Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów."

Transkrypt

1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego postawione zadanie w możliwie najprostszy sposób. Podstawowe informacje Technika cyfrowa posługuje się głównie algebrą Boole a określoną dla zmiennych przyjmujących wartość ze zbioru dwóch elementów {0; 1}. Na zmiennych dwustanowych definiuje się następujące działania: iloczyn logiczny nazywany funkcję AND: Y = A B, sumę logiczną OR: Y = A + B, negację argumentu NOT: Y = A W praktyce wygodnie jest wprowadzić również funkcje realizujące złożenie funkcji AND z NOT oraz OR z NOT negacja iloczynu NAND: Y = A B, negacja sumy NOR: Y = A + B. Symbole układów elektrycznych (zwanych dalej bramkami) realizujących wymienione powyżej funkcje zestawiono na Rys. 1. Definicje funkcji AND, OR, NAND i NOR można łatwo rozszerzyć na dowolną liczbę argumentów przez złożenie ich z funkcji dwuargumentowych, np. A B C = (A B) C. Rys. 1. Symbole podstawowych bramek logicznych i ich tablice stanów. Ze względu na duże znaczenie praktyczne definiuje się również funkcję nierównoważności EX-OR (skrót od EXCLUSIVE-OR) odpowiadającą polskiemu operatorowi ALBO, czyli WYŁĄCZNE LUB, a także funkcję równoważności EX-NOR (pol. ALBO-NIE) określoną jako złożenie EX-OR i NOT nierównoważność EX-OR: Y = A B = A B + A B równoważność EX-NOR: Y = A B = A B + A B Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Podczas projektowania układów logicznych największe znaczenie mają następujące prawa algebry Boole a:

2 przemienności, łączności, rozdzielności i De Morgana. Tabela 1. Podstawowe prawa i tożsamości algebry Boole a. Posługując się prawami De Morgana można stwierdzić, że spośród funktorów realizujących podstawowe działania logiczne jedynie funktory NAND i NOR są uniwersalne, tzn. łącząc funktory tylko jednego z tych dwóch typów można zrealizować dowolną funkcję logiczną, w tym także pozostałe funkcje elementarne AND, OR, NOT, NAND, NOR, EX-OR i EX-NOR. Ograniczenie zbioru funktorów stosowanych do realizacji dowolnej funkcji logicznej ma wiele zalet i jest często stosowane w praktyce. Metoda minimalizacji i syntezy układu kombinacyjnego Załóżmy, że w wyniku analizy treści zadania ustalono następującą tablicę stanów układu o czterech wejściach A, B, C, D i jednym wyjściu W. Tabela 2. Zapis funkcji logicznej w postaci tablicy prawdy. Kreskami ( ) oznaczono przypadki, w których stan logiczny wyjścia nie ma znaczenia. Bezpośrednio na podstawie tablicy stanów funkcję można przedstawić np. w postaci kanonicznej sumy, czyli sumy składników, z których każdy stanowi iloczyn pełny wszystkich zmiennych wejściowych lub ich negacji i odpowiada innej linii w tabeli prawdy, dla której W = 1 W = CD + CD + CD+ CD+ CD+ CD (1) Uproszczenie powyższej funkcji W = f(a,b,c,d) przy wykorzystaniu zasad algebry Boole a jest zadaniem żmudnym a prostota końcowej postaci zależy od intuicji i szczęścia projektanta. Znacznie efektywniejsza metoda wykorzystuje zdolność ludzi do rozpoznawania geometrycznych wzorów w tablicy Karnaugha (Rys. 3), która jest dwuwymiarową specyficznie ułożoną tablicę stanów wyjściowych. Stany wejściowe podane są na zewnątrz tablicy i uporządkowane zgodnie z kodem Graya, w którym dwa kolejne słowa różnią się dokładnie jednym bitem. W przypadku funkcji trzech zmiennych buduje się tablicę o wymiarach 2 4, zaś dla dwóch zmiennych tablicę 2 2. Minimalizacja funkcji sprowadza się do zgrupowaniu sąsiednich jedynek w prostokątne obszary (Rys. 3.a), przy czym liczba pól w danych obszarze musi być potęgą liczby 2. Przeciwległe krawędzie tablicy traktuje się przy tym jak sklejone ze sobą. Aby otrzymać najprostsze rozwiązanie należy zakreślić wszystkie jedynki wybierając możliwie najmniejszą liczbę obszarów o maksymalnie dużych rozmiarach. Alternatywnie można łączyć same zera (Rys. 3.b). Wybrane pola zawierające stan nieokreślony ( ) można łączyć zarówno z jedynkami, jak i zerami.

3 Rys. 3. Zapis funkcji logicznej danej Tabelą 2 w postaci tablicy Karnaugha. a) minimalizacja funkcji przez łączenie jedynek, b) minimalizacja funkcji przez łączenie zer. Na podstawie tablicy na Rys. 3.a zminimalizowaną funkcję logiczną tworzymy jako sumę iloczynów, przy czym każdy iloczyn musi przyjmować wartość 1 dla wszystkich pól w danej grupie. Przykładowo, obszar zakreślony poprzez krawędzie tablicy odpowiada iloczynowi D, gdzie pominięte C nie zachowuje jednego stanu na całym obszarze. Dla wszystkich grup otrzymujemy W = ACD + CD + D+ AC (2) W przypadku, gdy na tablicy Karnaugha połączono pola o stanach 0 (Rys. 3.b), funkcję logiczną tworzymy jako iloczyn sum, z których każda przyjmuje wartość 0 w jednym zakreślonym obszarze W = (A +C)(A +D)(A + B + C) (3) Załóżmy, że funkcję trzeba zrealizować przy użyciu samych funktorów NOT i NAND. Funkcję sumy logicznej, występującą we wzorach (2) i (3), przekształcamy zgodnie z prawami De Morgana otrzymując ze wzorów (2) i (3) odpowiednio X + Y +... = XY..., X + Y +... = XY... (4) W= A C D A B D A C (5) W= A C A D A BC (6) Wszystkie działania występujące we wzorze (6) można zrealizować bezpośrednio przy użyciu założonych funktorów. We wzorze (5) najbardziej zewnętrzną funkcję iloczynu logicznego (OR) trzeba przedstawić jako złożenie negacji (NOT) i zanegowanego iloczynu (NOR) W= A B C A B C A C (7) Wykaz aparatury pomiarowej spis urządzeń użytych dnia moduł ZSL 07 moduł EL 3 02 moduł EL 3 03 zasilacz stabilizowany DF1731SN3A J3-T6-261/1 Moduł zadawania stanów logicznych składa się z pięciu przełączników umożliwiających wybór stanu logicznego 0 albo 1 w gniazdach umieszczonych pod przełącznikami. Moduł bramek logicznych zawiera 4 bramki logiczne NOT, 8 dwuwejściowych bramek NOR oraz 8 trzywejściowych bramek NOR. Moduł testera stanów logicznych zawiera 10 niezależnych testerów. Każdy tester zaopatrzony jest w jedno wejście pomiarowe oraz diody czerwoną i zieloną, których zapalenie symbolizuje stan logiczny odpowiednio 1 i 0 Wszystkie moduły zostały zasilone z wyjścia zapewniającego stałe napięcie +5V zasilacza stabilizowanego DF 1731SN3A.

4 Wyniki pomiarów i analiza wyników Sprawdzenie prawa De Morgana Wykorzystując zanegowane obustronnie prawo De Morgana dla iloczynu logicznego (Tabela 1): A B=A B=A B możemy narysować schemat elektryczny układu realizującego funkcję bramki AND przy wykorzystaniu dostępnych bramek NOR i NOT. Schemat 1. układ realizujący funkcję bramki AND przy wykorzystaniu bramek NOR i NOT Po podłączeniu układu zgodnie z powyższym schematem możemy, zadają różne kombinacje sygnałów wejściowych sporządzić tablicę prawdy układu: A B W Tabela 3. Tablica prawdy dla zrealizowanego układu, pełniącego funkcję bramkę AND Uzyskana tablica prawdy jest zgodna z tablicą teoretyczną dla bramki AND umieszczoną na Rys. 1. Potwierdza to prawo De Morgana oraz potwierdza możliwość realizacji innych funkcji logicznych za pomocą bramek NOR i NOT. Projektowanie i realizacja układu kombinacyjnego ZAD. 6 Zaprojektować i połączyć układ, który na dwubitowym wyjściu XY wybiera mniejszą z dwóch dwubitowych liczb binarnych oraz CD podanych na wejścia. Po analizie treści zadania doszliśmy do wniosku, że projektowany układ powinien na każdym wyjściu (X= N1 oraz Y= N2) realizować następujące teoretyczne tablice prawdy:

5 A B C D N1 A B C D N Tabela 4. Tablice prawdy dla każdego z wyjść- N1, N2 realizowanego układu realizującego Zad. 6. Funkcje logiczne dane Tabelą 4 można zapisać w tablicy Karnaugha: N1 N CD CD Tabela 5. Tablice Karnaugha dla każdego z wyjść- N1, N2 realizowanego układu. Na podstawie Tabeli 5 możemy stworzyć zminimalizowaną funkcję logiczną dla każdego wyjścia realizowanego układu: N1=A C=A C N2=D B A D C C A B=D B A D C C A B Na podstawie otrzymanych zminimalizowanych funkcji logicznych możemy utworzyć schemat układu realizujący Zad. 6: Schemat 2. Schemat układu realizującego Zad. 6.

6 Po podłączeniu układu zgodnie z powyższym schematem otrzymaliśmy następujące stanu układu: A B C D N1 A B C D N Tabela 6. Sprawdzenie poprawności działania wykonanego układu realizującego Zad. 6. Otrzymane tablice prawdy są zgodne z przewidywanymi, co oznacza prawidłowe działanie zaprojektowanego układu. Nie bylibyśmy w stanie wykonać powyższego ćwiczenia bez użycia metody minimalizacji funkcji logicznej za pomocą tablic Karnaugha. Możliwa jest dalsze uszczuplenie schematu połączeń realizowanego układu o jedną, lub dwie bramki NOT, jednak nie dysponowaliśmy wystarczającą ilością czasu, by się tego podjąć. ZAD. 8 Zaprojektować i połączyć układ, który przenosi sygnały z trzybitowego wejścia C na trzybitowe wyjśie XYZ w następujący sposób: dla wejścia sterującego w stanie R = 0 układ zwraca wynik XYZ = C, natomiast dla R = 1 dokonuje rotacji cyklicznej w lewo, tzn. zwraca wynik XYZ = BCA. Po analizie treści zadania doszliśmy do wniosku, że projektowany układ powinien na każdym wyjściu (X, Y, Z) realizować następujące teoretyczne tablice prawdy: A B C R X A B C R Y A B C R Z Tabela 7. Tablice prawdy dla każdego z wyjść- X, Y, Z układu realizującego Zad. 8.

7 Funkcje logiczne dane Tabelą 7 można zapisać w tablicy Karnaugha: CR CR CR X Y Z Tabela 8. Tablice Karnaugha dla każdego z wyjść- X,Y,Z realizowanego układu. Na podstawie Tabeli 8 możemy stworzyć zminimalizowaną funkcję logiczną dla każdego wyjścia realizowanego układu: X=R B A R=R B A R Y=B R C R=B R C R Z=A R C R=A R C R Na podstawie otrzymanych zminimalizowanych funkcji logicznych możemy utworzyć schemat układu realizujący Zad. 8: Schemat 3. Po podłączeniu układu zgodnie z powyższym schematem otrzymaliśmy następujące tablice stanu układu:

8 A B C R X A B C R Y A B C R Z Tabela 9. Sprawdzenie poprawności działania wykonanego układu realizującego Zad. 8. Otrzymane tablice prawdy są zgodne z przewidywanymi, co oznacza prawidłowe działanie zaprojektowanego układu. Nie bylibyśmy w stanie wykonać powyższego ćwiczenia bez użycia metody minimalizacji funkcji logicznej za pomocą tablic Karnaugha. Podczas budowy układu mieliśmy trudności z utrzymaniem przejrzystości układu spowodowane dużą ilością połączeń między poszczególnymi elementami logicznymi. Należy na to zwrócić szczególną uwagę, gdyż może to być źródłem potencjalnych nieprawidłowości w działaniu otrzymanego układu.

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016)

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016) Laboratorium elektroniki Ćwiczenie E52IS Realizacja logicznych układów kombinacyjnych z bramek NOR Wersja 1.0 (24 marca 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie teoretyczne...

Bardziej szczegółowo

Laboratorium elektroniki. Ćwiczenie E51IS. Realizacja logicznych układów kombinacyjnych z bramek NAND. Wersja 1.0 (24 marca 2016)

Laboratorium elektroniki. Ćwiczenie E51IS. Realizacja logicznych układów kombinacyjnych z bramek NAND. Wersja 1.0 (24 marca 2016) Laboratorium elektroniki Ćwiczenie E51IS Realizacja logicznych układów kombinacyjnych z bramek NAND Wersja 1.0 (24 marca 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie teoretyczne...

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 12 - synteza i minimalizacja funkcji logicznych Instytut Automatyki i Robotyki Warszawa, 2017 Synteza funkcji logicznych Terminy - na bazie funkcji trójargumenowej y = (x 1, x 2, x 3 ) (1) Elementarny

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a i układy logiczne 1 Elementy logiki dla informatyków Wykład III Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

UKŁADY KOMBINACYJNE (BRAMKI: AND, OR, NAND, NOR, NOT)

UKŁADY KOMBINACYJNE (BRAMKI: AND, OR, NAND, NOR, NOT) LORTORIUM PODSTWY ELEKTRONIKI UKŁDY KOMINCYJNE (RMKI: ND, OR, NND, NOR, NOT) Cel ćwiczenia Zapoznanie się z budową i zasadą działania podstawowych funktorów (bramek) układów kombinacyjnych, jak równieŝ

Bardziej szczegółowo

Cyfrowe bramki logiczne 2012

Cyfrowe bramki logiczne 2012 LORTORIUM ELEKTRONIKI yfrowe bramki logiczne 2012 ndrzej Malinowski 1. yfrowe bramki logiczne 3 1.1 el ćwiczenia 3 1.2 Elementy algebry oole`a 3 1.3 Sposoby zapisu funkcji logicznych 4 1.4 Minimalizacja

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ KDEMI MORSK KTEDR NWIGCJI TECHNICZEJ ELEMETY ELEKTRONIKI LORTORIUM Kierunek NWIGCJ Specjalność Transport morski Semestr II Ćw. 4 Podstawy techniki cyfrowej Wersja opracowania Marzec 5 Opracowanie: mgr

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE UKŁADÓW FUNKCJI LOGICZNYCH (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE UKŁADÓW FUNKCJI LOGICZNYCH (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PRCOWNI ELEKTRCZN I ELEKTRONICZN imię i nazwisko z ćwiczenia nr Temat ćwiczenia: DNIE UKŁDÓW FUNKCJI LOGICZNCH (SMULCJ) rok szkolny klasa grupa

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego.

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego. SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Funkcja Boolowska Funkcja boolowskanargumentową nazywamy odwzorowanie f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest

Bardziej szczegółowo

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ĆWICZENIE 1) UKŁADY PRZEŁĄCZAJĄCE OPARTE NA ELEMENTACH STYKOWYCH PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest poznanie:

Bardziej szczegółowo

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132.

Bramki logiczne. 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. Bramki logiczne 1. Czas trwania: 3h 2. Cele ćwiczenia Badanie charakterystyk przejściowych inwertera. tranzystorowego, bramki 7400 i bramki 74132. 3. Wymagana znajomość pojęć stany logiczne Hi, Lo, stan

Bardziej szczegółowo

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ĆWICZENIE 1) UKŁADY PRZEŁĄCZAJĄCE OPARTE NA ELEMENTACH STYKOWYCH PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest poznanie:

Bardziej szczegółowo

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 Synteza liczników synchronicznych Załóżmy, że chcemy zaprojektować licznik synchroniczny o następującej sekwencji: 0 1 2 3 6 5 4 [0 sekwencja jest powtarzana] Ponieważ licznik ma 7 stanów, więc do ich

Bardziej szczegółowo

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2

WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2 WSTĘP O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą rodziną

Bardziej szczegółowo

WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO

WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO WOJSKOWA AKADEMIA T E CHNI CZNA im. Jarosława Dą brow ski ego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO Przedmiot: PODSTAWY AUTOMATYKI I AUTOMATYZACJI (studia I stopnia) ĆWICZENIE RACHUNKOWE PROJEKT PROSTEGO

Bardziej szczegółowo

Minimalizacja funkcji boolowskich

Minimalizacja funkcji boolowskich Minimalizacja funkcji boolowskich Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 2 wieku. Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 8. rzyczyna:

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1) ybrane funkcje logiczne prowadzenie L L2 Y Nazwa Oznaczenia Y Sterowniki PLC - prowadzenie do programowania () Proste przykłady Załączenie jednego z dwóch (lub obu) przełączników lub powoduje zapalenie

Bardziej szczegółowo

Synteza układów kombinacyjnych

Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Modelowanie kombinacyjnych układów przełączających z wykorzystaniem elementów Podstawy Automatyki i Automatyzacji - Ćwiczenia Laboratoryjne mgr inż.

Bardziej szczegółowo

I. Podstawowe zagadnienia z teorii układów cyfrowych

I. Podstawowe zagadnienia z teorii układów cyfrowych I. Podstawowe zagadnienia z teorii układów cyfrowych. Wstęp Muzyka na płytach fonograficznych jest zapisana w formie kanaliku o zmiennym urzeźbieniu. Ruch igły prowadzonej przez kanalik odbywa się w sposób

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych

Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych. WSTĘP Celem ćwiczenia jest zapoznanie się z podstawowymi sposobami projektowania układów cyfrowych o zadanej funkcji logicznej, na przykładzie budowy

Bardziej szczegółowo

Minimalizacja formuł Boolowskich

Minimalizacja formuł Boolowskich Minimalizacja formuł Boolowskich Stosowanie reguł algebry Boole a w celu minimalizacji funkcji logicznych jest niedogodne brak metody, aby stwierdzić czy dana formuła może być jeszcze minimalizowana czasami

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Optymalizacja układów wielopoziomowych Układy wielopoziomowe układy

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

1.2 Funktory z otwartym kolektorem (O.C)

1.2 Funktory z otwartym kolektorem (O.C) Wydział EAIiIB Laboratorium Katedra Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 4. Funktory TTL cz.2 Data wykonania: Grupa (godz.): Dzień tygodnia:

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Bramki logiczne V MAX V MIN

Bramki logiczne V MAX V MIN Bramki logiczne W układach fizycznych napięcie elektryczne może reprezentować stany logiczne. Bramką nazywamy prosty obwód elektroniczny realizujący funkcję logiczną. Pewien zakres napięcia odpowiada stanowi

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania. adanie funktorów logicznych RTL - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami funktorów logicznych realizowanymi w technice RTL (Resistor Transistor Logic) oraz zasadą ich działania..

Bardziej szczegółowo

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium.

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Zagadnienia do samodzielnego opracowania: rola sygnału taktującego (zegara) w układach synchronicznych; co robi sygnał CLEAR (w

Bardziej szczegółowo

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów

Bardziej szczegółowo

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasad działania, budowy i właściwości podstawowych funktorów logicznych wykonywanych w jednej z najbardziej rozpowszechnionych

Bardziej szczegółowo

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Podstawy Automatyki Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Politechnika Warszawska Instytut Automatyki i Robotyki Dr inż.

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

W jakim celu to robimy? Tablica Karnaugh. Minimalizacja

W jakim celu to robimy? Tablica Karnaugh. Minimalizacja W jakim celu to robimy? W projektowaniu układów cyfrowych istotne jest aby budować je jak najmniejszym kosztem. To znaczy wykorzystanie dwóch bramek jest tańsze niż konieczność wykorzystania trzech dla

Bardziej szczegółowo

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Technika Cyfrowa Badanie Bramek Logicznych Opracował: mgr inż. Andrzej Biedka 1 BADANIE FUNKCJI LOGICZNYCH 1.1 Korzystając

Bardziej szczegółowo

Minimalizacja funkcji boolowskich

Minimalizacja funkcji boolowskich Minimalizacja funkcji boolowskich Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 20 wieku. Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 80. rzyczyna:

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL

Bardziej szczegółowo

Ćwiczenie 2. Algebra Boolea, przykłady równań logicznych. A. TWIERDZENIA ALGEBRY BOOLE A WPROWADZENIE DO TEORII.

Ćwiczenie 2. Algebra Boolea, przykłady równań logicznych. A. TWIERDZENIA ALGEBRY BOOLE A WPROWADZENIE DO TEORII. Ćwiczenie 2 lgebra Boolea, przykłady równań logicznych. WPROWDZENIE DO TEORII.. TWIERDZENI LGEBRY BOOLE 2 3 a + B = B + b B = B a + B + C = + (B + C) = ( + B) + C b B C = (B C) = ( B) C a (B + C) = B +

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Układy Logiczne i Cyfrowe

Układy Logiczne i Cyfrowe Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne

Bardziej szczegółowo

Elektronika cyfrowa i optoelektronika - laboratorium

Elektronika cyfrowa i optoelektronika - laboratorium Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Elektronika cyfrowa i optoelektronika - laboratorium Temat: Minimalizacja funkcji logicznych multiplekser demultiplekser. Koder i dekodedr.

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

Badanie elektronicznych układów cyfrowych 312[02].O2.02

Badanie elektronicznych układów cyfrowych 312[02].O2.02 MINISTERSTWO EDUKACJI NARODOWEJ Jarosław Świtalski Badanie elektronicznych układów cyfrowych 32[2].O2.2 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom 27

Bardziej szczegółowo

Kombinacyjne bloki funkcjonalne

Kombinacyjne bloki funkcjonalne Sławomir Kulesza Technika cyfrowa Kombinacyjne bloki funkcjonalne Wykład dla studentów III roku Informatyki Wersja., 5//2 Bloki cyfrowe Blok funkcjonalny to układ cyfrowy utworzony z pewnej liczby elementów

Bardziej szczegółowo

Ćw. 7 Przetworniki A/C i C/A

Ćw. 7 Przetworniki A/C i C/A Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i

Bardziej szczegółowo

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia:

Układy kombinacyjne i sekwencyjne. Podczas ćwiczenia poruszane będą następujące zagadnienia: Warszawa 207 Cel ćwiczenia rachunkowego Podczas ćwiczenia poruszane będą następujące zagadnienia: modelowanie i synteza kombinacyjnych układów przełączających; minimalizacja funkcji przełączającej; projektowanie

Bardziej szczegółowo

A B. 12. Uprość funkcję F(abc) = (a + a'b + c + c')a

A B. 12. Uprość funkcję F(abc) = (a + a'b + c + c')a Lp. Pytania 1. Jaką liczbę otrzymamy w wyniku konwersji z systemu szesnastkowego liczby 81AF (16) na system binarny? 2. Zapisz tabelę działania opisującą bramkę logiczną, której symbol graficzny przedstawia

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe. Instrukcja do zajęć laboratoryjnych. Część: Technika Cyfrowa Liczba zajęć: 3 + zaliczające

Elektronika i techniki mikroprocesorowe. Instrukcja do zajęć laboratoryjnych. Część: Technika Cyfrowa Liczba zajęć: 3 + zaliczające Przygotowali: J. Michalak, M. Zygmanowski, M. Jeleń Elektronika i techniki mikroprocesorowe Instrukcja do zajęć laboratoryjnych Część: Technika Cyfrowa Liczba zajęć: 3 + zaliczające Celem zajęć jest zapoznanie

Bardziej szczegółowo

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55 Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę I. KARTA PRZEDMIOTU Nazwa przedmiotu/modułu: Nazwa angielska: Kierunek studiów: Poziom studiów: Profil studiów: Jednostka prowadząca: Technika cyfrowa i mikroprocesorowa Edukacja techniczno-informatyczna

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132

Bramki TTL i CMOS 7400, 74S00, 74HC00, 74HCT00, 7403, 74132 Skład zespołu: 1. 2. 3. 4. KTEDR ELEKTRONIKI G Wydział EIiE LBORTORIUM TECNIKI CYFROWEJ Data wykonania: Suma punktów: Grupa Ocena 1 Bramki TTL i CMOS 7400, 74S00, 74C00, 74CT00, 7403, 74132 I. Konspekt

Bardziej szczegółowo

Projekt Układów Logicznych

Projekt Układów Logicznych Opole, dn. 1 maja 005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Projekt Układów Logicznych Temat: Sterownik suszarki Autor: Prowadzący: Dawid Najgiebauer Piotr Nitner

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyka Lab 1 Teoria mnogości i algebra logiki. Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyka Lab 1 Teoria mnogości i algebra logiki Harmonogram zajęć Układy przełączające: 1. Algebra logiki - Wprowadzenie 2. Funkcje logiczne - minimalizacja funkcji 3. Bramki logiczne - rysowanie układów

Bardziej szczegółowo

Technika Cyfrowa. dr inż. Marek Izdebski Kontakt: Instytut Fizyki PŁ, ul. Wólczańska 219, pok. 111, tel ,

Technika Cyfrowa. dr inż. Marek Izdebski Kontakt: Instytut Fizyki PŁ, ul. Wólczańska 219, pok. 111, tel , Technika Cyfrowa dr inż. Marek Izdebski Kontakt: Instytut Fizyki PŁ, ul. Wólczańska 29, pok., tel. 42 633667, e-mail: izdebski@p.lodz.pl Strona internetowa (materiały do wykładu i lab.): fizyka.p.lodz.pl/pl/dla-studentow/tc/

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje

Bardziej szczegółowo

Badanie i pomiary elektronicznych układów cyfrowych 725[01].O1.05

Badanie i pomiary elektronicznych układów cyfrowych 725[01].O1.05 MINISTERSTWO EDUKACJI NARODOWEJ Agnieszka Ambrożejczyk-Langer Badanie i pomiary elektronicznych układów cyfrowych 725[01].O1.05 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie

SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1 Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 2 Stan

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo