ZMIERZYĆ SIĘ Z KALKULATOREM

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZMIERZYĆ SIĘ Z KALKULATOREM"

Transkrypt

1 ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka została przedstawiona w bardzo prosty sposób, dzięki czemu mnożenie można wykonać w znacznie krótszym czasie niż standardowe wykonanie tej operacji na kalkulatorze. 1. Standardowa tabliczka mnożenia Na początek warto przypomnieć sobie standardowy sposób mnożenia liczb. Każdy uczył się tabliczki mnożenia w szkole podstawowej. Na pytanie, ile jest 7 2, każdy w myślach szuka odpowiedzi i po kilku sekundach wykrzykuje 14. Patrząc z perspektywy czasu nauka owej tabliczki zajęła nam dość sporo cennego czasu. Jednym ze sposobów przyswojenia tabliczki mnożenia jest wykucie jej na pamięć. Metoda ta jest najczęściej stosowana, niemniej jednak posiada jedną, poważną wadę. Im rzadziej wracamy i odświeżamy to co się nauczyliśmy tym szybciej to zapominamy. Istnieje zatem prostszy sposób od owego wkuwania. Standardowe mnożenie mieści się w zakresie od 1 do 10. Dziesięć jest taką liczbą, która łatwo kojarzy się z dłońmi (suma palców obu dłoni wynosi 10) podstawowy kalkulator każdego ludzkiego ciała. Jak zatem wykorzystać 10 palców do mnożenia? Metoda ta jest skuteczna tylko w przypadku mnożenie liczb większych od 5. Każda z dłoni przedstawia liczbę w zakresie od Ilość palców wyprostowanych mówi o wartości danej liczby. Jeśli wszystkie palce są zagięte reprezentuje to liczbę 5, jeden wyprostowany liczbę 6 itp. W pierwszym kroku dodajemy ilość wyprostowanych palców na obu dłoniach do siebie. Liczbę tą mnożymy przez 10. Następnie mnożymy ilość zgiętych palców przez siebie i dodajemy te liczby do siebie. ISSN , Nr 1 (2) 2010, s. 6-14

2 Rysunek 1. Mnożenie za pomocą dłoni. 5 7=(0+2) =20+15=35 6 7=(1+2) =30+12=42 8 9=(3+4) =70+2=72 Źródło: Tę samą metodę można przedstawić w inny sposób: Naszym palcom na obu rękach, rozpoczynając od najmniejszego palca idąc w stronę kciuka, przyporządkowujemy liczby od 6 do 10 w następujący sposób: najmniejszy palec 6, palce serdeczne -7, palce środkowe 8, palce wskazujące - 9, kciuki Rysunek 2. Numeracja palców Obliczamy 7 7. W pierwszym kroku łączymy palce odpowiadające liczbie siedem, czyli palce serdeczne. Trzymając dłonie wewnętrzną stroną do siebie sumujemy palce złączone oraz te które mają mniejszą wartość od nich (w naszym przypadku będą to palce małe). Będą one oznaczały ilość dziesiątek. Razem otrzymujemy 4 palce oznaczające dziesiątki, czyli liczbę 40. Następnie mnożymy 7

3 ilość pozostałych palców, czyli tych, które są powyżej złączonych palców serdecznych. Trzy na jednej ręce i trzy na drugiej, czyli 3 3 = 9. Wyniki sumujemy 40+9=49. Numeracja palców u dłoni w przeciwnym kierunku powoduje odwrócenie działań dodajemy palce złączone i te powyżej nich oraz mnożymy ilość znajdującą się poniżej złączonych palców. Mnożenie przez 9 w inny sposób. Rysunek 3. Układ dłoni W pierwszym kroku należy rozłożyć dłonie tak, aby kciuki znajdowały się po zewnętrznych stronach. Następnie numerujemy je tak jak na Rysunku 3. W kolejnym kroku postępujemy zgodnie z zasadą przedstawioną na przykładzie zilustrowanym Rysunkiem 4. Rysunek 4. Mnożenie 9 2 Przypuśćmy, że mnożymy 9 2. Należy najpierw zamalować palec o numerze 2. Następnie obliczymy ile palców od zamalowanego znajduje się po lewej stronie. Liczba ta stanowi liczbę dziesiątek iloczynu. Ilość palców znajdująca się po prawej stronie odpowiada za liczbę jedności. Metoda ta jest prawdziwa gdy jednym z czynników iloczynu jest 9. Drugim czynnikiem jest liczba odpowiadająca za zamalowanego palca. 8

4 Trudność tego typu mnożenia polega jedynie na tym, aby zapamiętać który palec odpowiada za jaką liczbę. 2. Mnożenie liczb dwucyfrowych Można spróbować mnożenia pisemnego szybkość obliczeń jest niekiedy długa i przeznaczona dla cierpliwych. Na kalkulatorze zajęłoby to kilka sekund. Czas zależy głównie od szybkości wciskania klawiszy. Nie zawsze mamy jednak dostęp do kalkulatora. Co zrobić zatem gdy go nie mamy? Czy ostatecznie skazani jesteśmy na żmudne liczenie pisemne? Otóż okazuje się, że mnożenia tego typu można dokonać bez korzystania z mnożenia pisemnego. Zakres Pomnóżmy teraz np Rysunek 5. Mnożenie Zadany iloczyn można rozpisać w ten sposób, że drugą liczbę zapiszemy w postaci sumy 10 i pozostałej wartości, tzn =13 (10+2). Następnie dodajemy do pierwszej liczby drugi składnik naszej sumy (interesuje nas tylko liczba 2), otrzymujemy zatem 13+2=15. Liczba 10 w zapisie ma jedno zero zatem musimy dopisać do liczby z prawej strony jeszcze jedną liczbę będącą iloczynem cyfr jedności, w przedstawionym przykładzie jest to 3 2=6. Otrzymujemy zatem =

5 Kolejny przykład to Rysunek 6. Mnożenie Działania wykonujemy w ten sam sposób co poprzednio. Do 16 dodajemy 9, otrzymując 25 jest to pierwsza część wyniku. Następnie mnożymy 6 x 9 i otrzymujemy 54, a ponieważ 19 można rozpisać jako , wiemy że powinniśmy dopisać tylko jedną cyfrę (10 ma jedno zero). Pojawia się kłopot co zrobić z liczbą 5? Otóż zapisujemy liczbę w ten sposób, że jedności idą na miejsce cyfry, którą powinniśmy dopisać, a 5 dodajemy do liczby dziesiątek. Zakres Rysunek 7. Mnożenie Pomnóżmy W pierwszym kroku znajdujemy liczby będące uzupełnieniem obu czynników do liczby 100. Dla liczby 95 jest to 5, zaś dla 97 jest to 3. Następnie odejmujemy na krzyż, tzn. od liczby 95 odejmujemy 3, a od 97 odejmujemy 5. W obu przypadkach otrzymujemy to samo, czyli 92 i są to pierwsze dwie liczby wyniku. Kolejne dwie stanowi iloczyn dopełnień, czyli 5 3, co daje 15. Wynik mnożenia to Pozostałe liczby. Mnożąc dwie dowolne liczby dwucyfrowe przez siebie można skorzystać z następującej reguły. 10

6 Rysunek 8. Mnożenie W pierwszym kroku mnożymy przez siebie liczby dziesiątek (5 4=20). Otrzymujemy w ten sposób dwie pierwsze liczby wyniku. Musimy dopisać jeszcze dwie cyfry do wyniku. W następnym kroku mnożymy liczby jedności (2 7=14). Wynik zapisujemy na ostatniej pozycji. W przypadku otrzymania liczby dwucyfrowej zapisujemy ją na dwóch ostatnich pozycjach. Kolejnym krokiem jest mnożenie skrajnych cyfr, tzn. czyli cyfra dziesiętna jednej liczby jest mnożona przez cyfrę jedności drugiej liczby i odwrotnie (4 7,2 5). Następnie wyniki te należy zsumować (10+14=24) i umieścić na pozycjach środkowych w wyniku, lub na pozycji przedostatniej w przypadku jednocyfrowego wyniku. Na końcu sumujemy wszystkie otrzymane liczby w sposób opisany wyżej i przedstawiony na powyższym rysunku. 1 Mnożenie liczb o tej samej liczbie setek i dziesiątek oraz gdy suma jedności obu liczb daje 10. Takie liczby to np. 34 i 36, 112 i 118 itp. W przypadku mnożenia np postępujemy następująco: obie cyfry mają tą samą cyfrę dziesiątek: jest nią 4. Ponadto suma 2+8 daje 10. Warunki zatem są spełnione. W kolejnym kroku do liczby dziesiątek dodajemy jeden: 4+1 = 5 i liczbę tę mnożymy przez ilość dziesiątek 4 5 = 20. Jest to pierwsza część wyniku. Następnie musimy dopisać jeszcze dwie cyfry. Jest to wynik iloczynu cyfr jedności 2 8 = 16. Do liczby 20 zatem dopisujemy 16 i otrzymujemy Rysunek 9. Mnożenie z dn

7 W przypadku mnożenia liczb trzycyfrowych postępujemy podobnie. Np. mnożąc w pierwszym kroku otrzymujemy = 132 (korzystamy z metody przedstawionej wcześniej:12+1 oraz 2 1) a następnie mnożymy 2 8 = 16. Wynik końcowy to Mnożenie za pomocą rysowania linii Metoda pozwala na mnożenie dowolnych liczb przez siebie. Pomnóżmy przykładowo Rysunek 10. Układ linii W pierwszym kroku rysujemy w odpowiedni sposób pewną ilość linii. Zostało to przedstawione na Rysunku 11. Bierzemy liczbę 23. Składa się ona z 2 i 3, zatem rysujemy 2 linie i po większym odstępie równolegle 3 linie. Linie reprezentujące kolejną cyfrę rysujemy tak, aby linie przecinały się prostopadle z poprzednimi. Rysunek 11. Mnożenie za pomocą linii. Źródło: Opracowanie własne W kolejnym kroku zaznaczamy łukami miejsca przecięć oraz liczymy ilość linii przecinających się w każdym łuku. Liczby te oznaczone są kolorem czarnym. Liczby znajdujące się na dole i na górze dodajemy do siebie (8+3=11). 12

8 Rysunek 12. Sposób zapisu liczb. Źródło: Opracowanie własne Jeśli otrzymana liczba jest dwucyfrowa należy ją przesunąć w zapisie w lewo. Sposób zapisu pozostałych liczb jest przedstawiony na Rysunku 12 (liczba 2 jest liczbą z lewej strony Rysunku 11, zaś liczba 12 jest liczbą z prawej strony Rysunku 11). Wynikiem mnożenia jest więc Podnoszenie do kwadratu w zakresie Potęgowanie bazuje na mnożeniu. Na zakończenie zostanie przedstawiona szybka metoda potęgowania. Przypuśćmy, że chcemy podnieść do kwadratu liczbę 12. Cyfra 2 oznacza liczbę jedności. Cyfrę jedności dodajemy do liczby 12. W wyniku otrzymujemy cyfrę 14. Dodatkowo do wyniku dopisujemy liczbę jedności podniesioną do kwadratu 2 2 =4. Złożenie obu cyfr (14, 4) jest wynikiem potęgowania cyfry = = =4 zatem otrzymujemy > 13+3= = = > 14+4 = =16 18_ = 196 Potęgowanie w drugiej potędze w pozostałym zakresie sprowadza się do mnożenia liczb dwucyfrowych np > = 6889 (8 8 = 64, =_48_, 3 3 = _9) 2 z dn

9 5. Bibliografia 1. z dn eduseek.interklasa.pl/artykuly/artykul/ida/2411/, z dn youtube.com, z dn

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne.

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. W miarę postępu techniki w niepamięć odeszły nawyki do wykonywania pisemnych albo pamięciowych obliczeń. O suwaku logarytmicznym,

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory;

- odnajduje część wspólną zbiorów, złączenie zbiorów - wyodrębnia podzbiory; Edukacja matematyczna kl. II Wymagania programowe Dział programu Poziom opanowania Znajdowanie części wspólnej, złączenia zbiorów oraz wyodrębnianie podzbiorów Liczby naturalne od 0 100 A bardzo dobrze

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6

KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 Wiesława Janista, Elżbieta Mrożek, Marta Szymańska W tym roku szkolnym kontynuujemy cykl materiałów przeznaczonych dla słabych uczniów. Zadania układają: Elżbieta

Bardziej szczegółowo

XXIII Krajowa Konferencja SNM. Aktywności matematyczne. Kalkulator czy głowa?

XXIII Krajowa Konferencja SNM. Aktywności matematyczne. Kalkulator czy głowa? 1 XXIII Krajowa Konferencja SNM Aktywności matematyczne Marta Kądziołka, Teresa Żodziewska martkad@wp.pl emerytowane nauczycielki matematyki z Bytomia Kalkulator czy głowa? Streszczenie. Celem warsztatu

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

NIEDZIESIĄTKOWE SYSTEMY LICZENIA.

NIEDZIESIĄTKOWE SYSTEMY LICZENIA. NIEDZIESIĄTKOWE SYSTEMY LICZENIA. Inspiracją do powstania artykułu było popularne powiedzenie :,,... to jest oczywiste jak 2 x 2 jest 4. To powiedzenie pokazuje jak bardzo system dziesiętny zakorzenił

Bardziej szczegółowo

Mini komputer Papy'ego

Mini komputer Papy'ego Mini komputer Papy'ego Bartłomiej Zemlik Grzegorz Pieczara Klasa Va Szkoła Podstawowa im. Bohaterów Monte Cassino w Kętach ul. Wyspiańskiego, 32-650 Kęty Opiekun- dr Katarzyna Wadoń-Kasprzak Spis Treści

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński

Bardziej szczegółowo

1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8.

1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8. 1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8. Jak podnosić do kwadratu liczby na suwaku 9. Dokładność obliczeń

Bardziej szczegółowo

WYKŁAD 3. Mnożenie i dzielenie

WYKŁAD 3. Mnożenie i dzielenie WYKŁAD 3 Mnożenie i dzielenie Mnożenie i dzielenie Ćwiczenie 3.8. Oblicz w ten sposób 1234 2, 111111 2, 100000 2. Z interesujących trików, które kiedyś mogły ułatwiać uczniom mnożenie, omówimy mnożenie

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych GEOMETRYCZNE 1) Dany jest prostokąt ABCD. Bok AB podzielono na trzy równe odcinki: AX, XY i YB. Wyznaczono trójkąty DAX, DXY i DYB. Uzasadnij, że wyznaczone trójkąty mają równe pola. Wizualizacja zadania

Bardziej szczegółowo

WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ

WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ Dla wszystkich, których przerażają opasłe podręczniki szkolne do matematyki, opracowałem w przystępnej formie to co trzeba wiedzieć by rozpocząć

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

lic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW / 99

lic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW / 99 lic. Monika Rogulska PLAN WYNIKOWY KLASY I GIMNAZJUM SPECJALNEGO PROGRAM: J. SKOWRON DKW - 4014-304/ 99 Lp TEMAT L POZIOM WYMAGAŃ Uczeń potrafi: g P PP I LICZBY NATURALNE DO 100 1 Pamięciowe dodawanie

Bardziej szczegółowo

KRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II

KRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II KRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II OCENA WSPANIALE WYMAGANIA EDUKACYJNE Wiadomości i umiejętności praktyczne Szybko i bezbłędnie odczytuje wskazania zegara

Bardziej szczegółowo

Spis treści. Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE

Spis treści. Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE Spis treści TOM PIERWSZY Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE 1. Znaczenie aktywności dziecka w procesie jego rozwoju i uczenia się... 17 2. Pedagogicznie przygotowane

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Systemy liczbowe. System dziesiętny

Systemy liczbowe. System dziesiętny Systemy liczbowe System dziesiętny Dla nas, ludzi naturalnym sposobem prezentacji liczb jest system dziesiętny. Oznacza to, że wyróżniamy dziesięć cytr. Są nimi: zero, jeden, dwa, trzy, cztery, pięć, sześć,

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Dostateczny LICZBY NATURALNE Wyjaśnianie znaczenia liczb w życiu codziennym. Tworzenie dowolnych liczb z podanych cyfr w zakresie 100. Wskazywanie rzędów: jedności,

Bardziej szczegółowo

93. Jaką liczbę dodatnią należy wpisać w trójkątach, a jaką w kwadratach, aby zachodziła poniższa równość? Podaj trzy różne rozwiązania.

93. Jaką liczbę dodatnią należy wpisać w trójkątach, a jaką w kwadratach, aby zachodziła poniższa równość? Podaj trzy różne rozwiązania. 8 Liczby rzeczywiste Liczby rzeczywiste 93. Jaką liczbę dodatnią należy wpisać w trójkątach, a jaką w kwadratach, aby zachodziła poniższa równość? Podaj trzy różne rozwiązania. ( + + ) : ( + + + + + )

Bardziej szczegółowo

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - wprowadzenie. Etap 2 - algorytm 3. Sztuka szybkiego liczenia Cz.

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - wprowadzenie. Etap 2 - algorytm 3. Sztuka szybkiego liczenia Cz. Tytuł Sztuka szybkiego liczenia Cz. II Autor Dariusz Kulma Dział Liczby wymierne Innowacyjne cele edukacyjne Zapoznanie uczniów z technikami szybkiego liczenia w pamięci niestosowanymi na lekcjach matematyki:

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

LICZENIE NA LICZYDLE

LICZENIE NA LICZYDLE www..pl LICZENIE NA LICZYDLE Liczydło polskie i zapis liczb Zaokrąglanie liczb na liczydle Dodawanie na liczydle Odejmowanie na liczydle Mnożenie na liczydle Dzielenie na liczydle Bibliografia LICZYDŁO

Bardziej szczegółowo

Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendysty: mgr Jerzy Mil

Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendysty: mgr Jerzy Mil Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendysty: mgr Jerzy Mil 1 Działania na ułamkach Włączanie całości w dodatnich liczbach Obliczania licznika ułamka

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.) Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych

Bardziej szczegółowo

Operacje arytmetyczne w systemie dwójkowym

Operacje arytmetyczne w systemie dwójkowym Artykuł pobrano ze strony eioba.pl Operacje arytmetyczne w systemie dwójkowym Zasady arytmetyki w systemie binarnym są identyczne (prawie) jak w dobrze nam znanym systemie dziesiętnym. Zaletą arytmetyki

Bardziej szczegółowo

Dodawanie ułamków i liczb mieszanych o różnych mianownikach

Dodawanie ułamków i liczb mieszanych o różnych mianownikach Dodawanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z dodawaniem ułamków

Bardziej szczegółowo

Temat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym

Temat: Pojęcie potęgi i wykładniczy zapis liczb. Część I Potęga o wykładniku naturalnym PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,

Bardziej szczegółowo

XXI Krajowej Konferencji SNM w Krakowie

XXI Krajowej Konferencji SNM w Krakowie 1 XXI Krajowej Konferencji SNM w Krakowie LICZBY RZECZYWISTE Krzysztof Mostowski,( Siedlce) kmostow@o.pl Systemy pozycyjne Streszczenie. Rozumienie systemu polega na rozumieniu liczb. To właśnie pokazujemy.

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

ZAMIANA SYSTEMÓW LICZBOWYCH

ZAMIANA SYSTEMÓW LICZBOWYCH SZKOŁA PODSTAWOWA NR 109 IM. KORNELA MAKUSZYŃSKIEGO W KRAKOWIE UL. MACKIEWICZA 15; 31-214 KRAKÓW; TEL. 0 12 415 27 59 sp109krakow.w.w.interia.pl ; e-mail: sp109krakow@wp.pl; Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, matematyka, obliczenia, algorytm

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Lista 1 liczby rzeczywiste.

Lista 1 liczby rzeczywiste. Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej

Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej Dział I Liczby naturalne Dostateczna Zna pojęcie dzielnika liczby naturalnej. Podaje dzielniki liczb naturalnych. Rozpoznaje liczby

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

Dodawanie liczb binarnych

Dodawanie liczb binarnych 1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 PODSTAWOWE PONADPODSTAWOWE LICZBY I DZAŁANIA porównywać liczby porządkować liczby w kolejności od najmniejszej do największej lub odwrotnie przedstawiać liczby

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl Szkoła Podstawowa Uczymy się dowodzić Opracowała: Ewa Ślubowska ewa.slubowska@wp.pl PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA II etap edukacyjny: klasy IV VI I. Sprawność rachunkowa. Uczeń wykonuje proste

Bardziej szczegółowo

Odejmowanie ułamków i liczb mieszanych o różnych mianownikach

Odejmowanie ułamków i liczb mieszanych o różnych mianownikach Przedmowa Odejmowanie ułamków i liczb mieszanych o różnych mianownikach To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z odejmowaniem ułamków

Bardziej szczegółowo

PRZEKSZTAŁCANIE WZORÓW!

PRZEKSZTAŁCANIE WZORÓW! PRZEKSZTAŁCANIE WZORÓW! Przekształcanie wzorów sprawia na początku kłopoty. Wielu uczniów omija zadania gdzie trzeba to zrobić, albo uczy się niepotrzebnie na pamięć tych samych wzorów w innych postaciach.

Bardziej szczegółowo

C z y p a m i ę t a s z?

C z y p a m i ę t a s z? C z y p a m i ę t a s z? Liczby naturalne porządkowe, Przykłady: 0,1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne do nich i 0. Przykłady:, -3, -1, 0, 17, Liczby wymierne można przedstawid

Bardziej szczegółowo

TEMATY JEDNOSTEK METODYCZNYCH

TEMATY JEDNOSTEK METODYCZNYCH TEMATY JEDNOSTEK METODYCZNYCH I SEMESTR 63 h Lp. Tematyka jednostki metodycznej Liczba godzin Uwagi o realizacji 3 4 LICZBY NATURALNE Działania w zbiorze liczb naturalnych rachunek pamięciowy 30 Czas przeznaczony

Bardziej szczegółowo

Wprowadzenie do kombinatoryki

Wprowadzenie do kombinatoryki Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",

Bardziej szczegółowo

Wymagania z matematyki - KLASA IV

Wymagania z matematyki - KLASA IV Wymagania na ocenę dopuszczającą: Wymagania z matematyki - KLASA IV pamięciowe dodawanie i odejmowanie liczb w zakresie 200 bez przekraczania progu dziesiątkowego i z jego przekraczaniem powiększanie lub

Bardziej szczegółowo

Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej

Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO

DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO Mariusz Pielucha nauczyciel nauczania początkowego Szkoła Podstawowa w Kaźmierzu. CEL: Wykorzystanie szablonów kratkowych do wprowadzenia

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

Cele nauczania: a)poznawcze: Cele ogólne kształcenia: -uczeń umie odejmować ułamki dziesiętne. Aktywności matematyczne:

Cele nauczania: a)poznawcze: Cele ogólne kształcenia: -uczeń umie odejmować ułamki dziesiętne. Aktywności matematyczne: Konspekt lekcji matematyki: Klasa: czwarta Prowadzący: Elżbieta Kruczek, nauczyciel Samorządowej Szkoły Podstawowej w Brześciu (z wykorzystaniem podręcznika Matematyka z plusem) Temat: Odejmowanie ułamków

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

PRZEZNACZENIE dla dzieci na zajęcia pozalekcyjne indywidualne i grupowe

PRZEZNACZENIE dla dzieci na zajęcia pozalekcyjne indywidualne i grupowe PRZEZNACZENIE dla dzieci na zajęcia pozalekcyjne indywidualne i grupowe DOMI mnożenie w zakresie 50 28 klocków, 56 zadań Prosta, powszechnienie znana, a jednocześnie atrakcyjna forma uczenia się poprzez

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 2003/2004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla gimnazjum Zestaw I (12 IX) Zadanie 1. Znajdź cyfry A, B, C, spełniające równość: a) AB A = BCB, b) AB A = CCB. Zadanie

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Ocena dopuszczająca (wymagania konieczne) Ocena dostateczna

Bardziej szczegółowo