Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5"

Transkrypt

1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś Wykład 5

2 Spis treści 9 Algorytmy asymetryczne RSA Algorytm RSA Szyfrowanie Deszyfrowanie Uzasadnienie Przykład (trywialny)

3 9 Algorytmy asymetryczne RSA Witfield Diffie i Martin Hellman idea kryptografii z kluczem publicznym, rok 1976 RSA Ron Rivest, Adi Shamir i Leonard Adleman, rok 1978 bezpieczeństwo algorytmu RSA opiera się na trudności obliczeniowej związanej z rozkładem dużych liczb na czynniki (faktoryzacja)

4 9 Algorytmy asymetryczne RSA Witfield Diffie i Martin Hellman idea kryptografii z kluczem publicznym, rok 1976 RSA Ron Rivest, Adi Shamir i Leonard Adleman, rok 1978 bezpieczeństwo algorytmu RSA opiera się na trudności obliczeniowej związanej z rozkładem dużych liczb na czynniki (faktoryzacja)

5 9 Algorytmy asymetryczne RSA Witfield Diffie i Martin Hellman idea kryptografii z kluczem publicznym, rok 1976 RSA Ron Rivest, Adi Shamir i Leonard Adleman, rok 1978 bezpieczeństwo algorytmu RSA opiera się na trudności obliczeniowej związanej z rozkładem dużych liczb na czynniki (faktoryzacja)

6 9 Algorytmy asymetryczne RSA Witfield Diffie i Martin Hellman idea kryptografii z kluczem publicznym, rok 1976 RSA Ron Rivest, Adi Shamir i Leonard Adleman, rok 1978 bezpieczeństwo algorytmu RSA opiera się na trudności obliczeniowej związanej z rozkładem dużych liczb na czynniki (faktoryzacja)

7 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

8 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

9 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

10 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

11 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

12 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

13 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

14 9.1 Algorytm RSA Wybieramy dwie duże liczby pierwsze: {p, q} Obliczamy ich iloczyn (łatwo): n = pq Wybieramy losowo liczbę e < n względnie pierwszą z liczbą (p 1)(q 1) Liczba e będzie kluczem szyfrującym Znajdujemy liczbę d taką, że ed 1 (mod (p 1)(q 1)) lub inaczej d e 1 (mod (p 1)(q 1)) Liczby d i n są także względnie pierwsze

15 Do obliczenia d można użyć rozszerzonego algorytmu Euklidesa Liczba d jest kluczem deszyfrującym Liczby {e, n} stanowią klucz publiczny, który ujawniamy Liczby {d, n} stanowią klucz prywatny, który powinien być ściśle chroniony (liczba d)

16 Do obliczenia d można użyć rozszerzonego algorytmu Euklidesa Liczba d jest kluczem deszyfrującym Liczby {e, n} stanowią klucz publiczny, który ujawniamy Liczby {d, n} stanowią klucz prywatny, który powinien być ściśle chroniony (liczba d)

17 Do obliczenia d można użyć rozszerzonego algorytmu Euklidesa Liczba d jest kluczem deszyfrującym Liczby {e, n} stanowią klucz publiczny, który ujawniamy Liczby {d, n} stanowią klucz prywatny, który powinien być ściśle chroniony (liczba d)

18 Do obliczenia d można użyć rozszerzonego algorytmu Euklidesa Liczba d jest kluczem deszyfrującym Liczby {e, n} stanowią klucz publiczny, który ujawniamy Liczby {d, n} stanowią klucz prywatny, który powinien być ściśle chroniony (liczba d)

19 9.2 Szyfrowanie Wiadomość dzielimy na bloki m i mniejsze niż n, które szyfrujemy używając formuły c i m e i (mod n)

20 9.2 Szyfrowanie Wiadomość dzielimy na bloki m i mniejsze niż n, które szyfrujemy używając formuły c i m e i (mod n) 9.3 Deszyfrowanie Tekst jawny z kryptogramu otrzymujemy obliczając m i c d i (mod n)

21 9.4 Uzasadnienie Ponieważ ed 1 (mod (p 1)(q 1)), to istnieje liczba całkowita k taka, że ed = 1 + k(p 1)(q 1). Z małego twierdzenia Fermata, dla NW D(m, p) = 1, mamy m p 1 1 (mod p) Podnosząc obie strony tej kongruencji do potęgi k(q 1) oraz mnożąc przez m otrzymujemy m 1+k(p 1)(q 1) m (mod p) Kongruencja ta jest także prawdziwa dla NW D(m, p) = p, ponieważ wtedy obie strony przystają do 0 (mod p). Zatem, zawsze mamy Podobnie, m ed m (mod p). m ed m (mod q),

22 a ponieważ p i q są różnymi liczbami pierwszymi, to z chińskiego twierdzenia o resztach otrzymujemy m ed m (mod n)

23 9.5 Przykład (trywialny) Znajdowanie klucza

24 9.5 Przykład (trywialny) Znajdowanie klucza p = 1123 q = 1237

25 9.5 Przykład (trywialny) Znajdowanie klucza p = 1123 q = 1237 n = pq =

26 9.5 Przykład (trywialny) Znajdowanie klucza p = 1123 q = 1237 n = pq = φ = (p 1)(q 1) =

27 9.5 Przykład (trywialny) Znajdowanie klucza p = 1123 q = 1237 n = pq = φ = (p 1)(q 1) = e =

28 9.5 Przykład (trywialny) Znajdowanie klucza p = 1123 q = 1237 n = pq = φ = (p 1)(q 1) = e = d e 1 (mod φ) =

29 Szyfrowanie

30 m = Szyfrowanie

31 Szyfrowanie m = c m e (mod n)

32 Szyfrowanie m = c m e (mod n) e =

33 Szyfrowanie m = c m e (mod n) e = n =

34 Szyfrowanie m = c m e (mod n) e = n = (mod ) =

35 Deszyfrowanie

36 m c d (mod n) Deszyfrowanie

37 Deszyfrowanie m c d (mod n) c =

38 Deszyfrowanie m c d (mod n) c = n =

39 Deszyfrowanie m c d (mod n) c = n = d e 1 (mod φ) =

40 Deszyfrowanie m c d (mod n) c = n = d e 1 (mod φ) = (mod ) =

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 9 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................

Bardziej szczegółowo

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze. Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Zarys algorytmów kryptograficznych

Zarys algorytmów kryptograficznych Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne

Bardziej szczegółowo

Szyfrowanie RSA (Podróż do krainy kryptografii)

Szyfrowanie RSA (Podróż do krainy kryptografii) Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja

Bardziej szczegółowo

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 6a Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 7 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.) Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący

Bardziej szczegółowo

Spis treści. Przedmowa... 9

Spis treści. Przedmowa... 9 Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.

Bardziej szczegółowo

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup. Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 8 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie

Bardziej szczegółowo

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.

Bardziej szczegółowo

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana

Bardziej szczegółowo

Seminarium Ochrony Danych

Seminarium Ochrony Danych Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner

Bardziej szczegółowo

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm

Bardziej szczegółowo

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić? Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z

Bardziej szczegółowo

Bezpieczeństwo danych, zabezpieczanie safety, security

Bezpieczeństwo danych, zabezpieczanie safety, security Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

Plan całości wykładu. Ochrona informacji 1

Plan całości wykładu. Ochrona informacji 1 Plan całości wykładu Wprowadzenie Warstwa aplikacji Warstwa transportu Warstwa sieci Warstwa łącza i sieci lokalne Podstawy ochrony informacji (2 wykłady) (2 wykłady) (2 wykłady) (3 wykłady) (3 wykłady)

Bardziej szczegółowo

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja

Bardziej szczegółowo

Kryptografia. Wykład z podstaw klasycznej kryptografii z elementami kryptografii kwantowej. dla studentów IV roku. Ryszard Tanaś

Kryptografia. Wykład z podstaw klasycznej kryptografii z elementami kryptografii kwantowej. dla studentów IV roku. Ryszard Tanaś Kryptografia Wykład z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku Ryszard Tanaś Zakład Optyki Nieliniowej, Instytut Fizyki UAM tanas@kielich.amu.edu.pl Serdecznie

Bardziej szczegółowo

Liczby pierwsze na straży tajemnic

Liczby pierwsze na straży tajemnic Liczby pierwsze na straży tajemnic Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby rzadzą światem Ile włosów na głowie? Dowód z wiedzą zerową Reszty kwadratowe Dzielenie sekretu Ile włosów

Bardziej szczegółowo

Kryptologia przykład metody RSA

Kryptologia przykład metody RSA Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi. Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

Systemy Mobilne i Bezprzewodowe laboratorium 12. Bezpieczeństwo i prywatność

Systemy Mobilne i Bezprzewodowe laboratorium 12. Bezpieczeństwo i prywatność Systemy Mobilne i Bezprzewodowe laboratorium 12 Bezpieczeństwo i prywatność Plan laboratorium Szyfrowanie, Uwierzytelnianie, Bezpieczeństwo systemów bezprzewodowych. na podstawie : D. P. Agrawal, Q.-A.

Bardziej szczegółowo

MADE IN CHINA czyli SYSTEM RESZTOWY

MADE IN CHINA czyli SYSTEM RESZTOWY MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia

Bardziej szczegółowo

Elementy kryptografii Twierdzenie Halla. Pozostałe tematy. Barbara Przebieracz B. Przebieracz Pozostałe tematy

Elementy kryptografii Twierdzenie Halla. Pozostałe tematy. Barbara Przebieracz B. Przebieracz Pozostałe tematy Pozostałe tematy Barbara Przebieracz 04.06.2016 Spis treści 1 2 Podstawowe pojęcia Kryptografia to nauka o metodach przesyłania wiadomości w zakamuflowanej postaci tak, aby tylko adresat mógł odrzucić

Bardziej szczegółowo

Kongruencje twierdzenie Wilsona

Kongruencje twierdzenie Wilsona Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Wprowadzenie do kryptologii Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 16 listopada 2016 Jak ta dziedzina powinna się nazywać?

Bardziej szczegółowo

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu

Bardziej szczegółowo

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą

Bardziej szczegółowo

Parametry systemów klucza publicznego

Parametry systemów klucza publicznego Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego

Bardziej szczegółowo

2 Kryptografia: algorytmy symetryczne

2 Kryptografia: algorytmy symetryczne 1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;

Bardziej szczegółowo

Liczby całkowite. Zadania do pierwszych dwóch lekcji

Liczby całkowite. Zadania do pierwszych dwóch lekcji Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze

Bardziej szczegółowo

KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024

KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024 KRYPTOGRAFIA I OCHRONA DANYCH Krzysztof Kaczmarczyk 150024 Zadanie 1 Szyfrowanie DES Algorytm DES (Data Encryption Standard) to zastosowanie schematu Feistela. Algorytm operuje na 64-bitowych blokach używając

Bardziej szczegółowo

Kryptografia na procesorach wielordzeniowych

Kryptografia na procesorach wielordzeniowych Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1 Plan prezentacji

Bardziej szczegółowo

Technologie cyfrowe semestr letni 2018/2019

Technologie cyfrowe semestr letni 2018/2019 Technologie cyfrowe semestr letni 2018/2019 Tomasz Kazimierczuk Wykład 14 (03.06.2019) Podsłuchiwanie strumieni telnet: standard protokołu komunikacyjnego używanego do obsługi terminali na komputerach

Bardziej szczegółowo

Kryptografia publiczna (asymetryczna) Szyfrowanie publiczne (asym) Problem klucza publicznego. Podpisujemy cyfrowo. Jak zweryfikować klucz publiczny?

Kryptografia publiczna (asymetryczna) Szyfrowanie publiczne (asym) Problem klucza publicznego. Podpisujemy cyfrowo. Jak zweryfikować klucz publiczny? Kryptografia publiczna (asymetryczna) Wykład 7 Systemy kryptograficzne z kluczem publicznym Wiedza o kluczu szyfrującym nie pozwala odgadnąć klucza deszyfrującego Odbiorca informacji generuje parę kluczy

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Zadanie 2: Kryptosystem Rabina

Zadanie 2: Kryptosystem Rabina Informatyka, studia dzienne, inż. II st. semestr VI Podstawy kryptografii 2010/2011 Prowadzący: prof. dr hab. inż. Włodzimierz Jemec poniedziałek, 8:30 Data oddania: Ocena: Paweł Tarasiuk 151021 Michał

Bardziej szczegółowo

Kongruencje. Sławomir Cynk. 24 września Nowy Sącz. Instytut Matematyki Uniwersytetu Jagiellońskiego

Kongruencje. Sławomir Cynk. 24 września Nowy Sącz. Instytut Matematyki Uniwersytetu Jagiellońskiego Instytut Matematyki Uniwersytetu Jagiellońskiego 24 września 2008 Nowy Sącz Przykłady W. Sierpiński, 250 zadań z elementarnej teorii liczb, Biblioteczka Matematyczna 17. Zadanie 3. Pokazać, że jeżeli 7

Bardziej szczegółowo

w Kielcach, 2010 w Kielcach, 2010

w Kielcach, 2010 w Kielcach, 2010 Zeszyty Studenckiego Ruchu Materiały 19 Sesji Studenckich Naukowego Uniwersytetu Kół Naukowych Uniwersytetu Humanistyczno- Przyrodniczego Humanistyczno- Przyrodniczego Jana Kochanowskiego Jana Kochanowskiego

Bardziej szczegółowo

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...

Bardziej szczegółowo

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym) Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S.

Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Plecak ma być zapakowany optymalnie, tzn. bierzemy tylko te przedmioty,

Bardziej szczegółowo

Laboratorium Kryptografia część I

Laboratorium Kryptografia część I Laboratorium Kryptografia część I Katedra Informatyki i Automatyki Politechniki Rzeszowskiej Tomasz RAK c 30 stycznia 2012 Spis treści Treść i 0.1 Wstęp... 2 0.2 Kryptografia... 2 1 Wprowadzenie do kryptografii-

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

Potencjalne ataki Bezpieczeństwo

Potencjalne ataki Bezpieczeństwo Potencjalne ataki Bezpieczeństwo Przerwanie przesyłania danych informacja nie dociera do odbiorcy Przechwycenie danych informacja dochodzi do odbiorcy, ale odczytuje ją również strona trzecia szyfrowanie

Bardziej szczegółowo

Marcin Szeliga Dane

Marcin Szeliga Dane Marcin Szeliga marcin@wss.pl Dane Agenda Kryptologia Szyfrowanie symetryczne Tryby szyfrów blokowych Szyfrowanie asymetryczne Systemy hybrydowe Podpis cyfrowy Kontrola dostępu do danych Kryptologia Model

Bardziej szczegółowo

Czym jest kryptografia?

Czym jest kryptografia? Szyfrowanie danych Czym jest kryptografia? Kryptografia to nauka zajmująca się układaniem szyfrów. Nazwa pochodzi z greckiego słowa: kryptos - "ukryty", gráphein "pisać. Wyróżniane są dwa główne nurty

Bardziej szczegółowo

Wykład 6. komputerowych Kryptografia asymetryczna główne slajdy. 9 listopada 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński

Wykład 6. komputerowych Kryptografia asymetryczna główne slajdy. 9 listopada 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński Wykład 6 Kryptografia główne slajdy 9 listopada 2011 w OpenSSL Instytut Informatyki Uniwersytet Jagielloński 6.1 Kryptografia nie ma konieczności ustalania wspólnego klucza przed komunikacja sama w sobie

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

Szyfrowanie informacji

Szyfrowanie informacji Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane

Bardziej szczegółowo

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja

Bardziej szczegółowo

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej Ochrona zasobów w systemach gospodarki mgr inż. K. Trybicka-Francik Plan wykładu Rola kryptografii Klasyfikacja usług kryptograficznych Umieszczenie funkcji szyfrującej Generacja i dystrybucja y Złożone

Bardziej szczegółowo

Elementy teorii liczb. Matematyka dyskretna

Elementy teorii liczb. Matematyka dyskretna Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią

Bardziej szczegółowo

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja

Bardziej szczegółowo

Pierwiastki pierwotne, logarytmy dyskretne

Pierwiastki pierwotne, logarytmy dyskretne Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Laboratorium nr 3 Podpis elektroniczny i certyfikaty

Laboratorium nr 3 Podpis elektroniczny i certyfikaty Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

Problem logarytmu dyskretnego i protokół Diffiego-Hellmana. Mateusz Paluch

Problem logarytmu dyskretnego i protokół Diffiego-Hellmana. Mateusz Paluch Problem logarytmu dyskretnego i protokół Diffiego-Hellmana Mateusz Paluch 1 Logarytm dyskretny Definicja 1. Niech (G, ) będzie skończoną grupą cykliczną rzędu n 2. Niech ponadto b będzie generatorem tej

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka

Bardziej szczegółowo

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie

Bardziej szczegółowo

Liczby pierwsze. Jacek Nowicki Wersja 1.0

Liczby pierwsze. Jacek Nowicki Wersja 1.0 Liczby pierwsze Jacek Nowicki Wersja 1.0 Wprowadzenie do liczb pierwszych www.liczbypierwsze.com Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją

Bardziej szczegółowo

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA

Bardziej szczegółowo

Liczby pierwsze. Jacek Nowicki Wersja 0.92

Liczby pierwsze. Jacek Nowicki Wersja 0.92 Jacek Nowicki Wersja 0.92 Wprowadzenie do liczb pierwszych Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją liczby, które nie mogą być rozłożone w

Bardziej szczegółowo

Przełamywanie szyfru RSA

Przełamywanie szyfru RSA Przełamywanie szyfru RSA dokumentacja do projektu z przedmiotu Teoria Obliczeń i Złożoności Obliczeniowej Marcin Rociek Informatyka, III rok 1 lutego 2001 Spis treści 1 Wstęp 2 2 Systemy kryptograficzne

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

Wprowadzenie do technologii VPN

Wprowadzenie do technologii VPN Sieci komputerowe są powszechnie wykorzystywane do realizacji transakcji handlowych i prowadzenia działalności gospodarczej. Ich zaletą jest błyskawiczny dostęp do ludzi, którzy potrzebują informacji.

Bardziej szczegółowo