŝem sorsć e ej ogólie leŝośi: 1 m W d D órej olim : W D d mją wsoość ońów odi D olim jego średią wsoość D 1 D oseie prliŝo wsoość środ ruów ędie sumą wsoośi lou W or średiej wsoośi ego odi: W D

4 Sposó prgoowi dh do progrmu WCWSTEC. iór wejśiow do ego progrmu jprośiej jes uworć preredgowują iór wiow progrmu VSD wierją współręde łowe foopuów. Korolą poprwośi woi emu jes wielość łędu m, ór ie powi ć więs od. mm (m - druow jes w iore wiowm). r m >. mm oie jes osulj prowdąm jęi. Do sprwodi leŝ dołąć wdru ioru wejśiowego i wiowego progrmu WCWSTEC. ROGRA WCWSTEC (opis wejśi i wjśi) rogrm słuŝ do olii elemeów orieji ewęrej djęi loiego (foogrmere więie wse). De: w iore o dowolej wie (długość w m 3 ów) osć dh: 1. wiers: dowol omer (m. 3 ów). wiers: (slą mer [mm]),,, (prliŝoe współręde ereowe środ ruów [m] ), Omeg, Fi, Kpp (prliŝoe eleme ąowe orieji [g]) 3. wiers i sępe: pu do woi więi wse: r., (współręde łowe), g, g, g (współręde ereowe osi wiers: jo oi oń ioru Wii: w iore o podej w rie olień wie (m. 3 ów) W iore jduje się: doumej olień, olioe współręde środ ruów [m], olioe ąowe eleme orieji [g], odhłi współrędh puh wpsowi, średi łąd m wpsowi wiąi w djęie, mier rsformji.

5 II. Olieie ereowh współrędh puów wh worsiem meod sereogrmu ewiwleh djęć wróoh Alie więie w pród moŝ preprowdić meodą polegjąą presłeiu Ŝdego e djęć (lewego i prwego) do połoŝei pioowego. resłeie o wouje się popre prelieie współrędh łowh djęi o połoŝeiu dowolm współręde eoreego djęi ewiwleego pioowego w ułdie rówoległm do ułdu geodejego (pr rs. ). UmoŜliwi o sorsie prosh worów dl sereogrmu djęć loih wróoh (. o rówoległh osih mer). De do olień : eleme orieji ewęrej djęi lewego i prwego olioe więi wse :,,, ω, φ, κ,,,, ω, φ, κ, współręde puów do więie w pród pomieroe djęiu lewm i prwm, prersformowe do presreego ułdu łowego. Rs. 1: resre ułd łow. (.) - współręd w ułdie łowm, (,, -) - współręd w presrem ułdie łowm

6 OBICENIA: 1. Trsformj współrędh puu ułdu presreego łowego do ułdu rówoległego do ułdu geodejego Rs.. djęie ewiwlee pioowe A A osφ osφ osω siω osω siω siω osφ siω osω siω osω osω osφ

7 . Wiąę promiei w presrei orowej preim płsą djęi ewiwleego π i, dl órego. relim współręde puów djęi orgilego współręde puów djęi ewiwleegow ułdie,,. Worsujem do ego rówie olierośi weorów w presrei orowej r, r : rλ r 3. Olim prros współrędh ereowh w sosuu do lewego środ ruów, worsują wor dl djęć wróoh : gdie: 4. Olim współręde w ułdie geodejm : G G G r r λ ( ) ( ) ( )

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01 WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm

Bardziej szczegółowo

o zasilaniu napięciowym Gałąź normalna o zasilaniu mieszanym

o zasilaniu napięciowym Gałąź normalna o zasilaniu mieszanym o silniu npięiowm Głąź normln o silniu miesnm w w Głąź normln o silniu prądowm w w iern Siei e źródłmi npięiowmi [ ] [ ] [ ][ ]... W prpdu siei owodmi sprężonmi ( ) ( ) ( ) ω ω ω ω ω ω ω ω ω... M j M j

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T )

dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T ) Cłi potróje Niech 3 : R R ędie cją oreśloą ogricom osre domiętm o reg mir Jord cli osre mjącm ojętość. Podoie j ostrcji cłi podójej dielim osr poierchimi o ojętości osr or torm logicą smę cłoą: ξ i ηi

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)

Bardziej szczegółowo

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n 6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ

Bardziej szczegółowo

Opis ruchu we współrzędnych prostokątnych (kartezjańskich)

Opis ruchu we współrzędnych prostokątnych (kartezjańskich) Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A

Bardziej szczegółowo

Rejestracja obrazów w fotogrametrii naziemnej budowa kamery Photheo 19/1318. Rejestracja obrazów w fotogrametrii naziemnej budowa kamery UMK 10/1318

Rejestracja obrazów w fotogrametrii naziemnej budowa kamery Photheo 19/1318. Rejestracja obrazów w fotogrametrii naziemnej budowa kamery UMK 10/1318 Rejestj obów w fotogmetii niemnej budow mey Photheo 9/38 Libell κ Libell ω oientowni Spęg oientowni meą Pesuwny obietyw Spęg mey e spodą Rejestj obów w fotogmetii niemnej budow mey UMK /38 Libell κ Libell

Bardziej szczegółowo

Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł

Bardziej szczegółowo

Rozszerzenie znaczenia symbolu całki Riemanna

Rozszerzenie znaczenia symbolu całki Riemanna Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem

Bardziej szczegółowo

5.3.1. Zmiana układów odniesienia

5.3.1. Zmiana układów odniesienia 531 Zmi ukłdów odieiei Z kżdą brłą twą możem wiąć ukłd wółrędch oiując ruch tej brł w retrei Dltego w dlm ciągu w kiemtce brł będiem ię jmowć główie wjemm ruchem ukłdów wółrędch Zjąc ruch ukłdu wółrędch

Bardziej szczegółowo

kwartalna sprzeda elazek

kwartalna sprzeda elazek Modele elowe MODELE NIELINIOWE Prłd. model low elow - orówe). Kwrl sred ele w lch 996-999 wosł: 4 5 6 7 8 9 4 45 5 57 6 64 68 65 68 67 69 7 7 7 75 Wc rogo rec wrł ro 999. Z wres wd, e red jes rosc lec

Bardziej szczegółowo

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie

Bardziej szczegółowo

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b = St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b...

3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b... RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Ukłd rówń liiowch iewidoi isuje w ostci Z ukłde () wiąe są ciere A X B które w: A cierą wsółcików X koluą iewidoch B koluą wrów wolch Wkorstując owżse ocei ukłd

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

5.7. Przykład liczbowy

5.7. Przykład liczbowy 5.7. Prład licbow onać oblicenia nośności beli podsuwnicowej e sali S75 pręsłami o długościach l m swobodnie podparmi na słupach esaad obsługiwanej pre dwie suwnice naorowe o jednaowch paramerach usuowanej

Bardziej szczegółowo

M G 4 2 7 v. 2 0 1 5 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w

Bardziej szczegółowo

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN UEZPIECZENI GRUPOWE - sus srn sus łąngo żi i osnigo rżwągo UTORZY MICHŁ OCZEK MŁGORZT CZUPRYN Rowż gruę osób. Owiśi s lib nurlną więs od. Nih i on wi i osob dl i=,,... us gru sus łąngo żi sus osnigo rżwągo

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. A. o 25% B. o 50% C. o 44% D. o 56% A. B. C. 7 D..

ZADANIA ZAMKNIĘTE. A. o 25% B. o 50% C. o 44% D. o 56% A. B. C. 7 D.. ZADANIA ZAMKNIĘTE W zadaniach 1 25 wybierz jedną poprawną odpowiedź. Zadanie 1. (1 pkt.) Ce ę pralki o iżo o o %, a po dwó h iesią a h ową e ę o iżo o jesz ze o %. W w iku o u o iżek e a pralki z iejsz

Bardziej szczegółowo

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej. WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Mod urcz 7/8 Ior Sosow III ro Iżr Oczow II ro Włd 5 Rodzj roscj 8 8 8 - - - - 3 8 8 6 8 roscj rocj roscj jdosj [ ] roscj śrdowdrow d Twrdz Wrsrss ów ż d dowoj ucj oż zźć wo o dowo ł odchu s od j ucj Br

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""

6. *21! 4 % rezerwy matematycznej. oraz (ii) $ :;! +!!4 oraz  % & !4!  )$!!4 1 1!4 )$$$  ' Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

ALGORYTMY PRZELICZANIA WSPÓŁRZĘDNYCH KARTEZJAŃSKICH NA GEODEZYJNE

ALGORYTMY PRZELICZANIA WSPÓŁRZĘDNYCH KARTEZJAŃSKICH NA GEODEZYJNE Mteriły dydktyce eodej geometryc Mrci Ligs, Ktedr eomtyki, Wydił eodeji óricej i Iżyierii Środowisk ALORYMY PRZELICZANIA WSPÓŁRZĘDNYCH KAREZJAŃSKICH NA EODEZYJNE Predstwioe poiżej metody trsformcji ostą

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

Macierze w MS Excel 2007

Macierze w MS Excel 2007 Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy

Bardziej szczegółowo

Temat: Wybrane zagadnienia kinematyki mechanizmów. Ruch punktu: prostoliniowy, krzywoliniowy (np. po okręgu, elipsie, dowolnej krzywej)

Temat: Wybrane zagadnienia kinematyki mechanizmów. Ruch punktu: prostoliniowy, krzywoliniowy (np. po okręgu, elipsie, dowolnej krzywej) Tem: Wybre zgdiei kiemyki mechizmów Ruch puku: prosoliiowy, krzywoliiowy (p. po okręgu, elipsie, dowolej krzywej) Ruch bryły: posępowy, obroowy, płski, kulisy, śrubowy, dowoly. Liczbę iezleżych współrzędych

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam

Bardziej szczegółowo

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe. Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,

Bardziej szczegółowo

ELEKTROTECHNIKA. Obwody elektryczne. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego.

ELEKTROTECHNIKA. Obwody elektryczne. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. ELEKOEHNK Q Q rąd elerycy płye w obwode amęym Źródło eerg Wyład Obwody eleryce Zespół elemeów prewodących prąd, awerający pryajmej jedą drogę amęą dla prepływ prąd W elemeach obwod elerycego achodą procesy

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel Własośi zbiorów otwarth i domięth Tw. a) Suma dowolej ilośi zbiorów otwarth jest zbiorem otwartm. b) Iloz sońzoej ilośi zbiorów otwarth jest zbiorem otwartm. Dow. a) Mam rodzię zbiorów otwarth: U A s {

Bardziej szczegółowo

Z e s p ó ł d s. H A L i Z

Z e s p ó ł d s. H A L i Z C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Struna nieograniczona

Struna nieograniczona Rówie sry Rówie okreś rch sry sprężysej kórą ie dziłją siły zewęrze Sł okreśo jes przez włsości izycze sry Zkłdmy że w położei rówowgi sr pokryw się z pewym przedziłem osi OX Fkcj okreś wychyeie z położei

Bardziej szczegółowo

Do wyznaczania obrazów przekształceń stosuje się macierze 4-wierszowe w tzw. zapisie jednorodnym

Do wyznaczania obrazów przekształceń stosuje się macierze 4-wierszowe w tzw. zapisie jednorodnym Presunięie (trnslj): u w v Sklownie: s s s Orót wokół osi X: os os Orót wokół osi Y: os os Orót wokół osi Z: os os Do wnni orów prekstłeń stosuje się miere 4-wiersowe w tw. pisie jednorodnm https://pl.wikipedi.org/wiki/wsp%c3%b3%c5%82r%c4%99dne_jednorodne

Bardziej szczegółowo

Zastosowania matematyki w chemii. Marek Kręglewski

Zastosowania matematyki w chemii. Marek Kręglewski Zsosow mem w em Mre Kręglews Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze.

Bardziej szczegółowo

Analiza kinematyczna mechanizm III klasy

Analiza kinematyczna mechanizm III klasy liz kiemycz mechizm III klsy 5 6 3 6 4 D De: 6 = Rówie: Kieruek??? Środki obrou? Trjekori? D 6 4 3 5 6 k II k k II k ( ) Wspóly kieruek D 6 4 3 5 6 k II k k II k ( ) Wspóly kieruek k k k k 5 6 3 6 4 D

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne cał Padaows Isu Tecolog Iormacjc w Iżer Lądowej Wdał Iżer Lądowej Poleca Kraowsa Rówaa różcowe wcaje W ajprossm prpadu posuujem ucj jedej meej recwsej x w posac: ( x órej pocoda ( x ma spełać rówae dae

Bardziej szczegółowo

Od wzorów skróconego mnoŝenia do klasycznych nierówności

Od wzorów skróconego mnoŝenia do klasycznych nierówności Hery Pwłowsi IV LO Toruń O wzorów sróoego moŝei o lsyzyh ierówośi Uzą w szole wzorów sróoego moŝei zzymy o owozei wóh toŝsmośi: () ( ) () ( ) Nstępie uŝywmy ih o przesztłi wyrŝeń Tym rzem zrómy z ih iy

Bardziej szczegółowo

Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3

Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3 To sprwdzi ośości ści ociążoyc pioowo wg eody uproszczoej zgodie z P- 996- UWAGA: ośość ści eży sprwdzć żdej odygcji, cy że gruość ści i wyrzyłość uru ścisie są ie se wszysic odygcjc..... 5. De: rodzje

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów

Mechanika i wytrzymałość materiałów 1 ehik i wtrmłość mteriłów I - Wkłd Nr 3 Sttk: płski i prestre ukłd sił rówowg płskiego ukłdu sił, prestre ukłd sił redukj, wruki rówowgi Wdił Iżierii ehiej i Rootki Ktedr Wtrmłośi, Zmęei teriłów i Kostrukji

Bardziej szczegółowo

Przykład obliczeń cieplnych nagrzewnicy powietrza Materiały do zajęć z wymiany ciepła v. 0.83

Przykład obliczeń cieplnych nagrzewnicy powietrza Materiały do zajęć z wymiany ciepła v. 0.83 dr i. Paeł Kędzierki dr i. Michał Srzezeki gr i. Aa Koerka Przykład obliczeń cieplych agrzeicy poierza Maeriały do zajęć z yiay ciepła v. 0.83 ' " V " α α δ ' V l d ' d d z δ k g D Ry.. Rozkład eperaury

Bardziej szczegółowo

K a r l a Hronová ( P r a g a )

K a r l a Hronová ( P r a g a ) A C T A U N I V E R S I T A T I S L O D Z I E N S I S KSZTAŁCENIE POLONISTYCZNE CUDZOZIEMCÓW 2, 1989 K a r l a Hronová ( P r a g a ) DOBÓR I UKŁAD MATERIAŁU GRAMATYCZNEGO W PODRĘCZNIKACH KURSU PODSTAWOWEGO

Bardziej szczegółowo

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU DLA ZADANIA: PRZEBUDOWA UL PIASTÓW ŚLĄSKICH (OD UL. DZIERŻONIA DO UL. KOPALNIANEJ) W MYSŁOWICACH

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU DLA ZADANIA: PRZEBUDOWA UL PIASTÓW ŚLĄSKICH (OD UL. DZIERŻONIA DO UL. KOPALNIANEJ) W MYSŁOWICACH P r o j e k t d o c e l o w e j o r g a n i z a c j i r u c h u d l a z a d a n i a : " P r z e b u d o w a u l. P i a s t ó w Śl ą s k i c h ( o d u l. D z i e r ż o n i a d o u l. K o p a l n i a n e

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 02 02 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f Z a b e z p i e c z e n i e m a s o w e j i m p r e z y s p o r t

Bardziej szczegółowo

krystaliczne amorficzne monokrystaliczne polikrystaliczne Kryształ to obiekt dający ostry, dyskretny obraz dyfrakcyjny

krystaliczne amorficzne monokrystaliczne polikrystaliczne Kryształ to obiekt dający ostry, dyskretny obraz dyfrakcyjny Włd I. Bors, M. Ggl, K. Sróż, M. Surowe, Krslogrf, Wdwnwo Nuowe PWN, Wrsw 7. rs Durs, H. rs Durs, Podsw rslogrf sruurlne rengenowse Wdwnwo Nuowe PWN, Wrsw 994. Kosurew, Meod rslogrf, Wdwnwo nuowe UAM,

Bardziej szczegółowo

ż Ź Ą Ż Ż Ż ć Ó Ą Ó ź ć Ż Ż ź ż ż Ź ż ć ż Ż ć Ż Ż ż Ę Ą Ę Ą Ż Ść ć ż ż Ą ć Ź Ś ć Ż ż ż ż ż Ż ż Ż ż ż Ś ż Ź ż Ą ĘĄ Ż ć ć ż ż ż Ż ż Ż ć ż Ż ż ć ż Ż Ś Ż ż ć ż Ź Ż Ź ż ć Ź Ś ż Ź ż ż ź ż Ż ż Ż ż ż ż ż ż Ę Ś

Bardziej szczegółowo

Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć

Bardziej szczegółowo

ć ć Ą Ę Ę Ę Ę Ą ć ć ć ć ć ź Ą Ą Ą Ą ć Ą Ą Ą Ą ź Ę Ż ć ć Ł Ł ź ź Ł ć Ę Ę Ń Ż Ń ć Ę ć Ś Ś ć Ą Ę ć ć ć Ę ź Ę Ę Ń Ę Ń Ę Ę ć Ę Ę Ę Ę ć ć ź ć ć Ę ć Ę ć ć ć ć Ę Ę ź Ł Ę Ą Ą Ą Ę ź ź ć ź ć Ł ć Ł Ę ć Ą Ł

Bardziej szczegółowo

Ź Ó Ź Ź Ą ź ź Ń Ó ć Ź ć ć Ź Ó Ń ź Ó Ś Ó Ó Ó Ą ź ź Ó Ą Ą Ź ć Ź Ó Ó Ó Ą ć ć ć Ą ć Ó Ść ć Ś Ść Ś Ó ć ć Ś Ó Ó ć Ś ć ć ć Ó Ó ć ć Ó Ś Ą Ó ć Ź ĘĄ Ó Ó Ą Ś Ó Ź Ą Ł Ś ć Ź Ł Ł Ą Ó Ś Ł ć ć Ź Ó Ź Ł Ć ć Ó ć Ś Ź Ó ć

Bardziej szczegółowo

ź Ę Ą ć ź Ą ć ć ć ź ć ć ź ć ć Ł Ę ź ć ź ć Ś Ę ź Ę Ą Ą Ś Ę ć ź ć ć ć ć ź Ę Ę ć ć ź ź ć ź ć ź ź ź ć ź ć ć ź ź ź ć Ę ć ć Ę ć Ń ć Ł Ą Ę ź Ę ć ź ć ź Ł Ę ź ź Ą Ę ć Ś Ś Ś ź Ś ź ź ź Ś Ś ć Ż Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś

Bardziej szczegółowo

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

Prosta w 3. t ( t jest parametrem).

Prosta w 3. t ( t jest parametrem). Prosta w 3 by wyacy rówaie prostej w 3 wystarcy a jede put tej prostej i wetor adajcy jej ierue (way wetore ieruowy) Jei P = ( P yp P ) = [ p] to rówaia paraetryce prostej aj posta = P t : y = yp t t (

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

DLSX - dualna metoda simpleks

DLSX - dualna metoda simpleks Mrek Miyńki KO UŁ 6 - dul metod implek (DLSX)_(poprwioy)_Dorot Miyńk DLSX - dul metod implek WPROWADZENIE Rowżmy tępuąe die PL: m m m(mi) m DEFINICJE. ę ywmy prymlie dopulą eżeli pełioy et wruek. ę ywmy

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo