Copyright by K. Trybicka-Francik 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Copyright by K. Trybicka-Francik 1"

Transkrypt

1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze - idea Szyfry wykładnicze - idea Blok tekstu jawnego Szyfrowanie za pomocą potęgowania Założenia: M - wiadomość jawna (blok tekstu) C - wiadomość zaszyfrowana e, n - klucz przekształcenia szyfrującego Jak szyfrować: C = M e mod n Jak deszyfrować: M = C d mod n Szyfrogram Szyfry wykładnicze Korzystając z algorytmu szybkiego potęgowania. C = fastexp (M,e,n) M = fastexp (C,d,n) Na podstawie Eulerowskiego uogólnienia twierdzenia Fermata można dowieść, że jeśli e i d spełniają: ed mod Φ(n) = 1 to M = C d mod n jest odwrotnością C = M e mod n i M, n liczby względnie pierwsze Twierdzenie Fermata uogólnienie Eulera Małe twierdzenia Fermata jeśli m jest liczbą pierwszą i a nie jest wielokrotnością m, to: a m-1 1 (mod m) Funkcja Eulera Φ(n) jest to liczba elementów zredukowanego zbioru reszt modulo n. Φ(n) = n-1 gdy n liczba pierwsza, Φ(n) = (p-1)(q-1) gdy n=pq, oraz p i q są liczbami pierwszymi Uogólnienie Eulera jeśli NWD(a,n)=1, to a Φ(n) mod n = 1 1

2 Szyfr Diffiego - Hellmana Szyfr Diffiego - Hellmana Pierwszy algorytm asymetryczny Bezpieczeństwo: trudność obliczenia logarytmów dyskretnych w ciałach skończonych Zastosowanie: wymiana kluczy Alicja i Bob uzgadniają dwie duże liczby całkowite n i g (n>g>1) n - liczba pierwsza (n-1)/2 - liczba pierwsza n - liczba o długości co najmniej 512 bitów Szyfr Diffiego - Hellmana Szyfr Diffiego - Hellmana Bob wybiera, losowo, dużą liczbę całkowitą y i oblicza: Y=g y mod n Bob oblicza: k =X y mod n klucz = g xy mod n Alicja wybiera, losowo, dużą liczbę całkowitą x i oblicza: X=g x mod n Alicja oblicza: k=y x mod n Szyfr Diffiego - Hellmana Szyfr Polinga-Hellmana 1. Wybieramy dwie liczby pierwsze n i g: n = 11, takie że (n-1)/2 liczba pierwsza g = 9, takie że n>g>1 Bezpieczeństwo: trudność obliczenia logarytmów dyskretnych w ciałach skończonych Zastosowanie: szyfrowaniw danych 2. Alicja wybiera liczbę x = 6 i oblicza: X = 9 6 mod 11 = 9 2. BOB wybiera liczbę y = 8 i oblicza: Y = 9 8 mod 11 = 3 3. Bob oblicza: k = 9 8 mod 11 = 3 3. Alicja oblicza: k = 3 6 mod 11 = 3 k = 9 6*8 mod 11 = 3 2

3 Szyfr Polinga-Hellmana C = M e mod p M = C d mod p p duża liczba pierwsza, Φ(p) = p-1 Przykład: p = 11, Φ(p) = 10, wybieramy d = 7 stąd e = inv(7,10) = 3 tekst jawny M=5 szyfrowanie: C = M e mod p = 5 3 mod 11 = 4 deszyfrowanie: M = C d mod p = 4 7 mod 11 = 5 Tajne musi być zarówno e jak i d, bo Φ(p) jest powszechnie znane. Atak Logarytm dyskretny w GF(p) Atak z tekstem jawnym Mając parę (M, C) można wyznaczyć e i d ze wzoru e=log M Cw GF(p) O wartości p można wnioskować na podstawie wielkości bloków tekstu jawnego i szyfrogramu. Zatem p=2p +1 gdzie p duża liczba pierwsza T=exp(sgrt(ln(p)ln(ln(p)))) (za Adlemanem) Powstał w 1977 Algorytm asymetryczny Algorytm blokowy Bezpieczeństwo: trudność faktoryzacji dużych liczb pierwszych Zastosowanie: wymiana kluczy sesji, podpis elektroniczny Założenia: M - wiadomość jawna (blok tekstu) C - wiadomość zaszyfrowana e, n - klucz przekształcenia szyfrującego d, n klucz przekształcenia deszyfrującego Jak szyfrować: Jak deszyfrować: C = M e mod n M = C d mod n Wybieramy dwie duże liczby pierwsze p i q Obliczamy n = pq Losowo wybieramy klucz szyfrujący e, taki że e i (p-1)(q-1) są względnie pierwsze Obliczamy klucz deszyfrujący d: d = e -1 (mod (p-1)(q-1)) (rozszerzony algorytm Euklidesa) p = 7 i q = 17 n = pq = 7 17 = 119 (p-1)(q-1) = (7-1)(17-1) = 96 e = 5 d = e -1 (mod (p-1)(q-1)) =? a -1 x (mod b) 1 = (a*x) mod b e -1 1 = (e*d) mod (p-1)(q-1) 1 = (5*d) mod 96 d = 77 3

4 szyfrowanie tekst jawny 19 p = 7 i q = 17 n = pq = 7 17 = 119 (p-1)(q-1) = (7-1)(17-1) = 96 e = 5 d = e -1 (mod (p-1)(q-1)) = 5-1 (mod 96) = 77 C = M e mod n tekst jawny mod 119 = = mod 119 = = reszta 66 M = C d mod n klucz szyfrujący: (5, 119) klucz deszyfrujący: (77, 119) mod 119 = = 1,06..* reszta 19 szyfrogram 66 deszyfrowanie Bezpieczeństwo RSA Bezpieczeństwo RSA Oparte na trudności rozkładu liczby n na czynniki p i q. Najszybszy znany algorytm wymaga wykonania T = exp(sqrt(ln(n)ln(ln(n)))) kroków, np. dla p i q 100 cyfrowych i 1 instr./µs czas rozwiązania rzędu miliardów lat. Ale: p i q liczby pierwsze długości około 100 cyfr p i q powinny różnić się długością o kilka cyfr (p-1) i (q-1) powinny mieć duże czynniki pierwsze p i q bezpieczne liczby pierwsze (czyli takie, że p=2p +1), gdzie p nieparzysta liczba pierwsza (wszystkie poza 2) Przy złym doborze klucza i wielokrotnym szyfrowaniu można uzyskać wiadomość jawną!!! Funkcje szyfrująca i deszyfrująca są wzajemnie odwrotne, czyli można ukryć wiadomość jak i skontrolować tożsamość nadawcy. Atak na algorytm RSA Scenariusz 1 Napastnik ma dane: wartość klucza publicznego (e, n) Napastnik szuka: p i q faktoryzacja liczby n Znając p i q d = e -1 ( mod (p-1)(q-1) ) Problem polega na tym, że bez znajomości czynników p i q nie widać żadnego sposobu znalezienia deszyfrującego wykładnika d. Nie wydaje się też, aby istniała metoda deszyfrowania inna niż poprzez wykładnik deszyfrujący. Słów nie widać i wydaje się używam dlatego, że powyższe stwierdzenia nie zostały udowodnione. Można więc jedynie powiedzieć, że złamanie szyfru RSA jest prawdopodobnie tak trudne jak rozkład n na czynniki pierwsze. Neal Koblitz Algebraiczne aspekty kryptografii 4

5 Atak na algorytm RSA Atak na algorytm RSA Scenariusz 2 Napastnik ma dane: szyfrogram c Napastnik szuka: m = c d mod n Rozwiązanie: Wybrać losowe r takie, że r < n x = r e mod n r = x d mod n y = x c mod n t = r -1 mod n t = x -d mod n Wartość y przekazywana jest do Alicji by ją podpisała u = y d mod n Napastnik oblicza t u mod n = m Scenariusz 3 Zadanie: Notariusz ma podpisać wiadomość N Rozwiązanie: Napastnik generuje liczbę X i oblicza: Y = X e mod n M = YN mod n Notariusz składa podpis pod wiadomością M C = M d mod n Napastnik oblicza: (M d mod n)x -1 = N d mod n Atak na algorytm RSA Atak na algorytm RSA przy wspólnym module n Scenariusz 4 Zadanie: Notariusz ma podpisać wiadomość M 3 Rozwiązanie: Napastnik generuje dwie wiadomości M 1 i M 2 M 3 M 1 M 2 (mod n) Notariusz podpisuje obie wiadomości Napastnik oblicza: M 3 d (mod n) = = M 1 d (mod n) M 2 d (mod n) Scenariusz 5 Szukane: tekst jawny M Dane: klucze szyfrujące (e 1,n) i (e 2,n) C 1 = M e1 mod n C 2 = M e2 mod n Rozwiązanie: korzystając z algorytmu Euklidesa r e 1 + s e 2 = 1 (C 1-1 ) -r C 2 s = M mod n RSA RSA a identyfikacja Znając Φ(n) generujemy d i e wybieramy liczbę d względnie pierwszą z Φ(n) i obliczamy wg zależności e = inv(d, Φ(n)). Jak grać (nie)bezpiecznie w pokera za pomocą sieci? Ponieważ e i d są symetryczne (bo M = C de mod n = M) możemy wybrać e i obliczyć d. Dlatego też RSA można używać do ukrywania treści i do identyfikacji nadawcy. Ufff... 5

6 Poker na odległość Poker na odległość Wymagania Grę rozpoczyna uczciwe rozdanie gracz zna karty w swojej ręce, nie zna kart innych graczy karty nie mogą się powtarzać dla każdego gracza musi być jednakowo prawdopodobne każde rozdanie Gracze w trakcie gry mogą żądać dodatkowych kart E A D A E A (E B (M)) = E B (E A (M)) M 1 : dwójka trefl M 2 : trójka trefl... M 52 : as pik E B D B Poker na odległość Bob szyfruje 52 wiadomości C i = E B (M i ) gdzie i = 1, 2,...,52, miesza je i przekazuje Alicji. Alicja wybiera 5 kart i odsyła Bobowi. To ręka Baba. Alicja wybiera 5 kart i szyfruje je swoim kluczem C i = E A (C i ). Odsyła karty Bobowi. Bob deszyfruje otrzymane karty. Otrzymuje swoją rękę i zaszyfrowany zestaw kart dla Alicji odsyła je. Teraz Alicja może poznać swoje karty. Przekazywanie sekretów Po skończonej partii gracze udostępniają swoje klucze w celu sprawdzenia czy gra była uczciwa. Przekazywanie sekretów Alicja wysyła do Boba liczbę n, taką że n=pq, gdzie p i q to nieparzyste liczby pierwsze Bab wybiera losowo x, takie że 0<x<n oraz NWD(x,n)=1. Alicji przesyła a = x 2 mod n Alicja oblicza pierwiastki a: x, n-x, y, n-y i jeden z nich przesyła Bobowi Gdy Bob otrzyma y lub n-y może wyznaczyć p i q. W przeciwnym wypadku nie odczyta nic. DSA Klucz publiczny p - liczba pierwsza ( bitów) q czynnik pierwszy liczby p-1 (160 bitów) g = h (p-1)/q mod p, gdzie h<p-1 i h (p-1)/q mod p>1 y = g x mod p Klucz prywatny x<q (160 bitów) 6

7 DSA Podpisywanie k liczba losowa mniejsza od q r (podpis) = (g k mod p) mod q s (podpis) = (k -1 (H(m)+xr)) mod q Weryfikacja w = s -1 mod q u 1 = (H(m) * w) mod q u 2 = (rw) mod q v = ((g u1 *y u2 ) mod p) mod q Jeśli v=r, to podpis jest poprawny Argumentem jednokierunkowej funkcji skrótu H(M) jest wiadomość M o długości dowolnej. Wartością tej funkcji jest liczba h o ustalonej długości. h=h(m), przy czym h jest liczbą o długości m. mając dane M, łatwo jest obliczyć h mając dane h, trudno jest obliczyć M mając dane M, trudno jest znaleźć inną wiadomość M taką, że H(M)=H(M ) Atak: 1. Próba znalezienia M, takiego że: H(M)=H(M ). 2. Atak metodą dnia urodzin. Paradoks dnia urodzin Jak dużo osób powinno się znaleźć w jednym pomieszczeniu, żeby jedna ze zgromadzonych tam osób miała urodziny tego samego dnia co Ty? Odpowiedź brzmi 183 osoby. Paradoks dnia urodzin Jednokierunkowa funkcja skrótu Jak dużo osób musi być, by co najmniej dwie miały urodziny tego samego dnia? Odpowiedź brzmi 23 osoby. Co daje 253 pary. M i funkcja jednokierunkowa h i h i-1 7

8 MD5 SHA Bezpieczny Algorytm Skrótu m i h i-1 klucz szyfrator h i Schemat algorytmu Daviesa-Meyera m i Schemat algorytmu wykorzystującego szyfr LOKI, z pojedynczym blokiem h i-1 m i klucz Schemat algorytmu Miyaguchi h i klucz szyfrator h i-1 szyfrator h i Markle i Hellman Bezpieczeństwo wynika z trudności rozwiązania następującego zagadnienia: C dodatnia liczba całkowita, A=(a 1,..., a n ) wektor dodatnich liczb całkowitych. Należy znaleźć podzbiór elementów wektora A, których suma wynosi C. 8

9 Należy znaleźć M=(m 1,..., m n ), który spełnia równanie: C=AM lub: n C=Σ a i m i i=1 Co to znaczy, że problem plecaka jest łatwy? A=(1, 3, 4, 9, 15, 25) A=(2, 3, 6, 13, 27, 52) C=70 M=(1,1,0,1,0,1) Klucz tajny ciąg wag dla problemu plecaka superrosnącego; Klucz jawny ciąg wag dla zwykłego problemu plecakowego; Arytmetyka modularna. 1. Bierzemy ciąg dla plecaka superrosnącego, np. (1,3,5,10). 2. Mnożymy modulo m wszystkie jego elementy i przez n. m powinien być liczbą większą od sumy wszystkich liczb ciągu, np. 20. Mnożnik nie powinien mieć wspólnych czynników z żadną z liczb w ciągu, np. 7. 1*7 mod 20 = 7 3*7 mod 20 = 1 5*7 mod 20 = 15 10*7 mod 20 = Podzielić ciąg binarny na bloki o długości równej liczbie elementów w ciągu plecaka. 2. Obliczyć całkowite wagi plecaków. (7, 1, 15, 10) 9

10 Klucz jawny = (7, 1, 15, 10) Wiadomość = odpowiada =18 Kryptogram: 18 Odbiorca zna: plecak superrosnący, oraz wartości n i m. 1. Wyznaczyć n Mnożymy każdą wartość szyfrogramu przez n -1. Klucz tajny = (1, 3, 5, 10) m=20, n=7, n -1 =3 Kryptogram: 18 Dziękuję za uwagę 18*3 mod 20 = 14 =

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman

Bardziej szczegółowo

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś   Wykład 5 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Zarys algorytmów kryptograficznych

Zarys algorytmów kryptograficznych Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................

Bardziej szczegółowo

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze. Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany

Bardziej szczegółowo

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Spis treści. Przedmowa... 9

Spis treści. Przedmowa... 9 Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 9 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................

Bardziej szczegółowo

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne

Bardziej szczegółowo

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi. Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5

Bardziej szczegółowo

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z

Bardziej szczegółowo

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

Szyfrowanie RSA (Podróż do krainy kryptografii)

Szyfrowanie RSA (Podróż do krainy kryptografii) Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja

Bardziej szczegółowo

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.) Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

WSIZ Copernicus we Wrocławiu

WSIZ Copernicus we Wrocławiu Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,

Bardziej szczegółowo

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm

Bardziej szczegółowo

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej Ochrona zasobów w systemach gospodarki mgr inż. K. Trybicka-Francik Plan wykładu Rola kryptografii Klasyfikacja usług kryptograficznych Umieszczenie funkcji szyfrującej Generacja i dystrybucja y Złożone

Bardziej szczegółowo

Parametry systemów klucza publicznego

Parametry systemów klucza publicznego Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego

Bardziej szczegółowo

Kryptologia przykład metody RSA

Kryptologia przykład metody RSA Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 6a Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20

Bardziej szczegółowo

Wprowadzenie ciag dalszy

Wprowadzenie ciag dalszy Wprowadzenie ciag dalszy Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Szyfry asymetryczne Wymyślone w latach 70-tych Używaja dwóch różnych (ale pasujacych do siebie ) kluczy do szyfrowania

Bardziej szczegółowo

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym) Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 7 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................

Bardziej szczegółowo

Bezpieczeństwo danych i systemów informatycznych. Wykład 5

Bezpieczeństwo danych i systemów informatycznych. Wykład 5 Bezpieczeństwo danych i systemów informatycznych Wykład 5 Kryptoanaliza Atak na tekst zaszyfrowany dostępny tylko szyfrogram Atak poprzez tekst częściowo znany istnieją słowa, których prawdopodobnie użyto

Bardziej szczegółowo

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym Krótkie vademecum (słabego) szyfranta Podstawowe pojęcia: tekst jawny (otwarty) = tekst zaszyfrowany (kryptogram) alfabet obu tekstów (zwykle różny) jednostki tekstu: na przykład pojedyncza litera, digram,

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie

Bardziej szczegółowo

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1

Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe.

Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe. Bezpieczeństwo systemów komputerowych Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym tekstem jawnym Łamanie z adaptacyjnie wybranym tekstem jawnym Łamanie

Bardziej szczegółowo

Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S.

Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Plecak ma być zapakowany optymalnie, tzn. bierzemy tylko te przedmioty,

Bardziej szczegółowo

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup. Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21

Bardziej szczegółowo

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Plan całości wykładu. Ochrona informacji 1

Plan całości wykładu. Ochrona informacji 1 Plan całości wykładu Wprowadzenie Warstwa aplikacji Warstwa transportu Warstwa sieci Warstwa łącza i sieci lokalne Podstawy ochrony informacji (2 wykłady) (2 wykłady) (2 wykłady) (3 wykłady) (3 wykłady)

Bardziej szczegółowo

Szyfrowanie informacji

Szyfrowanie informacji Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane

Bardziej szczegółowo

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA

Bardziej szczegółowo

Problem logarytmu dyskretnego i protokół Diffiego-Hellmana. Mateusz Paluch

Problem logarytmu dyskretnego i protokół Diffiego-Hellmana. Mateusz Paluch Problem logarytmu dyskretnego i protokół Diffiego-Hellmana Mateusz Paluch 1 Logarytm dyskretny Definicja 1. Niech (G, ) będzie skończoną grupą cykliczną rzędu n 2. Niech ponadto b będzie generatorem tej

Bardziej szczegółowo

Liczby pierwsze na straży tajemnic

Liczby pierwsze na straży tajemnic Liczby pierwsze na straży tajemnic Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby rzadzą światem Ile włosów na głowie? Dowód z wiedzą zerową Reszty kwadratowe Dzielenie sekretu Ile włosów

Bardziej szczegółowo

KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970)

KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) 1 [Wybrane materiały do ćwiczeń 3-7 z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku (semestr letni 2008)] KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) (ang.

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków

Bardziej szczegółowo

Seminarium Ochrony Danych

Seminarium Ochrony Danych Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner

Bardziej szczegółowo

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,

Bardziej szczegółowo

Przewodnik użytkownika

Przewodnik użytkownika STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis

Bardziej szczegółowo

Bezpieczeństwo danych, zabezpieczanie safety, security

Bezpieczeństwo danych, zabezpieczanie safety, security Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός

Bardziej szczegółowo

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

Kryptografia publiczna (asymetryczna) Szyfrowanie publiczne (asym) Problem klucza publicznego. Podpisujemy cyfrowo. Jak zweryfikować klucz publiczny?

Kryptografia publiczna (asymetryczna) Szyfrowanie publiczne (asym) Problem klucza publicznego. Podpisujemy cyfrowo. Jak zweryfikować klucz publiczny? Kryptografia publiczna (asymetryczna) Wykład 7 Systemy kryptograficzne z kluczem publicznym Wiedza o kluczu szyfrującym nie pozwala odgadnąć klucza deszyfrującego Odbiorca informacji generuje parę kluczy

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 8 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8

Bardziej szczegółowo

Marcin Szeliga Dane

Marcin Szeliga Dane Marcin Szeliga marcin@wss.pl Dane Agenda Kryptologia Szyfrowanie symetryczne Tryby szyfrów blokowych Szyfrowanie asymetryczne Systemy hybrydowe Podpis cyfrowy Kontrola dostępu do danych Kryptologia Model

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie

Bardziej szczegółowo

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Nowy klucz jest jedynie tak bezpieczny jak klucz stary. Bezpieczeństwo systemów komputerowych

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Nowy klucz jest jedynie tak bezpieczny jak klucz stary. Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Zarządzanie kluczami Wytwarzanie kluczy Zredukowana przestrzeń kluczy Nieodpowiedni wybór kluczy Wytwarzanie kluczy losowych Niezawodne źródło losowe Generator bitów

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

2 Kryptografia: algorytmy symetryczne

2 Kryptografia: algorytmy symetryczne 1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;

Bardziej szczegółowo

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4

Algorytmy i struktury danych. Wykład 4 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych

Bardziej szczegółowo

Pierwiastki pierwotne, logarytmy dyskretne

Pierwiastki pierwotne, logarytmy dyskretne Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem

Bardziej szczegółowo

Elementy kryptografii Twierdzenie Halla. Pozostałe tematy. Barbara Przebieracz B. Przebieracz Pozostałe tematy

Elementy kryptografii Twierdzenie Halla. Pozostałe tematy. Barbara Przebieracz B. Przebieracz Pozostałe tematy Pozostałe tematy Barbara Przebieracz 04.06.2016 Spis treści 1 2 Podstawowe pojęcia Kryptografia to nauka o metodach przesyłania wiadomości w zakamuflowanej postaci tak, aby tylko adresat mógł odrzucić

Bardziej szczegółowo

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja

Bardziej szczegółowo

MADE IN CHINA czyli SYSTEM RESZTOWY

MADE IN CHINA czyli SYSTEM RESZTOWY MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie Informatyka, Inżynieria Bezpieczeństwa

PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie Informatyka, Inżynieria Bezpieczeństwa PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie Technika, Informatyka, Inżynieria Bezpieczeństwa 2013, t. I Mikhail Selianinau Akademia im. Jana Długosza Al. Armii Krajowej 13/15, 42-200 Częstochowa,

Bardziej szczegółowo

Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl>

Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl> Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna 1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy

Bardziej szczegółowo

Kongruencje pierwsze kroki

Kongruencje pierwsze kroki Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod

Bardziej szczegółowo

Systemy Mobilne i Bezprzewodowe laboratorium 12. Bezpieczeństwo i prywatność

Systemy Mobilne i Bezprzewodowe laboratorium 12. Bezpieczeństwo i prywatność Systemy Mobilne i Bezprzewodowe laboratorium 12 Bezpieczeństwo i prywatność Plan laboratorium Szyfrowanie, Uwierzytelnianie, Bezpieczeństwo systemów bezprzewodowych. na podstawie : D. P. Agrawal, Q.-A.

Bardziej szczegółowo

Sieci komputerowe. Wykład 11: Podstawy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 11: Podstawy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 11: Podstawy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 35 Spis treści 1 Szyfrowanie 2 Uwierzytelnianie

Bardziej szczegółowo

Wprowadzenie do technologii VPN

Wprowadzenie do technologii VPN Sieci komputerowe są powszechnie wykorzystywane do realizacji transakcji handlowych i prowadzenia działalności gospodarczej. Ich zaletą jest błyskawiczny dostęp do ludzi, którzy potrzebują informacji.

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.

Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje

Bardziej szczegółowo

Zastosowania informatyki w gospodarce Wykład 5

Zastosowania informatyki w gospodarce Wykład 5 Instytut Informatyki, Automatyki i Robotyki Zastosowania informatyki w gospodarce Wykład 5 Podstawowe mechanizmy bezpieczeństwa transakcji dr inż. Dariusz Caban dr inż. Jacek Jarnicki dr inż. Tomasz Walkowiak

Bardziej szczegółowo

Sieci komputerowe. Wykład 11: Kodowanie i szyfrowanie. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 11: Kodowanie i szyfrowanie. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 11: Kodowanie i szyfrowanie Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 32 Kodowanie Sieci komputerowe (II UWr) Wykład

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Wprowadzenie do kryptologii Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 16 listopada 2016 Jak ta dziedzina powinna się nazywać?

Bardziej szczegółowo

Ataki na algorytm RSA

Ataki na algorytm RSA Ataki na algorytm RSA Andrzej Chmielowiec 29 lipca 2009 Streszczenie Przedmiotem referatu są ataki na mechanizm klucza publicznego RSA. Wieloletnia historia wykorzystywania tego algorytmu naznaczona jest

Bardziej szczegółowo

Czym jest kryptografia?

Czym jest kryptografia? Szyfrowanie danych Czym jest kryptografia? Kryptografia to nauka zajmująca się układaniem szyfrów. Nazwa pochodzi z greckiego słowa: kryptos - "ukryty", gráphein "pisać. Wyróżniane są dwa główne nurty

Bardziej szczegółowo

Authenticated Encryption

Authenticated Encryption Authenticated Inż. Kamil Zarychta Opiekun: dr Ryszard Kossowski 1 Plan prezentacji Wprowadzenie Wymagania Opis wybranych algorytmów Porównanie mechanizmów Implementacja systemu Plany na przyszłość 2 Plan

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo