Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5."

Transkrypt

1 Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje sumowania (sumatory) i porównywania (komparatory), oraz badaniem działania rejestrów cyfrowych. Zrealizuj projekt. Opracuj wyniki badania: półsumatora i sumatora -bitowego, pojedynczego sumatora scalonego 7483, pojedynczego sumatora scalonego 7483 realizującego funkcję odejmowania, łączenia dwu sumatorów 7483, komparatora scalonego 7485, łączenia dwu komparatorów 7485, scalonego rejestru równoległego 7475 i (lub) 7475 oraz scalonego rejestru szeregowego Podczas badania zwróć szczególną uwagę na zmiany stanów logicznych badanych elementów i ich zgodność z zapisami katalogowymi. Podczas pomiarów dostępne są: - uniwersalne stanowisko laboratoryjne, umoŝliwiające zamontowanie 3 dowolnych układów scalonych do 2 nóŝek, posiadające zasilacz prądu stałego 5V, regulowany zasilacz prądu stałego,2-2v, zestaw kontrolnych diod LED, zestaw przełączników umoŝliwiających zadawanie poszczególnych stanów logicznych. - stanowisko do badania sumatorów i komparatorów. - zestaw podstawowych bramek logicznych oraz układów scalonych (sumatory, komparatory i rejestry) wskazanych do badania. Projekt realizacji prac poprzedź informacjami o charakterze danych do rozwiązania zadania, wynikającymi z analizy treści zadania i załączników. Projekt realizacji prac powinien zawierać: wykaz działań związanych z badaniem sumatorów, komparatorów i rejestrów, schematy układów pomiarowych do badania sumatorów, komparatorów i rejestrów, opis sposobu pomiarów funkcji logicznych realizowanych przez badane sumatorów, komparatorów i rejestrów, wskazania eksploatacyjne dla uŝytkownika badanych sumatorów, komparatorów i rejestrów, wynikające z załoŝonych warunków technicznych dotyczących zasilania, obciąŝenia oraz warunków środowiskowych wymaganych podczas ich działania. Strona z 3

2 Dokumentacja z badania sumatorów, komparatorów i rejestrów powinna zawierać: tabele funkcji arytmetycznych realizowanych w oparciu o badane sumatory i zestawy sumatorów dla kilku wybranych liczb (min. 5), wraz z porównaniem z wynikami teoretycznymi, tabele porównania kolejnych liczb 4-bitowych podawanych w takiej konfiguracji, aby bity, poczynając od najbardziej znaczących w dół najpierw były przeciwne, a następnie równe sobie. Uwzględnić stany wejść kaskadowych z poprzedniego komparatora, tabele porównania kilku (min. 3) liczb 8-bitowych, tabele funkcji realizowanych w oparciu o badane rejestry dla kilku wybranych liczb (min. 5), wraz z wynikiem przesunięcia dla rejestru szeregowego, wnioski z porównania wyników badań z załoŝeniami teoretycznymi (katalogowymi). Do wykonania zadania wykorzystaj: Załącznik Przykładowe operacje na liczbach binarnych. Załącznik 2 Topografia wyprowadzeń uŝytych układów scalonych. Załącznik 3 Zasady działania i zastosowania wybranych cyfrowych bloków arytmetycznych. Załącznik Przykładowe operacje na liczbach binarnych. Zapis liczb w formacie binarnym: Liczbę moŝna podzielić na: cyfra bardziej znacząca cyfra mniej znacząca Strona 2 z 3

3 Zmiana znaku: Przeprowadzamy poprzez negację i dodanie +/- = + = Dodawanie (A) + (B) = Odejmowanie (A) - (B) Zamiast odejmować, dodajemy zanegowaną liczbę i : (A) + + = EXOR (dodawanie modulo 2) = Załącznik 2 Topografia wyprowadzeń uŝytych układów scalonych. Sumator UCY 7483N Układ UCY 7483N jest monolitycznym układem scalonym średniej skali integracji. Jest to 4- bitowy sumator dwójkowy, równoległy, z przeniesieniem równoległym. Sumator ma wejścia sumy z kaŝdego bitu oraz wyjście przeniesienia (C4) z ostatniego bitu. Rys.2. Schemat wejść i wyjść układu UCY 7483 Strona 3 z 3

4 Komparator UCY 7485N Układ jest monolitycznym układ scalonym, który stanowi komparator wielkości dwóch liczb dwójkowych, 4- bitowych z moŝliwością ich porównania i określenia, która jest większa. Komparator ten posiada wejścia liczb porównywanych: A3, A2, A, A, B3, B2, B, B oraz wejścia i wyjścia kaskadowe: A>B, A=B, A<B, które umoŝliwiają tworzenie układów porównujących liczby więcej niŝ 4- bitowe. Rys. 2.2 Schemat wejść i wyjść układu UCY 7485 Strona 4 z 3

5 Rejestr przesuwny UCY 7494 Rys.2.3 Schemat wejść i wyjść układu UCY 7494 Układ jest 4-bitowym rejestrem przesuwnym z moŝliwością równoległego wpisywania danych. Wejścia A, B, C, D (X -X 3 ) są wejściami równoległymi danych. Wyjścia Q A, Q B, Q C, Q D (Q -Q 3 ) są wyjściami danych. Wejścia S i S słuŝą do ustawiania stanu pracy rejestru. Wejścia SR (X P ) i SL (X L ) słuŝą odpowiednio jako wejścia bitu ostatniego i pierwszego przy przesuwaniu w prawo lub w lewo. Wejście CLK (C) słuŝy jako wejście taktujące działanie rejestru. Wejście CLR (R) jest nadrzędnym wejściem zerującym rejestr. Rejestr równoległy UCY 7475 Rys.2.4 Schemat wejść i wyjść układu UCY 7475 Strona 5 z 3

6 Rejestr równoległy UCY 7475 Rys.2.5 Schemat wejść i wyjść układu UCY 7475 Załącznik 3 Zasady działania i zastosowania wybranych cyfrowych bloków arytmetycznych. a) Sumatory Sumator jest cyfrowym układem kombinacyjnym, co oznacza, Ŝe stan jego wyjść zaleŝy jedynie od stanu wejść. Sumator wykonuje arytmetyczną operację dodawania dwóch, lub więcej liczb binarnych. Logika operacji w sumatorze -bitowym przedstawiona jest w tabeli poniŝej: A i B i S i C i+ Suma S i przeniesienie C dodawania jednobitowych liczb dwójkowych A i B Zmienna S i reprezentuje rezultat operacji, jej wartość jest sumą modulo 2 (exclusive OR) składników A i, B i i C i. Zmienna Ci reprezentuje przeniesienie z pozycji młodszej sumatora wielopozycyjnego. C i+ jest przeniesieniem do pozycji starszej. C i nie występuje w tzw. półsumatorze, obecność C i daje sumator pełny. Z wartości przedstawionych na rys.. moŝna określić wyraŝenia logiczne dla półsumatora: - suma S i = A i -B i + ~A i B i = A i (+) B i, - przeniesienie C i+ = A i B i. Strona 6 z 3

7 Półsumator Półsumator pozwala nam na dodanie dwu jednobitowych liczb binarnych Ai oraz Bi. a) b) Rys.3. Schemat półsumatora: a) ideowy b) blokowy Sumator Sumatory dzielimy na: a. dwójkowe, gdzie działania wykonuje się na liczbach dwójkowych, b. dziesiętne, wykonujące działania na liczbach dziesiętnych kodowanych dwójkowo. Gdy za kryterium podziału przyjmuje się sposób podawania składników sumy, wtedy moŝna wyróŝnić sumatory: c. równoległe: z przeniesieniem szeregowym, z przeniesieniem równoległym, d. szeregowe. W pracy wykorzystane są dwa sumatory czterobitowe z moŝliwością połączenia ich w szereg, co pozwala uzyskać sumator ośmiobitowy. Strona 7 z 3

8 Rys. 3.2 Sumator dwuargumentowy jednobitowy Łączenie sumatorów Sumator kaskadowy n-bitowy jest układem powstałym przez połączenie n sumatorów jednobitowych. Schemat blokowy takiego sumatora przedstawiono na rysunku 3.3. Przy sumowaniu liczb dodatnich wejście przeniesienia początkowego C nie jest wykorzystywane (C =, dla pewności naleŝy podpiąć wejście to do szyny z sygnałami logicznymi ). Rys. 3.3 Schemat blokowy sumatora kaskadowego. W sumatorze kaskadowym wszystkie cyfry dodawanych liczb dwójkowych podawane są na sumator jednocześnie. Czas uformowania się wyniku zaleŝy od prędkości propagacji sygnału przeniesienia przez kolejne komórki sumatora. W najbardziej niekorzystnym przypadku sygnał C musi przejść przez wszystkie komórki sumatora. Czas sumowania moŝna znacznie skrócić przez zastosowanie sumatora z równoległym przeniesieniem. Sumator z przeniesieniem równoległym generuje wszystkie wartości przeniesień jednocześnie na podstawie wartości na poszczególnych bitach obu operandów. Przeniesienie C i+ = A i B i + A i C i + B i C i = A i B i + (A i +B i ) Strona 8 z 3

9 C i moŝna wyrazić w postaci: C i+ = G i +T i C i, gdzie: G i =A i B i, T i =A i +B i. Dla modułu czterobitowego i <{,,2,3}: C 4 =G 3 +T 3 G 2 +T 3 T 2 G +T 3 T 2 T G +T 3 T 2 T T lub C 4 = G + TC, gdzie G= G 3 +T 3 G 2 +T 3 T 2 G +T 3 T 2 T G ; T=T 3 T 2 T T, gdzie: G - przeniesienie generowane w bloku, T - sygnał warunkujący transmisję przeniesienia początkowego C. WyraŜenie dla sumy: S i = A i (+) B i (+)C i moŝna przekształcić do postaci: S i = C i (+)~(A i B i )(A i +B i )= C i (+) ~G i T i. b) Komparatory Komparatorem najprościej moŝna nazwać układ do porównywania dwóch liczb. W układach cyfrowych wykorzystywane są komparatory porównujące dwie liczby binarne. Wynikiem porównania liczb A i B moŝe być jedna z trzech relacji: A=B, A>B, A<B. Niekiedy wystarczy jedynie komparator pozwalający na odróŝnienie relacji: A=B i A B lub np. A B i A>B. Najprostszym komparatorem jest układ porównujący poziomy napięć na dwóch wejściach. Typowym jednak komparatorem jest układ 7485, który umoŝliwia porównanie dwóch liczb 4-bitowych. Rys.3.4 Schemat wejść i wyjść komparatora 4-bitowego Łączenie komparatorów Komparator scalony 7485 posiada 3 wyjścia: A=B, A>B, A<B. Na jednym z nich pojawia się poziom logiczny, określający zaleŝność między dwoma czterobitowymi Strona 9 z 3

10 słowami wejściowymi A i B. Układ ma ponadto 3 wejścia oznaczone identycznie jak wyjścia: A=B, A>B, A<B. SłuŜą one do współpracy z innymi układami scalonymi 7485 w celu porównywania liczb o długości większej niŝ czterobitowa. Wejścia te naleŝy wówczas połączyć z odpowiadającymi im wyjściami komparatora młodszych bitów. Przy takim łączeniu komparatorów waŝne jest, aby w komparatorze najmłodszych bitów lub pracującym pojedynczo była zapewniona następująca kombinacja sygnałów wejściowych: (A=B)=, (A>B)=, (A<B)=. Rys.5 Łączenie dwóch komparatorów 4-bitowych c) rejestry Rejestry moŝemy podzielić na: równoległe i przesuwające. Rejestry równoległe. Rejestr równoległy słuŝy do przechowywania (pamiętania) pojedynczego słowa binarnego. Zasadniczą mikrooperacją wykonywaną na rejestrze jest wpisanie słowa wejściowego X do rejestru. Mikrooperację tą moŝemy zapisać: Y:=X gdzie Y wyjście, na którym pojawia się przechowywane w rejestrze słowo. W niektórych rejestrach moŝliwa jest teŝ operacja zerowania zawartości rejestru (Y:=). Rejestr równoległy moŝe być zbudowany z przerzutników złoŝonych lub prostych. Przepisanie wejścia rejestrów na ich wyjścia następuje po pojawieniu się stanu wysokiego na wejściu L (ładuj). W zaleŝności od typu rejestru, stan wejściowy jest przekazywany na Strona z 3

11 wyjście tylko podczas narastania sygnału L (zbocze narastające) (7475) lub teŝ podczas całego trwania stanu wysokiego wejścia L (7475-rejestr zatrzaskowy). Rys Rejestr równoległy 7475 Rys Rejestr równoległy 7475 Rejestry przesuwające: Rejestr przesuwający realizuje przesunięcie zapamiętanego w nim słowa o jedną pozycję w lewo lub prawo. Mikrooperacja przesunięcia w lewo polega na jednoczesnym wpisaniu do kaŝdego przerzutnika Q i stanu poprzedniego przerzutnika Q i-. Do pierwszego Strona z 3

12 przerzutnika (Q ) zostaje wpisany sygnał wejściowy X L, a zawartość ostatniego przerzutnika (Q 3 na rys.) jest tracona. Q :=X L Q :=Q Q 2 :=Q Q 3 :=Q 2 Mikrooperacja przesunięcia w prawo polega na jednoczesnym wpisaniu do kaŝdego przerzutnika Q i stanu następnego przerzutnika Q i+. Do ostatniego przerzutnika (Q 3 na rys.) zostaje wpisany sygnał wejściowy X P, a zawartość pierwsego przerzutnika (Q ) jest tracona. Q :=Q Q :=Q 2 Q 2 :=Q 3 Q 3 :=X P Rejestry przesuwające są realizowane w wielu wersjach. W niektórych z nich jest moŝliwy równoległy zapis danych, a następnie ich przesuwanie w prawo lub w lewo (7494). Kierunek przesuwania moŝe być zadawany w nim wejściami S i S 2. S S Czynność przesunięcie w prawo przesunięcie w lewo wpisywanie Q:=X pamiętanie Rys. 8. Rejestr przesuwający. Rys. 3.9 Operacja przesunięcia w prawo Strona 2 z 3

13 Rys. 3.. Rejestr przesuwający dwukierunkowy 7494 Rys.3.. Typy rejestrów przesuwających Strona 3 z 3

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Układy kombinacyjne. cz.2

Układy kombinacyjne. cz.2 Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać

Bardziej szczegółowo

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY Laboratorium Techniki Cyfrowej i Mikroprocesorowej Ćwiczenie IV Opracowano na podstawie

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Mikrooperacje. Mikrooperacje arytmetyczne

Mikrooperacje. Mikrooperacje arytmetyczne Przygotowanie: Przemysław Sołtan e-mail: kerk@moskit.ie.tu.koszalin.pl Mikrooperacje Mikrooperacja to elementarna operacja wykonywana podczas jednego taktu zegara mikroprocesora na informacji przechowywanej

Bardziej szczegółowo

Ćwiczenie Digital Works 003 Układy sekwencyjne i kombinacyjne

Ćwiczenie Digital Works 003 Układy sekwencyjne i kombinacyjne TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL Temat: Narzędzia: Digital Works pakiet

Bardziej szczegółowo

Układ elementarnej pamięci cyfrowej

Układ elementarnej pamięci cyfrowej Opis ćwiczenia Układ elementarnej pamięci cyfrowej Pod określeniem pamięć cyfrowa będziemy rozumieć układ, do którego moŝna wprowadzić i przez pewien czas w nim przechowywać ciąg liczb zero-jedynkowych.

Bardziej szczegółowo

Dodawanie liczb dwójkowych. Sumator.

Dodawanie liczb dwójkowych. Sumator. Ćwiczenie Dodawanie liczb dwójkowych. Sumator. str. 1 Dodawanie liczb dwójkowych. Sumator. Algorytmy dodawania liczb dziesiętnych i dwójkowych są podobne: Dodawanie przebiega w tylu krokach, ile cyfr mają

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite.

Plan wykładu. Architektura systemów komputerowych. MnoŜenie realizacja sprzętowa (wersja 1) Układy mnoŝące liczby całkowite. Plan wykładu rchitektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka sekwencyjna

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE Podstawowymi bramkami logicznymi są układy stanowiące: - funktor typu AND (funkcja

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Technika cyfrowa Układy arytmetyczne

Technika cyfrowa Układy arytmetyczne Sławomir Kulesza Technika cyfrowa Układy arytmetyczne Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Układy arytmetyczne UKŁADY ARYTMETYCZNE UKŁADY SUMUJĄCE i ODEJMUJĄCE UKŁADY MNOŻĄCE

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne X Selektor ROM ROM AND Specjalizowane układy cyfrowe

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Architektura systemów komputerowych. Poziom układów logicznych. Układy mnoŝące i dzielące

Architektura systemów komputerowych. Poziom układów logicznych. Układy mnoŝące i dzielące Architektura systemów komputerowych Poziom układów logicznych. Układy mnoŝące i dzielące Cezary Bolek Katedra Informatyki Plan wykładu Układy mnoŝące liczby całkowite MnoŜenie liczb bez znaku MnoŜarka

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ KDEMI MORSK KTEDR NWIGCJI TECHNICZEJ ELEMETY ELEKTRONIKI LORTORIUM Kierunek NWIGCJ Specjalność Transport morski Semestr II Ćw. 4 Podstawy techniki cyfrowej Wersja opracowania Marzec 5 Opracowanie: mgr

Bardziej szczegółowo

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne... Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8

Bardziej szczegółowo

LICZNIKI. Liczniki asynchroniczne.

LICZNIKI. Liczniki asynchroniczne. LICZNIKI Liczniki asynchroniczne. Liczniki buduje się z przerzutników. Najprostszym licznikiem jest tzw. dwójka licząca. Łatwo ją otrzymać z przerzutnika D albo z przerzutnika JK. Na rys.1a został pokazany

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania. Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Funkcja Boolowska a kombinacyjny blok funkcjonalny

Funkcja Boolowska a kombinacyjny blok funkcjonalny SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Funkcja Boolowska a kombinacyjny blok funkcjonalny Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym znwejściach

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne Evatronix KontrolerEthernet MAC (Media Access Control)

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW e-version: dr inż. Tomasz apłon INTYTUT YBENETYI TEHNIZNE PLITEHNII WŁAWIE ZAŁA ZTUZNE INTELIGENI I AUTMATÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 23 temat: UŁAY EWENYNE. EL ĆWIZENIA

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Magistrale W układzie bank rejestrów do przechowywania danych. Wybór źródła danych

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE LORTORIUM ELEKTRONIKI UKŁDY KOMINCYJNE ndrzej Malinowski 1. Układy kombinacyjne 1.1 Cel ćwiczenia 3 1.2 Podział kombinacyjnych układów funkcjonalnych 3 1.3 Układy komutacyjne 3 1.3.1 Układy zmiany kodów

Bardziej szczegółowo

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki.

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki. Literatura 1. D. Gajski, Principles of Digital Design, Prentice- Hall, 1997 2. C. Zieliński, Podstawy projektowania układów cyfrowych, PWN, Warszawa 2003 3. G. de Micheli, Synteza i optymalizacja układów

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory

Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Instrukcja do ćwiczeń nr 4 typy i rodzaje zmiennych w języku C dla AVR, oraz ich deklarowanie, oraz podstawowe operatory Poniżej pozwoliłem sobie za cytować za wikipedią definicję zmiennej w informatyce.

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem

Bardziej szczegółowo

Układy Logiczne i Cyfrowe

Układy Logiczne i Cyfrowe Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne

Bardziej szczegółowo

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia Opracował: mgr inż. Antoni terna ATEDA INFOMATYI TEHNIZNE Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 203 Temat: Układy sekwencyjne 1. el ćwiczenia elem ćwiczenia jest zapoznanie się z

Bardziej szczegółowo

O systemach liczbowych

O systemach liczbowych O systemach liczbowych 1. Systemy liczbowe Literatura:Turski,Propedeutyka...;Skomorowski,... 1.1. Dwójkowy system pozycyjny W dziesiętnym systemie pozycyjnym ciąg cyfr 321.23 oznacza liczbę 3 10 2 +2 10

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 3 (4h) Konwersja i wyświetlania informacji binarnej w VHDL Instrukcja do zajęć laboratoryjnych z przedmiotu Synteza

Bardziej szczegółowo

Ćw. 7 Przetworniki A/C i C/A

Ćw. 7 Przetworniki A/C i C/A Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

LABORATORIUM TECHNIKA CYFROWA BRAMKI. Rev.1.0

LABORATORIUM TECHNIKA CYFROWA BRAMKI. Rev.1.0 LABORATORIUM TECHNIKA CYFROWA BRAMKI Rev..0 LABORATORIUM TECHNIKI CYFROWEJ: Bramki. CEL ĆWICZENIA - praktyczna weryfikacja wiedzy teoretycznej z zakresu działania bramek, - pomiary parametrów bramek..

Bardziej szczegółowo

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.

UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania. UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

4. MATERIAŁ NAUCZANIA

4. MATERIAŁ NAUCZANIA 4. MATERIAŁ NAUCZANIA 4.1 Podstawowe układy cyfrowe rodzaje, parametry, zastosowanie. 4.1.1 Materiał nauczania Bramki Bramką (funktorem) nazywamy podstawowy układ kombinacyjny realizujący funkcję logiczną

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Przykładowe pytania DSP 1

Przykładowe pytania DSP 1 Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH POLITECHNIKA WASZAWSKA Instytut adioelektroniki Zakład adiokomunikacji WIECZOOWE STUDIA NIESTACJONANE Semestr III LABOATOIUM UKŁADÓW ELEKTONICZNYCH Ćwiczenie Temat: Przetwarzanie A/C i C/A Instrukcja v.

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Zasady wykonywania programu drabinkowego w sterowniku

Zasady wykonywania programu drabinkowego w sterowniku Zasady wykonywania programu drabinkowego w sterowniku Programowanie sterownika Modicon Micro 612xx w środowisku uruchomieniowym Modsoft odbywa się przy pomocy języka drabinkowego wspomaganego blokami funkcyjnymi.

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Temat 5. Podstawowe bloki funkcjonalne

Temat 5. Podstawowe bloki funkcjonalne Temat 5. Podstawowe bloki funkcjonalne Spis treści do tematu 5 5.. Cyfrowe bloki komutacyjne 5.2. Przerzutniki 5.3. Liczniki 5.4. Rejestry 5.6. Układy arytmetyczne 5.7. Literatura fizyka.p.lodz.pl/pl/dla-studentow/tc/

Bardziej szczegółowo

Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1

Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI CYFROWEJ I MIKROPROCESOROWEJ EIP KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Katedra Sterowania i InŜynierii Systemów Laboratorium elektrotechniki i elektroniki. Badanie podstawowych bramek logicznych. 2.2 Bramka AND.

Katedra Sterowania i InŜynierii Systemów Laboratorium elektrotechniki i elektroniki. Badanie podstawowych bramek logicznych. 2.2 Bramka AND. Katedra Sterowania i InŜynierii Systemów 4 Temat Badanie podstawowych bramek logicznych 1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z działaniem podstawowych bramek logicznych. 2. Wiadomości

Bardziej szczegółowo

4. Karta modułu Slave

4. Karta modułu Slave sygnały na magistralę. Można wyróżnić trzy typy układów scalonych takie jak bramki o otwartym kolektorze wyjściowym, bramki trójstanowe i bramki o przeciwsobnym wzmacniaczu wyjściowym. Obciążalność prądową

Bardziej szczegółowo

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE 3. BLOKI KOMUTACYJNE 3.. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi układami komutacyjnymi. Ćwiczenie wykonywane jest na modułowym zestawie elementów logicznych UNILOG-2. 3.2. PODSTAWOWE

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Instrukcja UKŁADY ELEKTRONICZNE 2 (TZ1A )

Instrukcja UKŁADY ELEKTRONICZNE 2 (TZ1A ) Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE (TZA500 0) UKŁADY FORMOWANIA IMPULSÓW BIAŁYSTOK 00

Bardziej szczegółowo

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego

Bardziej szczegółowo

Podstawy techniki cyfrowej cz.2 wykład 3 i 5

Podstawy techniki cyfrowej cz.2 wykład 3 i 5 Podstawy techniki cyfrowej cz.2 wykład 3 i 5 Rafał Walkowiak Wersja 0.1 29.10.2013 Układy cyfrowe Ogólna struktura logiczna: Wej ster Dane bloki funkcjonalne dla realizacji określonych funkcji przetwarzania

Bardziej szczegółowo