Elementy kognitywistyki III: Modele i architektury poznawcze

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy kognitywistyki III: Modele i architektury poznawcze"

Transkrypt

1 Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu

2 Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie założeń w precyzyjnym języku dodatkowe założenia szacowanie parametrów na podstawie danych empirycznych porównywanie przewidywań konkurujących modeli

3 ...w psychologii: Modele modularne - blokowe 1. Blokowe modele umysłu: przepływ informacji w systemie poznawczym (umyśle) struktura systemu poznawczego (bloki, moduły) zasady ich wyróżniania procesy charakterystyczne Atkinson, Shiffrin (1968, 1971)

4 Model blokowy Blokowy model Atkinsona i Shiffrina (1968)

5 Model blokowy zapoczątkował nowe podejście w psychologii poznawczej oparty na badaniach nad pamięcią (np. G Sperling pamięć ikoniczna) informacja przetwarzana sekwencyjnie i oddolnie (bottom-up) nast. po sobie etapy, realizowane w kolejnych blokach procesów przetwarzania informacji sekwencyjność działania sprzeczna z licznymi danymi empirycznymi (por. Pandemonium Selfridge, Neisser) blok zespół proc. p.i. o podobnym charakterze i zadaniach, obsługujący wyróżnioną czynność poznawczą z krytyki wyrosło podejście koneksjonistyczne

6 Pandemonium

7 Pandemonium bodziec mechanizmy rozpoznające proste cechy ( demony cech ) mechanizmy aktywowane przez demony cech (demony kognitywne mechanizm podejmowania decyzji i rozpoznania (demon decyzyjny) zjawisko mam to na końcu języka...

8 Koncepcja poziomów przetwarzania Craik, Lockhart (1972) jako ramy teoretyczne badań nad pamięcią każda informacja przetwarzana jest przez te same struktury, ale na różnym poziomie głębokości głębokość - liczba, złożoność operacji poziom płytki sensoryczna analiza danych poziom głęboki semantyczna analiza odbieranego sygnału poziom trzeci (najgłębszy) aktywizacja skojarzeń ze zanalizowanym sensorycznie i semantycznie sygnałem obieg pierwotny: dane odbierane na poziomie płytkim, poziom głęboki, najgłębszy obieg wtórny włączane dane zakodowane w pamięci

9 Koncepcja poziomów przetwarzania

10 Koncepcja poziomów przetwarzania Model jednolity, zakłada oddolny charakter przetwarzania dwa źródła informacji podlegających przetwarzaniu wejście do systemu na dowolnym poziomie wnioski: efektywność pracy systemu zależy od głębokości przetworzenia informacji podatność na zakłócenia i zapominanie zależna od głębokości przetwarzania o wyborze poziomu przetwarzania decydują czynniki zewnętrzne (rodzaj zadania) lub wewnętrzne (wymagania przyjęte przez sam system poznawczy)

11 Intermezzo: symbole i neurony

12 Intermezzo: symbole i neurony Poznanie: mentalna manipulacja mentalnych reprezentacji świata; modelujemy manipulacje symbolami Operacje obliczeniowe Reprezentacje symboliczne Poznanie: propagacja pobudzeń w sieciach prostych jednostek; modelujemy aktywacje jednostek i architektury sieci neuronowych Operacje obliczeniowe Reprezentacje sieciowe (lokalne/rozproszone)

13 Modele sieciowe McClelland, Rumelhart, grupa badawcza PDP (Parallel Distributed Processing) Założenia: przetwarzanie odbywa się dzięki aktywności licznych, prostych jednostek tworzą one sieć, której węzły (tj. jednostki) aktywizują się nie sekwencyjne, ale równocześnie model ma symulować pracę mózgu architektura sieci neuronowych: neuronowa warstwa wejściowa, wyjściowa i ukryte (pośredniczące)

14 Modele sieciowe

15 Modele sieciowe od warstwy wejściowej, do efektorów sterowanych warstwą wejściową badacz dostarcza informacji zwrotnej uaktywnienie jednostki zależy od sumy wartości pobudzeń (wartość progowa) skuteczność przekazu zależy od wagi połączeń między neuronami operuje strukturami subsymbolicznymi działanie chaotyczne informacje zwrotne uczenie się usuwanie fragmentów wyuczonej sieci symulacja pacjentów z uszkodzeniami mózgu

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład II: Modele pojęciowe Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XII: Modele i architektury poznawcze

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XII: Modele i architektury poznawcze Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XII: Modele i architektury poznawcze Architektury poznawcze Architektura poznawcza jako teoria poznania ludzkiego Anderson (1993): Architektura

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład IV: Reprezentacje jako Modele symboliczne I: Rachunek predykatów, Sieci semantyczne Gwoli przypomnienia: Kroki w modelowaniu kognitywnym:

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład I: Pomieszanie z modelem w środku Czym jest kognitywistyka? Dziedzina zainteresowana zrozumieniem procesów, dzięki którym mózg (zwł.

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VII: Modelowanie uczenia się w sieciach neuronowych Uczenie się sieci i trening nienaruszona struktura sieci (z pewnym ale ) nienaruszone

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 6: Psychologia poznawcza

Wstęp do kognitywistyki. Wykład 6: Psychologia poznawcza Wstęp do kognitywistyki Wykład 6: Psychologia poznawcza Sześciokąt nauk kognitywnych I. Psychologia poznawcza Poznanie to zdolność człowieka do odbierania informacji z otoczenia i przetwarzania ich w celu

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych

Bardziej szczegółowo

Pamięć i uczenie się Organizacja pamięci: systemy i procesy

Pamięć i uczenie się Organizacja pamięci: systemy i procesy Pamięć i uczenie się Organizacja pamięci: systemy i procesy Pamięć (Tulving) to hipotetyczny system w umyśle (mózgu) przechowujący informacje W 4 dr Łukasz Michalczyk Pamięć to zdolność, to procesy poznawcze,

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Główne problemy kognitywistyki: Reprezentacja

Główne problemy kognitywistyki: Reprezentacja Główne problemy kognitywistyki: Reprezentacja Wykład dziesiąty Hipoteza języka myśli (LOT): źródła i założenia Andrzej Klawiter http://www.amu.edu.pl/~klawiter klawiter@amu.edu.pl Filozoficzne źródła:

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 12: Wprowadzenie do SI. Obliczeniowa teoria umysłu

Wstęp do kognitywistyki. Wykład 12: Wprowadzenie do SI. Obliczeniowa teoria umysłu Wstęp do kognitywistyki Wykład 12: Wprowadzenie do SI. Obliczeniowa teoria umysłu Sztuczna inteligencja...to próba zrozumienia i wyjaśnienia jednostek inteligentnych. Specyfika SI polega na metodzie: wyjaśnianie

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład X/XI: Architektury poznawcze (symboliczne) III: GLAIR/SNePS GLAIR/SNePS - przegląd GLAIR/SNePS (Grounded Layered Architecture with Integrated

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład IX: Architektury poznawcze (symboliczne) II: Soar Soar - przegląd Soar (Start Operator And Result, od 1983) John Laird, Allen Newell,

Bardziej szczegółowo

Wstęp do kognitywistyki

Wstęp do kognitywistyki Wstęp do kognitywistyki Wykład szósty W poszukiwaniu metody badania umysłu. Druga rewolucja w wiedzy o poznaniu i powstanie kognitywistyki Andrzej Klawiter http://www.staff.amu.edu.pl/~klawiter klawiter@amu.edu.pl

Bardziej szczegółowo

Pamięć i uczenie się Pamięć przemijająca: krótkotrwała, robocza

Pamięć i uczenie się Pamięć przemijająca: krótkotrwała, robocza Pamięć i uczenie się Pamięć przemijająca: krótkotrwała, robocza W 5 Pamięć krótkotrwała George Miller - pojemność pamięci krótkotrwałej 7 (+/-2) pytanie: 7 (+/-2) czego? 7 (+/-2) elementów (ang. chunks).

Bardziej szczegółowo

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż.

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. 1 ZARZĄDZANIE PROCESAMI I PROJEKTAMI 2 ZAKRES PROJEKTU 1. Ogólna specyfika procesów zachodzących w przedsiębiorstwie 2. Opracowanie ogólnego schematu procesów zachodzących w przedsiębiorstwie za pomocą

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Pamięć i uczenie się Pamięć długotrwała: semantyczna i epizodyczna

Pamięć i uczenie się Pamięć długotrwała: semantyczna i epizodyczna Pamięć i uczenie się Pamięć długotrwała: semantyczna i epizodyczna W 5 dr Łukasz Michalczyk pamięć składa się z różnych magazynów pamięć sensoryczna pamięć krótkotrwała (STM) pamięć długotrwała (LTM) model

Bardziej szczegółowo

Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski

Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski Architektura umysłu Pojęcie używane przez prawie wszystkie współczesne ujęcia kognitywistyki Umysł Przetwornik informacji 2 Architektura

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Percepcja, język, myślenie

Percepcja, język, myślenie Psychologia procesów poznawczych Percepcja, język, myślenie Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. W 1 1.Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. 2. Historia psychologii poznawczej.

Bardziej szczegółowo

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych

Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są

Bardziej szczegółowo

Poznawcze i innowacyjne aspekty zarządzania wiedzą w organizacji. Halina Tomalska

Poznawcze i innowacyjne aspekty zarządzania wiedzą w organizacji. Halina Tomalska VI konferencja Innowacja i kooperacja symbioza nauki i biznesu WSB NLU, Nowy Sącz, 20.01.2012 r. Poznawcze i innowacyjne aspekty zarządzania wiedzą w organizacji Halina Tomalska I. Co myśleć o procesach

Bardziej szczegółowo

Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja

Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja WSTĘP. MIĘDZY KRYTYKĄ A OBRONĄ ROZUMU OBLICZENIOWEGO 1. INteNCjA 2. KoMPozyCjA 3. tytuł CZĘŚĆ I. WOKÓŁ METODOLOGII ROZDZIAŁ 1. PO CZYM POZNAĆ

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja

Elementy kognitywistyki II: Sztuczna inteligencja Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu

Bardziej szczegółowo

Podstawy metodologiczne symulacji

Podstawy metodologiczne symulacji Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (05) Podstawy metodologiczne symulacji Wykład dla studentów Informatyki Ostatnia zmiana: 26 marca 2015 (ver. 4.1) Spirala symulacji optymistycznie

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Pamięć. Wstęp. Daria Woźniak Kognitywistyka III rok

Pamięć. Wstęp. Daria Woźniak Kognitywistyka III rok Pamięć Wstęp Daria Woźniak Kognitywistyka III rok Pamięć polega na utrwalaniu (zapamiętywaniu), przechowywaniu, rozpoznawaniu i odtwarzaniu (przypominaniu) treści doznawanych uprzednio spostrzeżeń, myśli,

Bardziej szczegółowo

ZARZĄDZANIE PROJEKTAMI I PROCESAMI. Mapowanie procesów AUTOR: ADAM KOLIŃSKI ZARZĄDZANIE PROJEKTAMI I PROCESAMI. Mapowanie procesów

ZARZĄDZANIE PROJEKTAMI I PROCESAMI. Mapowanie procesów AUTOR: ADAM KOLIŃSKI ZARZĄDZANIE PROJEKTAMI I PROCESAMI. Mapowanie procesów 1 ZARZĄDZANIE PROJEKTAMI I PROCESAMI MAPOWANIE PROCESÓW 2 Tworzenie szczegółowego schematu przebiegu procesu, obejmujące wejścia, wyjścia oraz działania i zadania w kolejności ich występowania. Wymaga

Bardziej szczegółowo

16. Taksonomia Flynn'a.

16. Taksonomia Flynn'a. 16. Taksonomia Flynn'a. Taksonomia systemów komputerowych według Flynna jest klasyfikacją architektur komputerowych, zaproponowaną w latach sześćdziesiątych XX wieku przez Michaela Flynna, opierająca się

Bardziej szczegółowo

Kognitywistyka, poznanie, język. Uwagi wprowadzające.

Kognitywistyka, poznanie, język. Uwagi wprowadzające. Wykład I: Elementy kognitywistyki: język naturalny Kognitywistyka, poznanie, język. Uwagi wprowadzające. Po raz pierwszy w historii można coś napisać o instynkcie uczenia się, mówienia i rozumienia języka.

Bardziej szczegółowo

Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku

Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku Kognitywistyka: odkrywanie labiryntu umysłu z różnymi nićmi Ariadny w ręku Piotr Konderak kondorp@bacon.umcs.lublin.pl Zakład Logiki i Filozofii Nauki WFiS UMCS Kognitywistyka: odkrywanie labiryntu umysłu

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 7: Psychologia poznawcza: nietrwałe reprezentacje mentalne

Wstęp do kognitywistyki. Wykład 7: Psychologia poznawcza: nietrwałe reprezentacje mentalne Wstęp do kognitywistyki Wykład 7: Psychologia poznawcza: nietrwałe reprezentacje mentalne Reprezentacje poznawcze Reprezentacja poznawcza umysłowy odpowiednik obiektów (realnie istniejących, fikcyjnych,

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Percepcja, język, myślenie

Percepcja, język, myślenie Psychologia procesów poznawczych Plan wykładu Percepcja, język, myślenie Wprowadzenie w problematykę zajęć. Podstawowe pojęcia. Historia psychologii poznawczej. W 1 Wstęp Informacje ogólne dotyczące kursu

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010

Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Diagramy czynności. sekwencyjnych i współbieŝnych. pomiędzy uporządkowanymi ciągami czynności, akcji i obiektów

Diagramy czynności. sekwencyjnych i współbieŝnych. pomiędzy uporządkowanymi ciągami czynności, akcji i obiektów Diagramy czynności Graficzne przedstawienie sekwencyjnych i współbieŝnych przepływów sterowania oraz danych pomiędzy uporządkowanymi ciągami czynności, akcji i obiektów Zastosowanie w modelowaniu scenariuszy

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

dr hab. Maciej Witek, prof. US MODELE UMYSŁU rok akademicki 2016/2017, semestr letni

dr hab. Maciej Witek, prof. US  MODELE UMYSŁU rok akademicki 2016/2017, semestr letni dr hab. Maciej Witek, prof. US http://kognitywistyka.usz.edu.pl/mwitek MODELE UMYSŁU rok akademicki 2016/2017, semestr letni Temat 3 Klasyczny model modularny I: procesy modularne a procesy centralne Fodor,

Bardziej szczegółowo

Systemy hybrydowe reaktywno-racjonalne

Systemy hybrydowe reaktywno-racjonalne WYKŁAD 5 Systemy hybrydowe reaktywno-racjonalne Sterowanie REAKTYWNE Zalety: bardzo szybko reaguje na zmiany otoczenia, ograniczone wymagania na moc obliczeniową oraz pamięć, system reaktywny rozbudowany

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VIII: Architektury poznawcze (symboliczne) I: ACT Zintegrowana teoria umysłu ACT-R (adaptive control of thought rational) hipoteza dotycząca

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Umysł-język-świat 2012

Umysł-język-świat 2012 Umysł-język-świat 2012 Wykład X: Między psycholingwistyką a neurolingwistyką Teorie neurolingwistyczne John Hughlings Jackson (1835-1911) badał jak bodźce wywołują reakcje i złożoność reakcji Dwa poziomy

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Z punktu widzenia kognitywisty: język naturalny

Z punktu widzenia kognitywisty: język naturalny Z punktu widzenia kognitywisty: język naturalny Wykład VIII: Neuronalne podstawy języka Fonologia Dwa paradygmaty:strukturalizm(fonemy i cechy dystynktywne jako podstawa wyjaśnień) oraz fonologia nieliniowa

Bardziej szczegółowo

koniec punkt zatrzymania przepływów sterowania na diagramie czynności

koniec punkt zatrzymania przepływów sterowania na diagramie czynności Diagramy czynności opisują dynamikę systemu, graficzne przedstawienie uszeregowania działań obrazuje strumień wykonywanych czynności z ich pomocą modeluje się: - scenariusze przypadków użycia, - procesy

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Prezentacja, którą czytacie jest jedynie zbiorem sugestii. Nie zawiera odpowiedzi na pytania wprost. Jeżeli nie wiedzielibyście jak odpowiedzieć na

Prezentacja, którą czytacie jest jedynie zbiorem sugestii. Nie zawiera odpowiedzi na pytania wprost. Jeżeli nie wiedzielibyście jak odpowiedzieć na Prezentacja, którą czytacie jest jedynie zbiorem sugestii. Nie zawiera odpowiedzi na pytania wprost. Jeżeli nie wiedzielibyście jak odpowiedzieć na któreś z pytań, to poniżej macie kierunek w jakim podążać

Bardziej szczegółowo

Metrologia: organizacja eksperymentu pomiarowego

Metrologia: organizacja eksperymentu pomiarowego Metrologia: organizacja eksperymentu pomiarowego (na podstawie: Żółtowski B. Podstawy diagnostyki maszyn, 1996) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Teoria eksperymentu: Teoria eksperymentu

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

SZKOLENIE: Administrator baz danych. Cel szkolenia

SZKOLENIE: Administrator baz danych. Cel szkolenia SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.

Bardziej szczegółowo

Reprezentacje poznawcze

Reprezentacje poznawcze Reprezentacje poznawcze Reprezentacja poznawcza umysłowy odpowiednik obiektów (realnie istniejących, fikcyjnych, hipotetycznych). Zastępuje swój obiekt w procesach przetwarzania informacji. Reprezentacje

Bardziej szczegółowo

Sieci neuronowe - dokumentacja projektu

Sieci neuronowe - dokumentacja projektu Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...

Bardziej szczegółowo

Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34

Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34 Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34 Projektowanie oprogramowania cd. 2/34 Modelowanie CRC Modelowanie CRC (class-responsibility-collaborator) Metoda identyfikowania poszczególnych

Bardziej szczegółowo

Wstęp. Przedmowa. 2o Psychologia rozwoju człowieka 63

Wstęp. Przedmowa. 2o Psychologia rozwoju człowieka 63 Wstęp Przedmowa n 1. Cele, założenia i zastosowanie psychologii 13 1.1. Analiza zachowania i doznawania jako zadanie psychologii 14 1.2. Psychologia jako dziedzina badań 16 1.2.1. Cele badań naukowych

Bardziej szczegółowo

Wstęp do kognitywistyki

Wstęp do kognitywistyki Wstęp do kognitywistyki Wykład I: Kognitywistyka z lotu ptaka Piotr Konderak konsultacje: poniedziałki, 11:10-12:40, p. 205 Strona przedmiotu: http://konderak.eu/wkg10.html W historii intelektualnej wszystko

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

Inteligentne systemy informacyjne

Inteligentne systemy informacyjne Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz

Bardziej szczegółowo

Księgarnia PWN: Edward Nęcka, Jarosław Orzechowski, Błażej Szymura - Psychologia poznawcza

Księgarnia PWN: Edward Nęcka, Jarosław Orzechowski, Błażej Szymura - Psychologia poznawcza Księgarnia PWN: Edward Nęcka, Jarosław Orzechowski, Błażej Szymura - Psychologia poznawcza Spis treści Przedmowa... 13 Prolog Rozdział 1 Umysł i poznanie... 21 1.1. Poznanie umysł działanie........................................

Bardziej szczegółowo

Projekt wykonania zadania informatycznego specyfikacja zadania

Projekt wykonania zadania informatycznego specyfikacja zadania Projekt wykonania zadania informatycznego specyfikacja zadania I. Metryczka prowadzenia lekcji na której będzie wykonywane zadanie: 1. Imię i nazwisko prowadzącego lekcję:... 2. Typ szkoły:... 3. Klasa:...

Bardziej szczegółowo

Z punktu widzenia kognitywisty: język naturalny

Z punktu widzenia kognitywisty: język naturalny Z punktu widzenia kognitywisty: język naturalny Wykład I: Czym jest język? http://konderak.eu/pwk13.html Piotr Konderak kondorp@bacon.umcs.lublin.pl p. 205, Collegium Humanicum konsultacje: czwartki, 11:10-12:40

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 4: Cybernetyczny nurt w kognitywistyce

Wstęp do kognitywistyki. Wykład 4: Cybernetyczny nurt w kognitywistyce Wstęp do kognitywistyki Wykład 4: Cybernetyczny nurt w kognitywistyce Cybernetyka [od silników parowych do społeczeństw] Cybernetyka to badania nad kołowymi systemami kauzalnymi: samoregulujące, informacja

Bardziej szczegółowo

Sterowniki Programowalne (SP) Wykład 11

Sterowniki Programowalne (SP) Wykład 11 Sterowniki Programowalne (SP) Wykład 11 Podstawy metody sekwencyjnych schematów funkcjonalnych (SFC) SP 2016 WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA INŻYNIERII SYSTEMÓW STEROWANIA Kierunek: Automatyka

Bardziej szczegółowo

Pamięć i uczenie się. Pamięć utajona. Pamięć utajona. Pamięć utajona. Pamięć utajona W 10

Pamięć i uczenie się. Pamięć utajona. Pamięć utajona. Pamięć utajona. Pamięć utajona W 10 Pamięć i uczenie się W 10 przypadek Daniela - uszkodzenia hipokampa i płatów skroniowych skutkując u niego amnezją następczą. w 80 % prób wskazywa dobrego i prawie nigdy złego... choć na poziomie świadomym

Bardziej szczegółowo

Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć

Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć Systemy Wbudowane Kod przedmiotu: SW Rodzaj przedmiotu: kierunkowy ; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Poziom studiów: pierwszego stopnia Profil studiów:

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Język myśli. ang. Language of Thought, Mentalese. Dr hab. Maciej Witek Zakład Filozofii Nauki, Wydział Humanistyczny Uniwersytet Szczeciński

Język myśli. ang. Language of Thought, Mentalese. Dr hab. Maciej Witek Zakład Filozofii Nauki, Wydział Humanistyczny Uniwersytet Szczeciński Dr hab. Maciej Witek Zakład Filozofii Nauki, Wydział Humanistyczny Uniwersytet Szczeciński http://mwitek.univ.szczecin.pl Język myśli ang. Language of Thought, Mentalese PLAN: I. krótko o języku myśli

Bardziej szczegółowo

6 Metody badania i modele rozwoju organizacji

6 Metody badania i modele rozwoju organizacji Spis treści Przedmowa 11 1. Kreowanie systemu zarządzania wiedzą w organizacji 13 1.1. Istota systemu zarządzania wiedzą 13 1.2. Cechy dobrego systemu zarządzania wiedzą 16 1.3. Czynniki determinujące

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

KOGNITYWISTYKA studia II stopnia

KOGNITYWISTYKA studia II stopnia KOGNITYWISTYKA studia II stopnia 1. Silny nacisk na zdobycie doświadczenia i praktyki w jednym z dwóch obszarów empirycznych. 2. Kształcenie w ścisłym związku z prowadzonymi przez partycypujące zespoły

Bardziej szczegółowo

2013-04-25. Czujniki obiektowe Sterowniki przemysłowe

2013-04-25. Czujniki obiektowe Sterowniki przemysłowe Ogólne informacje o systemach komputerowych stosowanych w sterowaniu ruchem funkcje, właściwości Sieci komputerowe w sterowaniu informacje ogólne, model TCP/IP, protokoły warstwy internetowej i transportowej

Bardziej szczegółowo

Zagadnienia egzaminacyjne INFORMATYKA. Stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ

Zagadnienia egzaminacyjne INFORMATYKA. Stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ (INT) Inżynieria internetowa 1. Tryby komunikacji między procesami w standardzie Message Passing Interface 2. HTML DOM i XHTML cel i charakterystyka 3. Asynchroniczna komunikacja serwerem HTTP w technologii

Bardziej szczegółowo

Poznawcze znaczenie dźwięku

Poznawcze znaczenie dźwięku Poznawcze znaczenie dźwięku Justyna Maculewicz Uniwersytet im. A. Mickiewicza, kognitywistyka (IV rok) akustyka (II rok) e-mail: justynamaculewicz@gmail.com Klasyczne ujęcie słyszenia jako percepcji zdarzeń

Bardziej szczegółowo

Psychologia. Studia niestacjonarne jednolite magisterskie Coaching. NAZWA MODUŁU i ELEMENTY SKŁADOWE STATUS MODUŁU PUNKTY ECTS LICZBA GODZIN

Psychologia. Studia niestacjonarne jednolite magisterskie Coaching. NAZWA MODUŁU i ELEMENTY SKŁADOWE STATUS MODUŁU PUNKTY ECTS LICZBA GODZIN Psychologia Studia niestacjonarne jednolite magisterskie Coaching NAZWA MODUŁU i ELEMENTY SKŁADOWE LICZBA GODZIN PUNKTY ECTS ROK SEMESTR STATUS MODUŁU Moduł ogólny Filozofia 18 Logika 12 6 I I podstawowy

Bardziej szczegółowo

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum Lp. Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum 1. Internet i sieci [17 godz.] 1 Sieci komputerowe. Rodzaje sieci, topologie, protokoły transmisji danych w sieciach. Internet jako sie rozległa

Bardziej szczegółowo

Systemy Agentowe główne cechy. Mariusz.Matuszek WETI PG

Systemy Agentowe główne cechy. Mariusz.Matuszek WETI PG Systemy Agentowe główne cechy Mariusz.Matuszek WETI PG Definicja agenta Wiele definicji, w zależności od rozpatrywanego zakresu zastosowań. Popularna definicja: Jednostka obliczeniowa (program, robot),

Bardziej szczegółowo

Percepcja jako zmysłowy odbiór bodźców Procesy percepcji Percepcja jako proces Definicja percepcji/spostrzegania Odbiór wrażeń Percepcja rejestracja

Percepcja jako zmysłowy odbiór bodźców Procesy percepcji Percepcja jako proces Definicja percepcji/spostrzegania Odbiór wrażeń Percepcja rejestracja Percepcja jako zmysłowy odbiór bodźców Wzrok Procesy percepcji wykład 5 Słuch Smak Węch Dotyk (czucie skórne) Zmysł równowagi Definicja percepcji/spostrzegania W wąskim znaczeniu odbiór wrażeń zmysłowych

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

Wyszukiwanie kontekstowe w pamięci semantycznej. Julian Szymański

Wyszukiwanie kontekstowe w pamięci semantycznej. Julian Szymański Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Rozprawa doktorska Wyszukiwanie kontekstowe w pamięci semantycznej Julian Szymański promotor: prof. Włodzisław Duch Uniwersytet Mikołaja

Bardziej szczegółowo