LICZBY PIERWSZE. 14 marzec Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

Wielkość: px
Rozpocząć pokaz od strony:

Download "LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F."

Transkrypt

1 Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss ( ) 14 marzec 2007

2 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Twierdzenie Każdą liczbę naturalną n > 1 można przedstawić w postaci iloczynu liczb pierwszych n = p 1 p 2... p k. Przedstawienie to jest jednoznaczne z dokładnością do kolejności czynników.

3 Ile jest liczb pierwszych? Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Twierdzenie Istnieje nieskończenie wiele liczb pierwszych. Dowód (Euklides) Z1 Przypuśćmy, że zbiór P wszystkich liczb pierwszych jest skończony, tzn. P = {p 1, p 2,..., p n } Z2 Niech a = p 1 p 2...p n + 1 Z3 Z4 Z5 Żadna liczba ze zbioru P nie dzieli liczby a Z zasadniczego twierdzenia teorii liczb wynika, że liczba a ma dzielnik pierwszy p Ale p / P - SPRZECZNOŚĆ

4 Ile jest liczb pierwszych? Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Twierdzenie Istnieje nieskończenie wiele liczb pierwszych. Dowód (Euklides) Z1 Przypuśćmy, że zbiór P wszystkich liczb pierwszych jest skończony, tzn. P = {p 1, p 2,..., p n } Z2 Niech a = p 1 p 2...p n + 1 Z3 Z4 Z5 Żadna liczba ze zbioru P nie dzieli liczby a Z zasadniczego twierdzenia teorii liczb wynika, że liczba a ma dzielnik pierwszy p Ale p / P - SPRZECZNOŚĆ

5 Ile jest liczb pierwszych? Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Twierdzenie Istnieje nieskończenie wiele liczb pierwszych. Dowód (Euklides) Z1 Przypuśćmy, że zbiór P wszystkich liczb pierwszych jest skończony, tzn. P = {p 1, p 2,..., p n } Z2 Niech a = p 1 p 2...p n + 1 Z3 Z4 Z5 Żadna liczba ze zbioru P nie dzieli liczby a Z zasadniczego twierdzenia teorii liczb wynika, że liczba a ma dzielnik pierwszy p Ale p / P - SPRZECZNOŚĆ

6 Ile jest liczb pierwszych? Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Twierdzenie Istnieje nieskończenie wiele liczb pierwszych. Dowód (Euklides) Z1 Przypuśćmy, że zbiór P wszystkich liczb pierwszych jest skończony, tzn. P = {p 1, p 2,..., p n } Z2 Niech a = p 1 p 2...p n + 1 Z3 Z4 Z5 Żadna liczba ze zbioru P nie dzieli liczby a Z zasadniczego twierdzenia teorii liczb wynika, że liczba a ma dzielnik pierwszy p Ale p / P - SPRZECZNOŚĆ

7 Ile jest liczb pierwszych? Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Twierdzenie Istnieje nieskończenie wiele liczb pierwszych. Dowód (Euklides) Z1 Przypuśćmy, że zbiór P wszystkich liczb pierwszych jest skończony, tzn. P = {p 1, p 2,..., p n } Z2 Niech a = p 1 p 2...p n + 1 Z3 Z4 Z5 Żadna liczba ze zbioru P nie dzieli liczby a Z zasadniczego twierdzenia teorii liczb wynika, że liczba a ma dzielnik pierwszy p Ale p / P - SPRZECZNOŚĆ

8 Ile jest liczb pierwszych? Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Twierdzenie Istnieje nieskończenie wiele liczb pierwszych. Dowód (Euklides) Z1 Przypuśćmy, że zbiór P wszystkich liczb pierwszych jest skończony, tzn. P = {p 1, p 2,..., p n } Z2 Niech a = p 1 p 2...p n + 1 Z3 Z4 Z5 Żadna liczba ze zbioru P nie dzieli liczby a Z zasadniczego twierdzenia teorii liczb wynika, że liczba a ma dzielnik pierwszy p Ale p / P - SPRZECZNOŚĆ

9 Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? SITO ERATOSTENESA

10 Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? SITO ERATOSTENESA

11 Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? SITO ERATOSTENESA

12 Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? SITO ERATOSTENESA

13 Zasadnicze twierdzenie teorii liczb Ile jest liczb pierwszych? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? Jak rozpoznać, czy dana liczba naturalna jest pierwsza? SITO ERATOSTENESA

14 Kongruencje Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Zapis a b(mod n) oznacza, że reszty z dzielenia liczb cakowitych a i b przez liczbę naturalną n są takie same. WŁASNOŚCI KONGRUENCJI Z1 a + b(mod n) a(mod n) + b(mod n) Z2 ab(mod n) a(mod n) b(mod n)

15 Kongruencje Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Zapis a b(mod n) oznacza, że reszty z dzielenia liczb cakowitych a i b przez liczbę naturalną n są takie same. WŁASNOŚCI KONGRUENCJI Z1 a + b(mod n) a(mod n) + b(mod n) Z2 ab(mod n) a(mod n) b(mod n)

16 Kongruencje Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Zapis a b(mod n) oznacza, że reszty z dzielenia liczb cakowitych a i b przez liczbę naturalną n są takie same. WŁASNOŚCI KONGRUENCJI Z1 a + b(mod n) a(mod n) + b(mod n) Z2 ab(mod n) a(mod n) b(mod n)

17 Kongruencje Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Zapis a b(mod n) oznacza, że reszty z dzielenia liczb cakowitych a i b przez liczbę naturalną n są takie same. WŁASNOŚCI KONGRUENCJI Z1 a + b(mod n) a(mod n) + b(mod n) Z2 ab(mod n) a(mod n) b(mod n)

18 Kongruencje Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb PRZYKŁAD. Jakie są dwie ostatnie cyfry liczby 2 200? (2 10 ) (24 2 ) (76 2 ) (76 2 ) (mod 100)

19 MAŁE TWIERDZENIE FERMATA Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Twierdzenie (Pierre Fermat ( )) Jeśli p jest liczbą pierwszą i p nie dzieli a, to a p 1 1(mod p). PRZYKŁAD (mod ), a zatem liczba NIE JEST PIERWSZA. A oto jej rozkład =

20 MAŁE TWIERDZENIE FERMATA Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Twierdzenie (Pierre Fermat ( )) Jeśli p jest liczbą pierwszą i p nie dzieli a, to a p 1 1(mod p). PRZYKŁAD (mod ), a zatem liczba NIE JEST PIERWSZA. A oto jej rozkład =

21 MAŁE TWIERDZENIE FERMATA Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Twierdzenie (Pierre Fermat ( )) Jeśli p jest liczbą pierwszą i p nie dzieli a, to a p 1 1(mod p). PRZYKŁAD (mod ), a zatem liczba NIE JEST PIERWSZA. A oto jej rozkład =

22 TWIERDZENIE WILSONA Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Twierdzenie (John Wilson -1773) Jeśli p jest liczbą pierwszą, to (p 1)! + 1 0(mod p). Największa liczba pierwsza znana przed epoką komputerów p =

23 TWIERDZENIE WILSONA Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Twierdzenie (John Wilson -1773) Jeśli p jest liczbą pierwszą, to (p 1)! + 1 0(mod p). Największa liczba pierwsza znana przed epoką komputerów p =

24 Liczby Fermata: F n = 2 2n + 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb F 0 3 liczba pierwsza - F 1 5 liczba pierwsza - F 2 17 liczba pierwsza - F liczba pierwsza - F liczba pierwsza P. Fermat F liczba złożona L. Euler(1750) F liczba złożona E. Lucas (1880)

25 Liczby Fermata: F n = 2 2n + 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb F 0 3 liczba pierwsza - F 1 5 liczba pierwsza - F 2 17 liczba pierwsza - F liczba pierwsza - F liczba pierwsza P. Fermat F liczba złożona L. Euler(1750) F liczba złożona E. Lucas (1880)

26 Liczby Fermata: F n = 2 2n + 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb największą znaną liczbą pierwszą Fermata jest F 5 największą znaną liczbą Fermata złożoną jest F znany jest pełny rozkład na czynniki pierwsze tylko następujących liczb Fermata: F 5, F 6, F 7, F 8, F 9 i F 11 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Fermata

27 Liczby Fermata: F n = 2 2n + 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb największą znaną liczbą pierwszą Fermata jest F 5 największą znaną liczbą Fermata złożoną jest F znany jest pełny rozkład na czynniki pierwsze tylko następujących liczb Fermata: F 5, F 6, F 7, F 8, F 9 i F 11 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Fermata

28 Liczby Fermata: F n = 2 2n + 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb największą znaną liczbą pierwszą Fermata jest F 5 największą znaną liczbą Fermata złożoną jest F znany jest pełny rozkład na czynniki pierwsze tylko następujących liczb Fermata: F 5, F 6, F 7, F 8, F 9 i F 11 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Fermata

29 Liczby Fermata: F n = 2 2n + 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb największą znaną liczbą pierwszą Fermata jest F 5 największą znaną liczbą Fermata złożoną jest F znany jest pełny rozkład na czynniki pierwsze tylko następujących liczb Fermata: F 5, F 6, F 7, F 8, F 9 i F 11 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Fermata

30 Liczby Mersenne a M q = 2 q 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb M 2 3 liczba pierwsza - M 3 7 liczba pierwsza - M 5 31 liczba pierwsza - M liczba pierwsza - M liczba złożona - M liczba pierwsza - M liczba pierwsza P.Cataldi (1588) M 31 liczba pierwsza L.Euler (1750) M 89 liczba pierwsza R.Powers (1911) M 521 liczba pierwsza R.Robinson (1952) M 9941 liczba pierwsza D. Gillies (1963) M liczba pierwsza L.Noll (1978) M liczba pierwsza D. Słowiński (1983) M liczba pierwsza G. Spence (1997)

31 Liczby Mersenne a M q = 2 q 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb M 2 3 liczba pierwsza - M 3 7 liczba pierwsza - M 5 31 liczba pierwsza - M liczba pierwsza - M liczba złożona - M liczba pierwsza - M liczba pierwsza P.Cataldi (1588) M 31 liczba pierwsza L.Euler (1750) M 89 liczba pierwsza R.Powers (1911) M 521 liczba pierwsza R.Robinson (1952) M 9941 liczba pierwsza D. Gillies (1963) M liczba pierwsza L.Noll (1978) M liczba pierwsza D. Słowiński (1983) M liczba pierwsza G. Spence (1997)

32 Liczby Mersenne a M q = 2 q 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb znanych jest 36 liczb pierwszych Mersenne a największą znaną liczbą pierwszą Mersenne a jest M (ma cyfry) - największa znana liczba pierwsza największą znaną liczbą złożoną Mersenne a, dla której znany jest rozkład na czynniki pierwsze to M 3359 = 6719 P1008 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Mersenne a.

33 Liczby Mersenne a M q = 2 q 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb znanych jest 36 liczb pierwszych Mersenne a największą znaną liczbą pierwszą Mersenne a jest M (ma cyfry) - największa znana liczba pierwsza największą znaną liczbą złożoną Mersenne a, dla której znany jest rozkład na czynniki pierwsze to M 3359 = 6719 P1008 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Mersenne a.

34 Liczby Mersenne a M q = 2 q 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb znanych jest 36 liczb pierwszych Mersenne a największą znaną liczbą pierwszą Mersenne a jest M (ma cyfry) - największa znana liczba pierwsza największą znaną liczbą złożoną Mersenne a, dla której znany jest rozkład na czynniki pierwsze to M 3359 = 6719 P1008 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Mersenne a.

35 Liczby Mersenne a M q = 2 q 1 Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb znanych jest 36 liczb pierwszych Mersenne a największą znaną liczbą pierwszą Mersenne a jest M (ma cyfry) - największa znana liczba pierwsza największą znaną liczbą złożoną Mersenne a, dla której znany jest rozkład na czynniki pierwsze to M 3359 = 6719 P1008 nie wiadomo, czy istnieje nieskończenie wiele liczb pierwszych Mersenne a.

36 Liczby względnie pierwsze Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Definicja Liczby całkowite m,n nazywamy względnie pierwszymi jeśli NWD(m, n) = 1 Uwaga Jeśli p,q są różnymi liczbami pierwszymi, to NWD(p, q) = 1

37 Liczby względnie pierwsze Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Definicja Liczby całkowite m,n nazywamy względnie pierwszymi jeśli NWD(m, n) = 1 Uwaga Jeśli p,q są różnymi liczbami pierwszymi, to NWD(p, q) = 1

38 Chińskie twierdzenie o resztach Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Twierdzenie Jeśli liczby naturalne n 1,..., n k są parami względnie pierwsze, a a 1,..., a k są dowolnymi liczbami całkowitymi, to istnieje taka liczba całkowita a, że a a 1 (mod n 1 ). a a k (mod n k ).

39 RÓWNANIA DIOFANTYCZNE Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Twierdzenie Jeśli n,m są względnie pierwszymi liczbami całkowitymi i a dowolną liczbą całkowitą, to równanie nx + my = a ma rozwiązanie w liczbach całkowitych.

40 RÓWNANIA DIOFANTYCZNE Kongruencje Jak testować pierwszość liczby naturalnej? Pewne szczególne liczby (niekoniecznie pierwsze) Dwa ważne twierdzenia teorii liczb Jak przewieźć 200 ton towaru ciężarówkami o ładowności 7 i 11 ton? 7X + 11Y = 200 ALGORYTM EUKLIDESA: ODWRACAMY ALGORYTM EUKLIDESA: 11 = = 4 3 = 4 (7 4) = 7 = = = 2 (11 7) 7 = 4 = = ( 3) 7 Z równości mamy 1 = = Stąd odczytujemy rozwiązania całkowite równania: { X = k Y = 400 7k. Interesują nas{ nieujemne rozwiązania tego układu nierówności. { Otrzymujemy je dla k {{55, 56, 57}. X = 5 k = 55 Y = 15. k = 56 X = 16 X = 27. k = 57. Y = 8 Y = 1

41 Metody szyfrowania Kryptosystem RSA Konkurs 1 METODY SYMETRYCZNE NADAWCA ODBIORCA szyfrowanie klucz prywatny deszyfrowanie 2 METODY ASYMETRYCZNE NADAWCA ODBIORCA szyfrowanie deszyfrowanie klucz publiczny klucz prywatny

42 Metody szyfrowania Kryptosystem RSA Konkurs 1 METODY SYMETRYCZNE NADAWCA ODBIORCA szyfrowanie klucz prywatny deszyfrowanie 2 METODY ASYMETRYCZNE NADAWCA ODBIORCA szyfrowanie deszyfrowanie klucz publiczny klucz prywatny

43 Metody szyfrowania Kryptosystem RSA Konkurs 1 METODY SYMETRYCZNE NADAWCA ODBIORCA szyfrowanie klucz prywatny deszyfrowanie 2 METODY ASYMETRYCZNE NADAWCA ODBIORCA szyfrowanie deszyfrowanie klucz publiczny klucz prywatny

44 Kryptosystem RSA Konkurs Kryptosystem RSA - R.Rivest, A.Shamir, L. Adleman. Beata - nadawca Kamil - odbiorca Odbiorca wybiera dwie liczby pierwsze p i q oraz liczbę a taką, że NWD(p 1, a) = 1 i NWD(q 1, a) = 1. Wyznacza liczbę n = p q. KLUCZ PUBLICZNY ODBIORCY TO PARA (n, a). Przypuśćmy,że Kamil wybrał p = 11, q = 17 i a = 27. Wtedy klucz publiczny Kamila to para (187, 27). Szyfrowanie Nadawca szyfruje wiadomość W obliczając resztę z dzielenia W a przez n. Jak to wygląda w praktyce?

45 Kryptosystem RSA Konkurs Kryptosystem RSA - R.Rivest, A.Shamir, L. Adleman. Beata - nadawca Kamil - odbiorca Odbiorca wybiera dwie liczby pierwsze p i q oraz liczbę a taką, że NWD(p 1, a) = 1 i NWD(q 1, a) = 1. Wyznacza liczbę n = p q. KLUCZ PUBLICZNY ODBIORCY TO PARA (n, a). Przypuśćmy,że Kamil wybrał p = 11, q = 17 i a = 27. Wtedy klucz publiczny Kamila to para (187, 27). Szyfrowanie Nadawca szyfruje wiadomość W obliczając resztę z dzielenia W a przez n. Jak to wygląda w praktyce?

46 Kryptosystem RSA Konkurs Kryptosystem RSA - R.Rivest, A.Shamir, L. Adleman. Beata - nadawca Kamil - odbiorca Odbiorca wybiera dwie liczby pierwsze p i q oraz liczbę a taką, że NWD(p 1, a) = 1 i NWD(q 1, a) = 1. Wyznacza liczbę n = p q. KLUCZ PUBLICZNY ODBIORCY TO PARA (n, a). Przypuśćmy,że Kamil wybrał p = 11, q = 17 i a = 27. Wtedy klucz publiczny Kamila to para (187, 27). Szyfrowanie Nadawca szyfruje wiadomość W obliczając resztę z dzielenia W a przez n. Jak to wygląda w praktyce?

47 Kryptosystem RSA Konkurs Kryptosystem RSA - R.Rivest, A.Shamir, L. Adleman. Beata - nadawca Kamil - odbiorca Odbiorca wybiera dwie liczby pierwsze p i q oraz liczbę a taką, że NWD(p 1, a) = 1 i NWD(q 1, a) = 1. Wyznacza liczbę n = p q. KLUCZ PUBLICZNY ODBIORCY TO PARA (n, a). Przypuśćmy,że Kamil wybrał p = 11, q = 17 i a = 27. Wtedy klucz publiczny Kamila to para (187, 27). Szyfrowanie Nadawca szyfruje wiadomość W obliczając resztę z dzielenia W a przez n. Jak to wygląda w praktyce?

48 Kryptosystem RSA Konkurs Kryptosystem RSA - R.Rivest, A.Shamir, L. Adleman. Beata - nadawca Kamil - odbiorca Odbiorca wybiera dwie liczby pierwsze p i q oraz liczbę a taką, że NWD(p 1, a) = 1 i NWD(q 1, a) = 1. Wyznacza liczbę n = p q. KLUCZ PUBLICZNY ODBIORCY TO PARA (n, a). Przypuśćmy,że Kamil wybrał p = 11, q = 17 i a = 27. Wtedy klucz publiczny Kamila to para (187, 27). Szyfrowanie Nadawca szyfruje wiadomość W obliczając resztę z dzielenia W a przez n. Jak to wygląda w praktyce?

49 Kryptosystem RSA Kryptosystem RSA Konkurs Beata przesyła Kamilowi pewną wiadomość używając jako alfabetu KODU ASCII. KOD ASCII A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Beata zapisuje wiadomość w alfabecie ASCII: Klucz publiczny Kamila to (187, 27). Beata dzieli wiadomość na liczby mniejsze od 187 (każdą z nich traktuje jako oddzielną wiadomość): i szyfruje wyznaczając w 27 i (mod 187):

50 Kryptosystem RSA Kryptosystem RSA Konkurs Beata przesyła Kamilowi pewną wiadomość używając jako alfabetu KODU ASCII. KOD ASCII A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Beata zapisuje wiadomość w alfabecie ASCII: Klucz publiczny Kamila to (187, 27). Beata dzieli wiadomość na liczby mniejsze od 187 (każdą z nich traktuje jako oddzielną wiadomość): i szyfruje wyznaczając w 27 i (mod 187):

51 Kryptosystem RSA Kryptosystem RSA Konkurs Beata przesyła Kamilowi pewną wiadomość używając jako alfabetu KODU ASCII. KOD ASCII A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Beata zapisuje wiadomość w alfabecie ASCII: Klucz publiczny Kamila to (187, 27). Beata dzieli wiadomość na liczby mniejsze od 187 (każdą z nich traktuje jako oddzielną wiadomość): i szyfruje wyznaczając w 27 i (mod 187):

52 Kryptosystem RSA Kryptosystem RSA Konkurs Beata przesyła Kamilowi pewną wiadomość używając jako alfabetu KODU ASCII. KOD ASCII A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Beata zapisuje wiadomość w alfabecie ASCII: Klucz publiczny Kamila to (187, 27). Beata dzieli wiadomość na liczby mniejsze od 187 (każdą z nich traktuje jako oddzielną wiadomość): i szyfruje wyznaczając w 27 i (mod 187):

53 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

54 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

55 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

56 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

57 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

58 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

59 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

60 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

61 Kryptosystem RSA Kryptosystem RSA Konkurs Do odszyfrowania wiadomości odbiorca używa swojego klucza prywatnego. Jest nim liczba d o własnościach: da 1(mod p 1) i da 1(mod q 1). Można ją łatwo wyliczyć korzystając z algorytmu Euklidesa dla pary liczb a i NWW (p 1, q 1). Jak Kamil odczyta wiadomość Beaty? Jego klucz publiczny to (187, 27), gdzie 187 = Kamil wyznacza swój klucz prywatny d: NWW (10, 16) = = = Zatem stąd 1 = = 27 ( ) = , (mod 80), Czyli dla Kamila d = 3

62 Kryptosystem RSA Kryptosystem RSA Konkurs Deszyfrowanie Odbiorca odszyfrowuje wiadomość obliczając V d (mod n). Przypomnijmy, że wiadomość od Beaty, to Kamil wyznacza dla każdego słowa v i wartość v 3 i (mod 187): i odczytuje wiadomość korzystając z kodu ASCII: L I C Z B Y P I E R W S Z E

63 Kryptosystem RSA Kryptosystem RSA Konkurs Deszyfrowanie Odbiorca odszyfrowuje wiadomość obliczając V d (mod n). Przypomnijmy, że wiadomość od Beaty, to Kamil wyznacza dla każdego słowa v i wartość v 3 i (mod 187): i odczytuje wiadomość korzystając z kodu ASCII: L I C Z B Y P I E R W S Z E

64 Kryptosystem RSA Kryptosystem RSA Konkurs Deszyfrowanie Odbiorca odszyfrowuje wiadomość obliczając V d (mod n). Przypomnijmy, że wiadomość od Beaty, to Kamil wyznacza dla każdego słowa v i wartość v 3 i (mod 187): i odczytuje wiadomość korzystając z kodu ASCII: L I C Z B Y P I E R W S Z E

65 Kryptosystem RSA Kryptosystem RSA Konkurs Deszyfrowanie Odbiorca odszyfrowuje wiadomość obliczając V d (mod n). Przypomnijmy, że wiadomość od Beaty, to Kamil wyznacza dla każdego słowa v i wartość v 3 i (mod 187): i odczytuje wiadomość korzystając z kodu ASCII: L I C Z B Y P I E R W S Z E

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana

Bardziej szczegółowo

Zarys algorytmów kryptograficznych

Zarys algorytmów kryptograficznych Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................

Bardziej szczegółowo

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

Liczba pierwsza to taka liczba n, która posiada dokładnie dwa dzielniki: 1 i

Liczba pierwsza to taka liczba n, która posiada dokładnie dwa dzielniki: 1 i WSTĘP Definicja Liczba pierwsza to taka liczba n, która posiada dokładnie dwa dzielniki: 1 i n. Uwaga: W myśl powyższej definicji 1 NIE jest liczbą pierwszą ponieważ posiada jeden dzielnik naturalny (a

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman

Bardziej szczegółowo

Podzielność liczb. Podzielność liczb

Podzielność liczb. Podzielność liczb Euclides i kwestie podzielności liczb Definicja Niech a, b Z. Mówimy, że liczba a > 0 dzieli liczbę b, albo a b, jeżeli istnieje taka całkowita liczba c, że b = ac. Definicja a b a > 0 i b = ac, c całkowite.

Bardziej szczegółowo

Liczby pierwsze Mersenne a i Fermata. Liczby pierwsze Mersenne a i Fermata

Liczby pierwsze Mersenne a i Fermata. Liczby pierwsze Mersenne a i Fermata Liczby dwumianowe N = a n ± b n Tak zwane liczby dwumianowe N = a n ± b n łatwo poddają się faktoryzacji. Wynika to z wzorów (polecam sprawdzenie!) a n b n = (a b) ( a n 1 + a n 2 b +... + ab n 2 + b n

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić? Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

w Kielcach, 2010 w Kielcach, 2010

w Kielcach, 2010 w Kielcach, 2010 Zeszyty Studenckiego Ruchu Materiały 19 Sesji Studenckich Naukowego Uniwersytetu Kół Naukowych Uniwersytetu Humanistyczno- Przyrodniczego Humanistyczno- Przyrodniczego Jana Kochanowskiego Jana Kochanowskiego

Bardziej szczegółowo

Rozdział 7. Elementy teorii liczb. 7.1 Podstawowe własności liczb

Rozdział 7. Elementy teorii liczb. 7.1 Podstawowe własności liczb Rozdział 7 Elementy teorii liczb 7.1 Podstawowe własności liczb Zakres teorii liczb to zbiór liczb całkowitych. Tak więc nie będziemy wychodzić poza ten zbiór, a jeśli się pojawi pojęcie,,liczba, oznaczać

Bardziej szczegółowo

Parametry systemów klucza publicznego

Parametry systemów klucza publicznego Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Bezpieczeństwo danych, zabezpieczanie safety, security

Bezpieczeństwo danych, zabezpieczanie safety, security Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός

Bardziej szczegółowo

Wzory skróconego mnożenia w zadaniach olimpijskich

Wzory skróconego mnożenia w zadaniach olimpijskich Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych

Bardziej szczegółowo

Równania diofantyczne

Równania diofantyczne Równania diofantyczne Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej

Bardziej szczegółowo

Szyfrowanie RSA. Liczba pierwsza jest liczbą naturalną posiadającą dokładnie dwa różne podzielniki - 1 oraz samą siebie.

Szyfrowanie RSA. Liczba pierwsza jest liczbą naturalną posiadającą dokładnie dwa różne podzielniki - 1 oraz samą siebie. Szyfrowanie RSA Liczby pierwsze Na początek przypomnijmy sobie parę użytecznych wiadomości o liczbach pierwszych. Są one znane od starożytności a ich znaczenie jest ogromne w matematyce i tym bardziej

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie

Bardziej szczegółowo

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

(b) (d) 3,3,2,3,3,0,0,

(b) (d) 3,3,2,3,3,0,0, -KOLO A -- 441 [1] Wykonaj poniższe operacje w arytmetyce (mod m). Podaj rozwiązanie w zbiorze {0 1... m-1}. [9] Wyznacz wartość symbolu Jacobiego. Zapisz numery własności z których kolejno korzystałeś.

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 9 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................

Bardziej szczegółowo

Laboratorium nr 3 Podpis elektroniczny i certyfikaty

Laboratorium nr 3 Podpis elektroniczny i certyfikaty Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Przewodnik użytkownika

Przewodnik użytkownika STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis

Bardziej szczegółowo

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą

Bardziej szczegółowo

Laboratorium nr 5 Podpis elektroniczny i certyfikaty

Laboratorium nr 5 Podpis elektroniczny i certyfikaty Laboratorium nr 5 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium Nr 10.

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium Nr 10. Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Nr 10 Teoria liczb 1 Cel ćwiczenia Algorytmy teorioliczbowe znajdują szerokie zastosowanie

Bardziej szczegółowo

Podzielność liczb; iloczyn i suma dzielników

Podzielność liczb; iloczyn i suma dzielników Podzielność liczb; iloczyn i suma dzielników Liczba dzielników Postać (rozkład) kanoniczna każdej liczby N = p α1 1 pα2 2... pαr 1 pαr r. Każdy dzielnik d naszej liczby ma swojego partnera d 1 : N = d

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

--- --- --- --- (c) Oba działania mają elementy neutralne (0 dla dodawania i 1 dla mnożenia). (d) (a c b c) ab c ---

--- --- --- --- (c) Oba działania mają elementy neutralne (0 dla dodawania i 1 dla mnożenia). (d) (a c b c) ab c --- (d) 27x 25(mod 256) -I- I Kongruencje II Małe twierdzenie Fermata III Podzielność IV Operacje binarne V Reprezentacje liczb VI Największy wspólny dzielnik VII Faktoryzacja VIIIWłasności działań 2 3 x 16

Bardziej szczegółowo

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna 1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Technologia Internetowa w organizacji giełdy przemysłowej

Technologia Internetowa w organizacji giełdy przemysłowej Technologia Internetowa w organizacji giełdy przemysłowej Poruszane problemy Handel elektroniczny - giełda przemysłowa Organizacja funkcjonalna giełdy Problemy techniczne tworzenia giełdy internetowej

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: AMA s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2016/2017 Kod: AMA s Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Algebra Rok akademicki: 2016/2017 Kod: AMA-1-301-s Punkty ECTS: 7 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: - Poziom studiów: Studia I stopnia Forma i tryb studiów:

Bardziej szczegółowo

Szyfry afiniczne. hczue zfuds dlcsr

Szyfry afiniczne. hczue zfuds dlcsr Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

Seminarium Ochrony Danych

Seminarium Ochrony Danych Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner

Bardziej szczegółowo

Wykorzystanie rozkładu liczby na czynniki pierwsze

Wykorzystanie rozkładu liczby na czynniki pierwsze Kto lekceważy osiągnięcia matematyki, przynosi szkodę całej nauce. Roger Bacon Wykorzystanie rozkładu liczby na czynniki pierwsze Uczestnik Konkursu: Opiekun uczestnika: Piotr Pena Szkoła Podstawowa Nr

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

Podzielność w zbiorze liczb całkowitych

Podzielność w zbiorze liczb całkowitych Podróże po Imperium Liczb Część 6 Podzielność w zbiorze liczb całkowitych Andrzej Nowicki Wydanie drugie, uzupełnione i rozszerzone Olsztyn, Toruń, 2012 PDZ - 38(890) - 10.05.2012 Spis treści Wstęp 1 1

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Plan Szyfrowanie (kryptologia):

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM Lp. Temat lekcji Zakres treści Osiągnięcia uczeń: I. LICZBY 1. Oś liczbowa 1. pojęcie osi liczbowej 2. liczby przeciwne 1. zaznacza na osi liczbowej punkty

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

Podstawy kryptografii Prowadzący: Prof. dr h Jemec Władzimierz

Podstawy kryptografii Prowadzący: Prof. dr h Jemec Władzimierz Podstawy kryptografii Prowadzący: Prof. dr h Jemec Władzimierz Wykład 1 23.02.2009 Literatura 1. Buchmann J. A. Wprowadzenie do kryptografii, PWN, 2006 rok, 244 s. 2. Stinson D. R. Kryptografia w teorii

Bardziej szczegółowo

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

C z y p a m i ę t a s z?

C z y p a m i ę t a s z? C z y p a m i ę t a s z? Liczby naturalne porządkowe, Przykłady: 0,1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne do nich i 0. Przykłady:, -3, -1, 0, 17, Liczby wymierne można przedstawid

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna

Bardziej szczegółowo

Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej

Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej STANIS AWA PROÆ Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej 1. Wprowadzenie Podstaw¹ gospodarki elektronicznej jest wymiana danych poprzez sieci transmisyjne, w szczególnoœci przez Internet.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

13.05.2008. Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS. Konferencja SECURE 2008 Warszawa, 2-3.10.2008

13.05.2008. Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS. Konferencja SECURE 2008 Warszawa, 2-3.10.2008 13.05.2008 Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS Konferencja SECURE 2008 Warszawa, 2-3.10.2008 1 Agenda Kim jesteśmy i co robimy? Wprowadzenie Szyfrowanie danych PKI, algorytm RSA,

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 11: Dlaczego ludzie uprawiają matematykę? Hardy i Wigner.

Rzut oka na współczesną matematykę spotkanie 11: Dlaczego ludzie uprawiają matematykę? Hardy i Wigner. Rzut oka na współczesną matematykę spotkanie 11: Dlaczego ludzie uprawiają matematykę? Hardy i Wigner. P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo