Parametry systemów klucza publicznego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Parametry systemów klucza publicznego"

Transkrypt

1 Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010

2 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego Algorytm Punkty stałe przekształcenia Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej

3 Idea klucza publicznego Spis treści Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego 1. Wysyłanie klucza publicznego 2. Wysyłanie wiadomości zaszyfrowanej kluczem publicznym 3. Odszyfrowanie wiadomości przy użyciu klucza prywatnego

4 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego Podpis cyfrowy Uwierzytelnienie serwera WWW przed użytkownikiem (bankowość elektroniczna, sklepy internetowe). Logowanie do systemu informatycznego. Oprogramowanie i sterowniki urządzeń.

5 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego Szyfrowanie danych Wymiana symetrycznych kluczy sesyjnych(bankowość elektroniczna, sklepy internetowe). Szyfrowanie wiadomości elektronicznych bez konieczności wcześniejszego uzgadniania klucza. Nawiązywanie bezpiecznych połączeń typu SSH.

6 Algorytm Punkty stałe przekształcenia Opis algorytmu Losowowybieramyliczbypierwszep,qiwyznaczamyN =pq. Znajdujemytakąliczbęe,żeNWD(e,(p 1)(q 1)) =1 iwyznaczamytakied,żeed 1mod (p 1)(q 1). Szyfrowanie(weryfikacja podpisu): Deszyfrowanie(podpisywanie): c m e modn. m c d modn.

7 Bezpieczeństwo problem faktoryzacji Algorytm Punkty stałe przekształcenia Bezpieczeństwo oparte jest na problemie rozkładu liczby N na czynnikipierwsze.łatwozauważyć,żejeśliktośznaliczbypiq takie,żen =pq,tozłatwościąznajdziekluczpubliczny d e 1 mod (p 1)(q 1). Najszybszym znanym algorytmem faktoryzacyjnym jest Sito Ciał Liczbowych(NFS), którego złożoność określa poniższa formuła ( exp c 0 N 1/3 (log(nlog2)) 2/3). Do tej pory nie wykazano, czy problem faktoryzacji i złamania są sobie równoważne.

8 Algorytm Punkty stałe przekształcenia Wydajność generowanie kluczy Najbardziej czasochłonną operacją podczas generowania klucza jest znalezienie dwóch liczb pierwszych p i q. Operacja ta ma złożonośćo(log(p) 4 ) oilestosowanesąprobabilistycznemetody testowania pierwszości. Dodatkowe warunki na czynniki pierwsze dla modułu : 1.p 1 =2p, p +1 =2p, 2.q 1 =2q, q +1 =2q.

9 Wydajność wykonywanie operacji Algorytm Punkty stałe przekształcenia Znajomość czynników liczy N pozwala na przyspieszenie operacji prywatnej. Z twierdzenia chińskiego o resztach wynika bowiem izomorfizm Z/NZ Z/pZ Z/qZ. Powyższy izomorfizm daje możliwość czterokrotnego przyspieszenia obliczeń y x d modn { y x dmod (p 1) modp, y x dmod (q 1) modq.

10 Cotosąpunktystałe Spis treści Algorytm Punkty stałe przekształcenia Punktem stałym przekształcenia nazwiemy taką liczbę x, dla której zachodzi x e xmodn. Łatwozauważyć,żeskorox ed xmodn,to x e xmodn x d xmodn. Oznacza to, że punkt stały przekształcenia publicznego jest również punktem stałym przekształcenia prywatnego.

11 Algorytm Punkty stałe przekształcenia Czy duża liczba punktów stałych jest dobra? Punkty stałe prowadzą do znalezienia czynników x e xmodn x e 1 1modN x e 1 1 0modN (x e 1 2 1)(x e ) 0modN N (x e 1 2 1)(x e ) ZdużymprawdopodobieństwemNWD(N,(x e 1 2 ±1))będzie równeplubq.

12 Algorytm Punkty stałe przekształcenia Oczekiwana liczba punktów stałych dla (1) Jeśli (u,v) U 2,toprawdopodobieństwogranicznetego,że NWD(u,v) =1wynosi P 1 = lim U P(U) = 6 π 2. JeśliponadtoprzezP B oznaczymygraniczneprawdopodobieństwo tego,żenwd(u,v) B,toprawdziwajestnastępującazależność P B =P 1 B d=1 1 d 2.

13 Algorytm Punkty stałe przekształcenia Oczekiwana liczba punktów stałych dla (2) Prawdopodobieństwo wylosowania dwóch względnie pierwszych liczbzezbioru {1,2,...,N}możemyoszacowaćprzez P 1 + ε N, gdzie ε N <4 lnn N.Natejpodstawiemożemywyrazićoczekiwaną liczbę punktów stałych ( 3(P1 + ε ) N )(2 +lnn) 2 ES =O(ln 2 N) 2 oraz oszacować prawdopodobieństwo trafienia w taki punkt ( ln 2 ) N P =O. N

14 Krzywa eliptyczna Spis treści Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Jednorodne równanie Weierstrassa: E :Y 2 Z +a 1 XYZ +a 3 YZ 2 =X 3 +a 2 X 2 Z +a 4 XZ 2 +a 6 Z 3

15 Grupa punktów krzywej eliptycznej Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Punkty krzywej eliptycznej tworzą grupę.

16 Problem logarytmu dyskretnego Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Niech G będzie grupą cykliczną, w której element g jest generatorem. Logarytmem dyskretnym z elementu h G nazywamy taką liczbę x, dla której spełnione jest równanie g x =h. Znalezienie logarytmu dyskretnego jest w ogólności zadaniem obliczeniowo trudnym. W szczególności najszybsza metoda pozwalająca na jego wyznaczenie w grupie punktów krzywej eliptycznej ma złożoność 2 r/2, gdzie r jest największym dzielnikiem pierwszym rzędu generatora.

17 Algorytm ECDH Spis treści Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Uzgadnianie wspólnego sekretu metodą Diffiego-Hellmana A B g a g b h = ( g b) a =g ab h = (g a ) b =g ab

18 Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Czy każdej krzywej można użyć do celów kryptograficznych? Aby krzywa nadawała się do zastosowań kryptograficznych musi spełnić szereg warunków, które są weryfikowane na podstawie liczby jej punktów. Dlatego też zliczenie punktów krzywej jest pierwszą czynnością, jaka jest wykonywana podczas sprawdzania przydatności krzywej eliptycznej. W szczególności wybierane są tylko te krzywe, których liczba punktów podzielna jest przez dużą liczbę pierwszą.

19 Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Algorytmy zliczania punktów Zliczanie punktów krzywej zdefiniowanej nad ciałem charakterystyki 2 algorytm Satoh, algorytm AGM(Algebraic Geometry Method). Zliczanie punktów krzywej zdefiniowanej nad ciałem charakterystyki p > 3 algorytm Schoofa, algorytm SEA(Schoof-Elkies-Atkin).

20 Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Operacje wykonywane podczas zliczania punktów Znakomita większość operacji podczas zliczania punktów metodą SEA wykonywana jest na wielomianach lub formalnych szeregach potęgowych modulo p. Najbardziej czasochłonna jest faza preobliczeń wstępnych podczas których konieczne jest operowanie na szeregach mających nawet po kilkaset tysięcy współczynników. Dlatego warto zastosować techniki mnożenia bazujące na FFT oraz zastanowić się nad możliwością zrównoleglenia obliczeń.

21 Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Szybka arytmetyka w pierścieniu szeregów potęgowych(1) Równoległe FFT F p1 [[X]]. Z[[X]] F pi [[X]] Z[[X]]. F pk [[X]]

22 Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Szybka arytmetyka w pierścieniu szeregów potęgowych(2)

23 Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Szybka arytmetyka w pierścieniu szeregów potęgowych(3) 1. Współczynniki pojedynczej precyzji: kosztklasycznegomnożeniafft n 2, kosztmnożeniafft-crt 2n Współczynniki podwójnej precyzji: kosztklasycznegomnożeniafft 4n 2, kosztmnożeniafft-crt 4n Współczynniki czterokrotnej precyzji: kosztklasycznegomnożeniafft 16n 2, kosztmnożeniafft-crt 8n Współczynniki ośmiokrotnej precyzji: kosztklasycznegomnożeniafft 64n 2, kosztmnożeniafft-crt 16n 2.

24 Krzywe eliptyczne Zliczanie punktów na krzywej eliptycznej Szybka arytmetyka w pierścieniu szeregów potęgowych(4) Jeśli przyjąć, że n jest liczbą współczynników, a k jest liczbą cyfr jaką ma największy współczynnik, to złożoność zaproponowanego algorytmu jest następująca: c 1 k 2 n +kn(2 +3log(n)) +c 2 k 2 n Jak widać dla dużych k bardziej opłacalne będzie zastosowanie również metody FFT do mnożenia poszczególnych współczynników. Wtedy złożoność wyniesie O(k log(k)n log(n)). Proponowana metoda jest zatem opłacalna jedynie w przypadku współczynników o umiarkowanym rozmiarze.

25 (1) Oszacowanie liczby punktów stałych dla losowych parametrów. Pozwala na oszacowanie z jakim prawdopodobieństwem wylosujemy słaby klucz. Uzyskany wynik może być wykorzystany w praktyce do ograniczenia liczby dodatkowych warunków, które są nakładane na czynniki modułu(możliwość przyspieszenia procesu generowania kluczy).

26 (2) Szybka arytmetyka w pierścieniu szeregów potęgowych. Zwiększa szybkość algorytmu zliczania punktów krzywej. Daje to możliwość szybkiego generowania własnych krzywych eliptycznych. Opracowana technika może mieć zastosowanie również w innego typu obliczeniach, które wykorzystują operacje w pierścieniu szeregów potęgowych. Jej ogromną zaletą jest łatwość zrównoleglania obliczeń.

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Ataki na algorytm RSA

Ataki na algorytm RSA Ataki na algorytm RSA Andrzej Chmielowiec 29 lipca 2009 Streszczenie Przedmiotem referatu są ataki na mechanizm klucza publicznego RSA. Wieloletnia historia wykorzystywania tego algorytmu naznaczona jest

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman

Bardziej szczegółowo

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą

Bardziej szczegółowo

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Estymacja kosztów łamania systemu kryptograficznego

Estymacja kosztów łamania systemu kryptograficznego Estymacja kosztów łamania systemu kryptograficznego Andrzej Chmielowiec 17maja2007 Streszczenie Przedmiotem artykułu jest prezentacja modelu matematycznego dla zagadnienia opłacalności łamania systemu

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Estymacja kosztów łamania systemu kryptograficznego

Estymacja kosztów łamania systemu kryptograficznego Estymacja kosztów łamania systemu kryptograficznego p. 1/?? Estymacja kosztów łamania systemu kryptograficznego Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie

Bardziej szczegółowo

Bezpieczeństwo danych, zabezpieczanie safety, security

Bezpieczeństwo danych, zabezpieczanie safety, security Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός

Bardziej szczegółowo

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna 1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez

Bardziej szczegółowo

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8

Bardziej szczegółowo

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,

Bardziej szczegółowo

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972

Bardziej szczegółowo

13.05.2008. Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS. Konferencja SECURE 2008 Warszawa, 2-3.10.2008

13.05.2008. Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS. Konferencja SECURE 2008 Warszawa, 2-3.10.2008 13.05.2008 Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS Konferencja SECURE 2008 Warszawa, 2-3.10.2008 1 Agenda Kim jesteśmy i co robimy? Wprowadzenie Szyfrowanie danych PKI, algorytm RSA,

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

--- --- --- --- (c) Oba działania mają elementy neutralne (0 dla dodawania i 1 dla mnożenia). (d) (a c b c) ab c ---

--- --- --- --- (c) Oba działania mają elementy neutralne (0 dla dodawania i 1 dla mnożenia). (d) (a c b c) ab c --- (d) 27x 25(mod 256) -I- I Kongruencje II Małe twierdzenie Fermata III Podzielność IV Operacje binarne V Reprezentacje liczb VI Największy wspólny dzielnik VII Faktoryzacja VIIIWłasności działań 2 3 x 16

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Inne algorytmy z kluczem publicznym

Inne algorytmy z kluczem publicznym Wykład 6 Temat: Inne algorytmy z kluczem publicznym [Diffiego-Hellmana (zasada działania, bezpieczeństwo), ElGamala, systemy oparte na zagadnieniu krzywych eliptycznych, system Rabina, system podpisów

Bardziej szczegółowo

Bezpieczeństwo kart elektronicznych

Bezpieczeństwo kart elektronicznych Bezpieczeństwo kart elektronicznych Krzysztof Maćkowiak Karty elektroniczne wprowadzane od drugiej połowy lat 70-tych znalazły szerokie zastosowanie w wielu dziedzinach naszego życia: bankowości, telekomunikacji,

Bardziej szczegółowo

Nowości w kryptografii

Nowości w kryptografii Nowości w kryptografii Andrzej Chmielowiec 30maja2012 Funkcje skrótu Konkurs na SHA-3 FIPS 180-4 Atak BEAST Kradzież w RSA Zakończenie Konkurs na SHA-3 FIPS 180-4 Implementacja finalistów konkursu SHA-3

Bardziej szczegółowo

Wydajne metody generowania bezpiecznych parametrów algorytmów klucza publicznego

Wydajne metody generowania bezpiecznych parametrów algorytmów klucza publicznego Instytut Podstawowych Problemów Techniki Polska Akademia Nauk Rozprawa doktorska Wydajne metody generowania bezpiecznych parametrów algorytmów klucza publicznego Andrzej Chmielowiec Rozprawa doktorska

Bardziej szczegółowo

Przewodnik użytkownika

Przewodnik użytkownika STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis

Bardziej szczegółowo

Laboratorium nr 5 Podpis elektroniczny i certyfikaty

Laboratorium nr 5 Podpis elektroniczny i certyfikaty Laboratorium nr 5 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana

Bardziej szczegółowo

Zdalne logowanie do serwerów

Zdalne logowanie do serwerów Zdalne logowanie Zdalne logowanie do serwerów Zdalne logowanie do serwerów - cd Logowanie do serwera inne podejście Sesje w sieci informatycznej Sesje w sieci informatycznej - cd Sesje w sieci informatycznej

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Laboratorium nr 3 Podpis elektroniczny i certyfikaty

Laboratorium nr 3 Podpis elektroniczny i certyfikaty Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

Seminarium Ochrony Danych

Seminarium Ochrony Danych Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner

Bardziej szczegółowo

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja

Bardziej szczegółowo

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH

ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH ROZPROSZONY SYSTEM DO KRYPTOANALIZY SZYFRÓW OPARTYCH NA KRZYWYCH ELIPTYCZNYCH Krzysztof Skowron, Mariusz Rawski, Paweł Tomaszewicz 1/23 CEL wykorzystanie środowiska Altera OpenCL do celów akceleracji obliczeń

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Protokół SSL/TLS. Algorytmy wymiany klucza motywacja

Protokół SSL/TLS. Algorytmy wymiany klucza motywacja Protokół SSL/TLS Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Algorytmy wymiany klucza motywacja Kryptografia symetryczna efektywna Ale wymagana znajomość tajnego klucza przez obie strony

Bardziej szczegółowo

Bezpieczeństwo korespondencji elektronicznej

Bezpieczeństwo korespondencji elektronicznej Marzec 2012 Bezpieczeństwo korespondencji elektronicznej Ochrona przed modyfikacją (integralność), Uniemożliwienie odczytania (poufność), Upewnienie adresata, iż podpisany nadawca jest faktycznie autorem

Bardziej szczegółowo

Protokół SSL/TLS. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2009/10. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski

Protokół SSL/TLS. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2009/10. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Protokół SSL/TLS Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2009/10 Patryk Czarnik (MIMUW) 04 SSL BSK 2009/10 1 / 30 Algorytmy

Bardziej szczegółowo

Od Wydawcy Krzywe eliptyczne w kryptografii Wykorzystanie pakietu SAGE... 9

Od Wydawcy Krzywe eliptyczne w kryptografii Wykorzystanie pakietu SAGE... 9 Od Wydawcy... 8 1. Krzywe eliptyczne w kryptografii Wykorzystanie pakietu SAGE... 9 1.1.. Krzywe eliptyczne w praktyce... 10 1.2.. Pakiet SAGE... 10 1.3.. Krzywe eliptyczne na płaszczyźnie... 10 1.4..

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej

Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej STANIS AWA PROÆ Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej 1. Wprowadzenie Podstaw¹ gospodarki elektronicznej jest wymiana danych poprzez sieci transmisyjne, w szczególnoœci przez Internet.

Bardziej szczegółowo

Trojan bankowy Emotet w wersji DGA

Trojan bankowy Emotet w wersji DGA Trojan bankowy Emotet w wersji DGA Warszawa 17/11/2014 CERT Orange Polska Strona 1 z 7 Trojan bankowy Emotet został zauważony kilka miesięcy temu. Od tej pory zdaje się być cyklicznie wykorzystywany w

Bardziej szczegółowo

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić? Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią

Bardziej szczegółowo

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna

Bardziej szczegółowo

SSL (Secure Socket Layer)

SSL (Secure Socket Layer) SSL --- Secure Socket Layer --- protokół bezpiecznej komunikacji między klientem a serwerem, stworzony przez Netscape. SSL w założeniu jest podkładką pod istniejące protokoły, takie jak HTTP, FTP, SMTP,

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Bezpieczna poczta i PGP

Bezpieczna poczta i PGP Bezpieczna poczta i PGP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2010/11 Poczta elektroniczna zagrożenia Niechciana poczta (spam) Niebezpieczna zawartość poczty Nieuprawniony dostęp (podsłuch)

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Szyfry afiniczne. hczue zfuds dlcsr

Szyfry afiniczne. hczue zfuds dlcsr Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Kryptologia(nie)stosowana

Kryptologia(nie)stosowana Jest to zapis odczytu wygłoszonego na XLI Szkole Matematyki Poglądowej, Konkret i abstrakcja, sierpień 2008; za ten odczyt Autor otrzymał Medal Filca. Kryptologia(nie)stosowana Andrzej GRZESIK, Kraków

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

Ochrona poczty elektronicznej przed spamem. Olga Kobylańska praca dyplomowa magisterska opiekun pracy: prof. nzw.. dr hab.

Ochrona poczty elektronicznej przed spamem. Olga Kobylańska praca dyplomowa magisterska opiekun pracy: prof. nzw.. dr hab. Ochrona poczty elektronicznej przed spamem praca dyplomowa magisterska opiekun pracy: prof. nzw.. dr hab. Zbigniew Kotulski Plan prezentacji Cel pracy Sposoby ochrony poczty elektronicznej przed spamem

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Czy wszystko można policzyć na komputerze

Czy wszystko można policzyć na komputerze Czy wszystko można policzyć na komputerze Maciej M. Sysło Uniwersytet Wrocławski, UMK w Toruniu syslo@ii.uni.wroc.pl, syslo@mat.uni.torun.pl http://mmsyslo.pl/ < 220 > Informatyka + Wszechnica Popołudniowa

Bardziej szczegółowo

Autor: Piotr Ignał Opiekun: prof. dr hab. inż. Zbigniew Kotulski

Autor: Piotr Ignał Opiekun: prof. dr hab. inż. Zbigniew Kotulski Autor: Piotr Ignał Opiekun: prof. dr hab. inż. Zbigniew Kotulski Plan prezentacji 1. Wprowadzenie przedstawienie zagrożeo 2. Cel pracy 3. Opis istniejących rozwiązao 4. Opis użytych algorytmów kryptograficznych

Bardziej szczegółowo

Protokół Kerberos BSK_2003. Copyright by K. Trybicka-Francik 1. Bezpieczeństwo systemów komputerowych. Złożone systemy kryptograficzne

Protokół Kerberos BSK_2003. Copyright by K. Trybicka-Francik 1. Bezpieczeństwo systemów komputerowych. Złożone systemy kryptograficzne Bezpieczeństwo systemów komputerowych Złożone systemy kryptograficzne mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Protokół Kerberos Protokół Kerberos Usługa uwierzytelniania Projekt

Bardziej szczegółowo

ZiMSK. Konsola, TELNET, SSH 1

ZiMSK. Konsola, TELNET, SSH 1 ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Konsola, TELNET, SSH 1 Wykład

Bardziej szczegółowo

Kryptografia kwantowa

Kryptografia kwantowa Kryptografia kwantowa Krzysztof Maćkowiak DGA SECURE 2006 Plan referatu Wprowadzenie, podstawowe pojęcia Algorytm Grovera Algorytm Shora Algorytm Bennetta-Brassarda Algorytm Bennetta Praktyczne zastosowanie

Bardziej szczegółowo

Bezpieczeństwo informacji w systemach komputerowych

Bezpieczeństwo informacji w systemach komputerowych Bezpieczeństwo informacji w systemach komputerowych Andrzej GRZYWAK Rozwój mechanizmów i i systemów bezpieczeństwa Szyfry Kryptoanaliza Autentyfikacja Zapory Sieci Ochrona zasobów Bezpieczeństwo przechowywania

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński Wykład 4 Protokoły SSL i TLS główne slajdy 26 października 2011 Instytut Informatyki Uniwersytet Jagielloński 4.1 Secure Sockets Layer i Transport Layer Security SSL zaproponowany przez Netscape w 1994

Bardziej szczegółowo

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii

Bardziej szczegółowo

Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci. Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.

Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci. Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz. Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.pl Zagadnienia związane z bezpieczeństwem Poufność (secrecy)

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

dr Ryszard Kossowski Laboratorium 1 - wprowadzenie do kryptologii 1. Wstep

dr Ryszard Kossowski Laboratorium 1 - wprowadzenie do kryptologii 1. Wstep dr Ryszard Kossowski Laboratorium 1 - wprowadzenie do kryptologii 1. Wstep Celem laboratorium jest prezentacja podstawowych uslug ochrony informacji w przesyle w sieci. Sa to: poufnosc realizowana przy

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MIN-R1A1P-062 EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY Czas pracy 90 minut ARKUSZ I MAJ ROK 2006 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Rozwiązania w zakresie autoryzacji OTP (One Time Password - hasła jednorazowe)

Rozwiązania w zakresie autoryzacji OTP (One Time Password - hasła jednorazowe) (c) CC Otwarte Systemy Komputerowe, 2009-2011 Rozwiązania w zakresie autoryzacji OTP (One Time Password - hasła jednorazowe) Autoryzacja sprzętowa Systemy autoryzacji sprzętowej pełnią wiele funkcji w

Bardziej szczegółowo

Kwantowe przelewy bankowe foton na usługach biznesu

Kwantowe przelewy bankowe foton na usługach biznesu Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać

Bardziej szczegółowo

SSH - Secure Shell Omówienie protokołu na przykładzie OpenSSH

SSH - Secure Shell Omówienie protokołu na przykładzie OpenSSH SSH - Secure Shell Omówienie protokołu na przykładzie OpenSSH Paweł Pokrywka SSH - Secure Shell p.1/?? Co to jest SSH? Secure Shell to protokół umożliwiający przede wszystkim zdalne wykonywanie komend.

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: AMA s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2016/2017 Kod: AMA s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Algebra Rok akademicki: 2016/2017 Kod: AMA-1-301-s Punkty ECTS: 7 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: - Poziom studiów: Studia I stopnia Forma i tryb studiów:

Bardziej szczegółowo

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby

Bardziej szczegółowo

Wykład 4. Metody uwierzytelniania - Bezpieczeństwo (3) wg The Java EE 5 Tutorial Autor: Zofia Kruczkiewicz

Wykład 4. Metody uwierzytelniania - Bezpieczeństwo (3) wg The Java EE 5 Tutorial Autor: Zofia Kruczkiewicz Wykład 4 Metody uwierzytelniania - Bezpieczeństwo (3) wg The Java EE 5 Tutorial Autor: Zofia Kruczkiewicz Struktura wykładu 1. Protokół SSL do zabezpieczenia aplikacji na poziomie protokołu transportowego

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Bezpieczeństwo systemów informatycznych

Bezpieczeństwo systemów informatycznych Politechnika Poznańska Bezpieczeństwo systemów rozproszonych Bezpieczeństwo systemów informatycznych ĆWICZENIE VPN 1. Tunele wirtualne 1.1 Narzędzie OpenVPN OpenVPN jest narzędziem służącym do tworzenia

Bardziej szczegółowo

PODRĘCZNIK OBSŁUGI BUSINESSNET

PODRĘCZNIK OBSŁUGI BUSINESSNET PODRĘCZNIK OBSŁUGI BUSINESSNET. LOGOWANIE. AUTORYZACJA ZLECENIA. NOWY KLUCZ. PRZELEWY 5. ZLECENIA STAŁE 6. MODUŁ PRAWNY 7. DOSTĘP DO DEALINGNET 8. CERTYFIKAT KWALIFIKOWANY JAK ZALOGOWAĆ SIĘ DO BUSINESSNET

Bardziej szczegółowo

Instrukcja Obsługi Tokena VASCO DP 280

Instrukcja Obsługi Tokena VASCO DP 280 Instrukcja Obsługi Tokena VASCO DP 280 Łęczna 2015 Historia zmian L.p. Data Autor Wersja systemu Opis zmiany 1. 2015-07-22 Mozgawa Robert 2.35.002C Utworzenie dokumentu 1 1. Pierwsze uruchomienie W celu

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

Scenariusz 18. Mały kryptograf

Scenariusz 18. Mały kryptograf Scenariusz 18. Mały kryptograf Szyfrowanie to zasadnicza sprawa dla zapewnienia bezpieczeństwa informacji. Osiągnięciem współczesnej kryptografii jest to, że potrafimy zaszyfrować wiadomość jednym kluczem

Bardziej szczegółowo

Sieci komputerowe. Zajęcia 4 Bezpieczeństwo w sieciach komputerowych

Sieci komputerowe. Zajęcia 4 Bezpieczeństwo w sieciach komputerowych Sieci komputerowe Zajęcia 4 Bezpieczeństwo w sieciach komputerowych Translacja adresów (NAT) NAT (ang. Network Address Translation) umożliwia używanie adresów nierutowalnych (niepublicznych) Polega na

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

w Kielcach, 2010 w Kielcach, 2010

w Kielcach, 2010 w Kielcach, 2010 Zeszyty Studenckiego Ruchu Materiały 19 Sesji Studenckich Naukowego Uniwersytetu Kół Naukowych Uniwersytetu Humanistyczno- Przyrodniczego Humanistyczno- Przyrodniczego Jana Kochanowskiego Jana Kochanowskiego

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo