Algorytmy asymetryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy asymetryczne"

Transkrypt

1 Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można w tym celu wykonać dość złożone obliczenia Zwykle jeden klucz z pary jest powszechnie dostępny, gdy drugi musi być przechowywany w tajemnicy (klucz publiczy i klucz prywatny)

2 Krótkie przypomnienie Problem NP :(niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie można zweryfikować w czasie wielomianowym. Równoważna definicja mówi, że problem jest w klasie NP, jeśli może być rozwiązany w wielomianowym czasie na niedeterministycznej maszynie Turinga. Problem NP-zupełny (NPC) czyli problem zupełny w klasie NP ze względu na redukcje wielomianowe, to problem, który należy do klasy NP oraz dowolny problem należący do NP może być do niego zredukowany w czasie wielomianowym. Czasami zamiast redukcji w czasie wielomianowym używa się redukcji w pamięci logarytmicznej. Taka definicja problemów NP-zupełnych implikuje fakt, że jeśli tylko potrafimy rozwiązać jakikolwiek problem NP-zupełny w czasie wielomianowym, to potrafimy rozwiązać w czasie wielomianowym wszystkie problemy NP. Problemy NP-zupełne można więc traktować jako najtrudniejsze problemy klasy NP (z punktu widzenia wielomianowej rozwiązywalności).

3 Teoria złożoności obliczeniowej Problem kryptoanalizy: Dane są kryptogram G, klucz publiczny K służący do szyfrowania, szukamy pasującego klucza L do deszyfrowania taki, że E(K(D(L,G)) = G Tw. 1: Problem kryptoanalizy jest zagadnieniem z klasy NP Dowód: Następujący algorytm z klasy NP rozwiązuje problem kryptoanalizy: Zgadnij niedeterministycznie klucz do deszyfrowania Deszyfruj kryptogram za pomocą zgadniętego klucza Sprawdź czy otrzymany tekst szyfruje się z powrotem do podanego na wstępie kryptogramu Zatem: złamanie szyfrów utworzonych przy pomocy algorytmów asymetrycznych nie może być trudniejsze niż rozwiązanie problemu NP-zupełnego

4 Wnioski Jest to poważne ostrzeżenie przed używaniem algorytmu asymetrycznego Nigdy nie osiągnie się takiego poziomu bezpieczeństwa jak np. dla one-time-pad Można odnieść wrażenie, że algorytmu asymetryczne są słabe ale:

5 Wnioski Teoria złożoności obliczeniowej operuje asymptotyczną złożonością problemów: dla danego problemu M poszukuje się takiej funkcji f, że dla prawie wszystkich n istnieją dane x o długości n, dla których obliczenie M(x) kosztuje f(n) Koszt może być mierzony w rozmiarach pamięci albo czasie obliczeń. Teoria złożoności obliczeniowej posługuje się wyrażeniami typu O(...). Wyznacza to złożoność problemu z dokładnością do stałego czynnika Dla kryptografii ważna jest złożoność problemu w średnim przypadku (tzn. dla ustalonej długości n badamy, jaka jest przeciętna złożoność). Istotne jest również jak złożoność odbiega od średniej. Teoria złożoności obliczeniowej bada złożoność w najgorszym przypadku.

6 Wnioski Mimo powyższych zastrzeżeń, możliwe jest wykorzystanie rezultatów teorii złożoności obliczeniowej jako wskazówki, wśród których problemów należy szukać podstaw dla konstrukcji asymetrycznych algorytmów szyfrujących. Rozważa się zagadnienie NP-zupełne jako najbardziej złożone w klasie NP. Sztandarowym podejściem są szyfry plecakowe, które jednak nie są praktycznie używane.

7 Szyfry plecakowe Problem plecakowy : dane są liczby naturalne (a1..an), k. Szuka się takich liczb (i1..in) ze zbioru {0,1} że i j aj=k Problem plecakowy jest NP-zupełny Istnieje wiele metod szyfrowania opartych o algorytmy plecakowe. Większość z nich została złamana

8 Prosty algorytm plecakowy Przykład Złamany metodą Shamira pozwalającą na odnalezienie tekstu jawnego bez znajomości tajnego klucza deszyfrującego Szyfrowanie: i j aj Ciąg bitów (i1..in) kodowany jest przez liczbę pojawiają się jednak następujące problemy: Pojedynczy kryptogram musi odpowiadać jednemu tekstowi jawnemu Złamanie takich kodów jest trudne ze względu na NPzupełność algorytmu plecakowego, ale nie znamy żadnej metody żeby za pomocą klucza taki kryptogrma deszyfrować

9 Dodatkowe ograniczenia Wektory superrosnące to takie (a1..an) dla których j<i a j <a i Dla każdego i<n Dla każdego wektora superrosnącego 1. Każdemu kryptogramowi odpowiada dokładnie jeden tekst jawny 2. deszyfrowanie może być dokonane w czasie proporcjonalnym do długości wektora superrosnącego Problem Dzięki wektorom superrosnącym kryptogramy odpowiadają jednoznacznie tekstom jawnym. Każdy kto zna taki wektor może szyfrować i deszyfrować nie będzie to zatem algorytm asymetryczny Utajnianie wektora superrosnącego stosujemy inny wektor szyfrujący: M > i n a i W < M takie, że W > 1 oraz największy wspólny dzielnik (W,M) = 1 (W nie może być małe np. W > M/2) Niech ai' = ai*w mod M Tu nie ma żadnego powodu żeby ciąg (a1'..an') buł superrosnący. Ciąg ten permutuje się i podaje jako klucz publiczny. Kluczem prywatnym jest wektor (a1..an), liczby M oraz W a ponadto użyta permutacja.

10 Szyfrowanie Dla uproszczenia zakadamy permutację (a1'..an') do takiej samej postaci (brak permutacji) Szyfrowanie i1..in odbywa się standardowo za pomocą ciągu będącego kluczem jawnym : Kryptogram jest równy liczbie : n j=1 i j a j ' Deszyfrowanie jest możliwe dzięki konwersji kryptogramu: Niech y=i1*a1'+...+in*an' będzie rozważanym kryptogramem, dla którego szukamy i1..in Wykonujemy następujące działania: 1. Ponieważ W i M są względnie pierwsze, więc za pomocą algorytmu Euklidesa można wyznaczyć liczbę W^-1 mod M 2. Obliczamy W^-1*y mod M. Liczba ta jest równa W^-1(i1a1'+...+in*an') = W^-1(i1*a1*W +..+in*an*w) = i1*a in*an modm 3. Dla kryptogramu W^-1 *y i wektora superrosnącego (a1..an) znajdujemy tekst jawny i1..in. Można tego dokonać w czasie proporcjonalnym do n. Algorytm nie może być stosowany w praktyce zostala znaleziona szybka metoda deszyfrowania bez znajomości tajnego klucza (co prawda tylko dla specjalnych wektorów (a1'..an') uzyskanych z wektorów superrosnących. Dla dowolnych wektorów dalej nie jest znana żadna efektywna metoda Istnieje algorytm Chora-Rivesta, który jak dotąd nie został złamany

11 We wszystkich kryptosystemach uzyskanie klucza prywatnego na podstawie publicznego musi być obliczeniowo trudne. W RSA zależność między kluczem publicznym i prywatnym jest symetryczna uzyskanie klucza publicznego na podstawie prywatnego jest równie trudne jak uzyskanie prywatnego na podstawie publicznego. Składowe kluczy i obliczane są przy użyciu dwóch dużych i zbliżonych długością liczb pierwszych ( i ) generowanych w sposób możliwie przypadkowy. i otrzymuje się na podstawie równania (jest losowane, obliczane lub odwrotnie): Iloczyn i jest częścią klucza oznaczaną przez. Klucz publiczny i prywatny tworzą odpowiednio pary i. Liczby i, poza procesem generowania kluczy nie są potrzebne i zwykle są kasowane, jednakże istnieje wariant algorytmu w którym wchodzą one w skład klucza prywatnego (są wykorzystywane w celu zwiększenia prędkości działania kryptosystemu). W systemie ElGamal wybierana jest liczba pierwsza, generator, następnie losowana jest liczba. Kluczem prywatnym jest, kluczem publicznym zaś, w grupie multiplikatywnej liczb całkowitych modulo p. Klucz publiczny może być obliczony na podstawie prywatnego, co zresztą ma miejsce podczas generacji kluczy. Bardzo podobnie wygląda sytuacja w innych systemach opartych o logarytm dyskretny, takich jak kryptografia krzywych eliptycznych. W tych metodach grupę Zp zastępuje się inną grupą, np. utworzoną z punktów leżących na krzywej eliptycznej.

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Zarys algorytmów kryptograficznych

Zarys algorytmów kryptograficznych Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś   Wykład 5 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.

n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze. Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 8 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 9 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie

Bardziej szczegółowo

Parametry systemów klucza publicznego

Parametry systemów klucza publicznego Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 7 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................

Bardziej szczegółowo

Szyfrowanie RSA (Podróż do krainy kryptografii)

Szyfrowanie RSA (Podróż do krainy kryptografii) Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja

Bardziej szczegółowo

Bezpieczeństwo danych, zabezpieczanie safety, security

Bezpieczeństwo danych, zabezpieczanie safety, security Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός

Bardziej szczegółowo

Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S.

Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Plecak ma być zapakowany optymalnie, tzn. bierzemy tylko te przedmioty,

Bardziej szczegółowo

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)

Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.) Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący

Bardziej szczegółowo

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Kryptografia Rok akademicki: 2032/2033 Kod: IIN-1-784-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Specjalność: - Poziom studiów: Studia I stopnia

Bardziej szczegółowo

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA

RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.

Bardziej szczegółowo

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana

Bardziej szczegółowo

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.

Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi. Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5

Bardziej szczegółowo

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

2 Kryptografia: algorytmy symetryczne

2 Kryptografia: algorytmy symetryczne 1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;

Bardziej szczegółowo

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Współczesna kryptografia schematy bazujące na parowaniu punktów krzywej eliptycznej

Współczesna kryptografia schematy bazujące na parowaniu punktów krzywej eliptycznej Współczesna kryptografia schematy bazujące na parowaniu punktów krzywej eliptycznej Andrzej Chmielowiec Centrum Modelowania Matematycznego Sigma, andrzej.chmielowiec@cmmsigma.eu 26maja2010 Podstawy matematyczne

Bardziej szczegółowo

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne

Bardziej szczegółowo

Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU

Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU Janusz Szmidt, Marcin Barański Wojskowy Instytut Łączności 13 XII 2018 NTRU - abstract We describe NTRU, a new public key cryptosystem. NTRU

Bardziej szczegółowo

Kryptologia przykład metody RSA

Kryptologia przykład metody RSA Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza

Bardziej szczegółowo

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu

Bardziej szczegółowo

Spis treści. Przedmowa... 9

Spis treści. Przedmowa... 9 Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

Szyfrowanie informacji

Szyfrowanie informacji Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane

Bardziej szczegółowo

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym) Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.

Bardziej szczegółowo

Wprowadzenie ciag dalszy

Wprowadzenie ciag dalszy Wprowadzenie ciag dalszy Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Szyfry asymetryczne Wymyślone w latach 70-tych Używaja dwóch różnych (ale pasujacych do siebie ) kluczy do szyfrowania

Bardziej szczegółowo

Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą;

Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą; Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Kryptografia i kryptoanaliza. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje pojęć: kryptologia, kryptografia i kryptoanaliza; wymienić

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,

Bardziej szczegółowo

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia

Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography

Bardziej szczegółowo

Kryptografia szyfrowanie i zabezpieczanie danych

Kryptografia szyfrowanie i zabezpieczanie danych Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Kryptografia szyfrowanie i zabezpieczanie danych www.agh.edu.pl

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Wprowadzenie do kryptologii Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 16 listopada 2016 Jak ta dziedzina powinna się nazywać?

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort ALP520

Bardziej szczegółowo

Problem logarytmu dyskretnego i protokół Diffiego-Hellmana. Mateusz Paluch

Problem logarytmu dyskretnego i protokół Diffiego-Hellmana. Mateusz Paluch Problem logarytmu dyskretnego i protokół Diffiego-Hellmana Mateusz Paluch 1 Logarytm dyskretny Definicja 1. Niech (G, ) będzie skończoną grupą cykliczną rzędu n 2. Niech ponadto b będzie generatorem tej

Bardziej szczegółowo

Bezpieczeństwo w Internecie

Bezpieczeństwo w Internecie Elektroniczne Przetwarzanie Informacji Konsultacje: czw. 14.00-15.30, pokój 3.211 Plan prezentacji Szyfrowanie Cechy bezpiecznej komunikacji Infrastruktura klucza publicznego Plan prezentacji Szyfrowanie

Bardziej szczegółowo

Zastosowania informatyki w gospodarce Wykład 5

Zastosowania informatyki w gospodarce Wykład 5 Instytut Informatyki, Automatyki i Robotyki Zastosowania informatyki w gospodarce Wykład 5 Podstawowe mechanizmy bezpieczeństwa transakcji dr inż. Dariusz Caban dr inż. Jacek Jarnicki dr inż. Tomasz Walkowiak

Bardziej szczegółowo

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna

PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,

Bardziej szczegółowo

Szyfry afiniczne. hczue zfuds dlcsr

Szyfry afiniczne. hczue zfuds dlcsr Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

Estymacja kosztów łamania systemu kryptograficznego

Estymacja kosztów łamania systemu kryptograficznego Estymacja kosztów łamania systemu kryptograficznego Andrzej Chmielowiec 17maja2007 Streszczenie Przedmiotem artykułu jest prezentacja modelu matematycznego dla zagadnienia opłacalności łamania systemu

Bardziej szczegółowo

WSIZ Copernicus we Wrocławiu

WSIZ Copernicus we Wrocławiu Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

Bezpieczeństwo danych i systemów informatycznych. Wykład 5

Bezpieczeństwo danych i systemów informatycznych. Wykład 5 Bezpieczeństwo danych i systemów informatycznych Wykład 5 Kryptoanaliza Atak na tekst zaszyfrowany dostępny tylko szyfrogram Atak poprzez tekst częściowo znany istnieją słowa, których prawdopodobnie użyto

Bardziej szczegółowo

Nowości w kryptografii

Nowości w kryptografii Nowości w kryptografii Andrzej Chmielowiec 30maja2012 Funkcje skrótu Konkurs na SHA-3 FIPS 180-4 Atak BEAST Kradzież w RSA Zakończenie Konkurs na SHA-3 FIPS 180-4 Implementacja finalistów konkursu SHA-3

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka KRYPTOGRAFIA STOSOWANA APPLIED CRYPTOGRAPHY Forma studiów: stacjonarne Kod przedmiotu: IO1_03 Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj

Bardziej szczegółowo

Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl>

Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl> Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi

Bardziej szczegółowo

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup. Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić? Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią

Bardziej szczegółowo

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe.

Bezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe. Bezpieczeństwo systemów komputerowych Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym tekstem jawnym Łamanie z adaptacyjnie wybranym tekstem jawnym Łamanie

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1

Bezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków

Bardziej szczegółowo

Problem P = NP. albo czy informacja może. biec na skróty

Problem P = NP. albo czy informacja może. biec na skróty Problem P = NP albo czy informacja może biec na skróty Damian Niwiński Problem P=NP? znalazł si e wśród problemów milenijnych, bo mówi coś istotnego o świecie, jego rozwiazanie wydaje sie wymagać przełomu

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

Pierwiastki pierwotne, logarytmy dyskretne

Pierwiastki pierwotne, logarytmy dyskretne Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem

Bardziej szczegółowo

Algorytm faktoryzacji Petera Shora dla komputera kwantowego

Algorytm faktoryzacji Petera Shora dla komputera kwantowego Algorytm faktoryzacji Petera Shora dla komputera kwantowego Peter Shor (ur. 14 sierpnia 1959 roku w USA Matematyk oraz informatyk teoretyk Autor kwantowego Algorytmu Shora Pracuje w AT&T Bell Laboratories

Bardziej szczegółowo

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Kryptologia(nie)stosowana

Kryptologia(nie)stosowana Jest to zapis odczytu wygłoszonego na XLI Szkole Matematyki Poglądowej, Konkret i abstrakcja, sierpień 2008; za ten odczyt Autor otrzymał Medal Filca. Kryptologia(nie)stosowana Andrzej GRZESIK, Kraków

Bardziej szczegółowo

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla

Bardziej szczegółowo

Laboratorium nr 3 Podpis elektroniczny i certyfikaty

Laboratorium nr 3 Podpis elektroniczny i certyfikaty Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970)

KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) 1 [Wybrane materiały do ćwiczeń 3-7 z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku (semestr letni 2008)] KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) (ang.

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26 Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Kryptografia Nazwa w języku angielskim : Cryptography Kierunek studiów : Informatyka Specjalność (jeśli

Bardziej szczegółowo

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej Ochrona zasobów w systemach gospodarki mgr inż. K. Trybicka-Francik Plan wykładu Rola kryptografii Klasyfikacja usług kryptograficznych Umieszczenie funkcji szyfrującej Generacja i dystrybucja y Złożone

Bardziej szczegółowo

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna 1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez

Bardziej szczegółowo

KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024

KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024 KRYPTOGRAFIA I OCHRONA DANYCH Krzysztof Kaczmarczyk 150024 Zadanie 1 Szyfrowanie DES Algorytm DES (Data Encryption Standard) to zastosowanie schematu Feistela. Algorytm operuje na 64-bitowych blokach używając

Bardziej szczegółowo