UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania."

Transkrypt

1

2 UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy przełączające. Złożoność logiczna i szybkość działania takich układów jest jednak niewielka, natomiast ich rozmiary, ciężar, pobór mocy i koszt są duże. Najpowszechniej stosowane układy cyfrowe wytwarzane są technologią mikoroelektroniczną jako układy scalone.

3 UKŁAD SCALONY Układ scalony stanowi fizycznie wykonany mikrominiaturowy układ elektroniczny, którego część lub wszystkie elementy i ich połączenia są wytworzone we wspólnym procesie technologicznym, wewnątrz lub na powierzchni wspólnego podłoża. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.

4 Układy sekwencyjne i kombinacyjne Ze względu na sposób przetwarzania informacji wyróżniamy dwie grupy układów cyfrowych: sekwencyjne oraz kombinacyjne. W układach sekwencyjnych wynik na wyjściu zależy od stanu na wejściu oraz stanu poprzedniego. Stan poprzedni nazywany jest stanem wewnętrznym i przechowywany jest w wewnętrznej pamięci układu zwanej REJESTREM.

5 Układy sekwencyjne i kombinacyjne Wyróżniamy dwie odmiany układów sekwencyjnych asynchroniczne i synchroniczne. Układy kombinacyjne charakteryzują się tym, że ich stan wyjściowy zależy wyłącznie od stanu na wejściu.

6 Układy bipolarne i unipolarne Układy cyfrowe dzielimy również ze względu na technologię wytwarzania tranzystorów, z których wytwarzane są funktory logiczne. Wyróżniamy układy bipolarne i unipolarne.

7 Układy bipolarne i unipolarne Układy bipolarne TTL (ang. Transistor-Transistor Logic) jedna z najstarszych odmian układów scalonych, zaprojektowanych w 1961 była pierwszą techniką masowej produkcji cyfrowych układów scalonych, układy cyfrowe w standardzie TTL są nadal w szerokim użyciu. Układ scalony SN7400N

8 TTL - Transistor-Transistor Logic Układy TTL zbudowane są z tranzystorów bipolarnych i zasila się je napięciem stałym 5 V. Działają w logice dodatniej - sygnał niski jest zdefiniowany jako napięcie od 0 V do 0,8V, a wysoki 2 V do 5 V. Układy TTL pobierają w stanie statycznym ze źródła zasilania dużo prądu, a im szybszy układ, tym pobór mocy jest większy.

9 Układy bipolarne i unipolarne Układy unipolarne CMOS (ang. Complementary MOS) budowane są na bazie tranzystorów polowych MOS dzięki czemu charakteryzują się małym poborem mocy. Układy CMOS mogą być zasilane szerszym zakresem napięć niż TTL, w zależności od wersji może to być od 2 do 6 V lub od 3 do 15 V. Większość układów dla komputerów budowana jest w technologii CMOS. Matryca CMOS

10

11 Układy komutacyjne są to układy umożliwiające przełączanie (komutację) sygnałów cyfrowych.

12 Do układów komutacyjnych zaliczamy kodery, dekodery, transkodery, multipleksery i demultipleksery.

13 Binary Coded Decimal Kody dwójkowo-dziesiętne nazywane kodami NBC. Kod 1 z n. np. zastosowany w klawiaturze komputerowej jeżeli jeden przycisk jest wciśnięty to reszta jest zblokowana.

14

15 Kodery (enkodery) są to układy realizujące proces zamiany informacji kodowanej w kodzie 1 z n na kod wewnętrzny urządzenia (kod, w którym pracuje system). Znajduje on zastosowanie np. do wprowadzania informacji z prostej klawiatury i tłumaczenie jej na kod zrozumiały dla układu cyfrowego.

16 Przykład kodera TTL EI A B C GS EO 1 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

17

18 Dekoder działa odwrotnie do kodera, tzn. zamienia kod dwójkowy na wejściu na określony kod wyjściowy 1 z n. Ma więc n wyjść, przy czym każdemu ze słów wejściowych jest przyporządkowany sygnał aktywny (zwykle logiczne zero), pojawiający się tylko na wybranym, jednym z n wyjść (pozostałe zmienne wyjściowe mają wartość przeciwną). Przykładem dekodera jest układ scalony TTL 7442

19 Przykład dekodera TTL 7442 A0 A1 A2 A

20

21 Transkoderami nazywamy układy zmieniające jeden kod na inny, z których żaden nie jest kodem typu 1 z n. Najczęściej stosowanym transkoderem jest układ TTL 7447 zamieniający kod BCD 8421 na kod wskaźnika siedmiosegmentowego.

22 Układ TTL 7447

23

24 Multipleksery (zwane selektorami danych) służą do wyboru jednego z kilku sygnałów wejściowych i przekazania go na wyjście układu. Jest układem przełączającym sygnały cyfrowe.

25 Multiplekser jest układem posiadającym k wejść informacyjnych (zwanych też wejściami danych), n wejść adresowych (sterujących) (zazwyczaj k=2^n) i jedno wyjście y. Posiada też wejście sterujące działaniem układu oznaczane S. Jego działanie polega na połączeniu jednego z wejść x z wyjściem y. Numer wejścia jest określany przez podanie jego numeru na linie adresowe a.

26

27 Demultipleksery umożliwiają przesłanie do jednego z wyjść układu sygnału doprowadzonego do jego wejścia. Pozostałe wyjścia pozostają w jednym ze stanów ( niskim (0) lub wysokim (1)) w zależności od typu demultipleksera.

28 Demultiplekser jest układem posiadającym jedno wejście x, n wejść adresowych, oraz k wyjść (zazwyczaj k=2n). Jego działanie polega na połączeniu wejścia x do jednego z wyjść y. Numer wyjścia jest określany przez podanie jego numeru na linie adresowe a 0... a n-1.

29 Multipleksery i demultipleksery służą do budowy złożonych układów kombinacyjnych, przede wszystkim toru transmisji danych cyfrowych. W technice komputerowej multipleksery i demultipleksery mają zastosowanie m.in. W sterowaniu klawiaturą, czy układami adresowania pamięci RAM.

30

31 Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego przetwarzania informacji. Przerzutnik współtworzy najniższe piętro struktury układu i zdolny jest do zapamiętania jednego bitu informacji. Grupa czterech lub ośmiu połączonych ze sobą przerzutników tworzy następne, wyższe piętro - tzw. rejestr, zdolny już do pamiętania jednego bajtu informacji.

32 Przerzutniki stosuje sie do przechowywania małych ilości danych, do których musi być zapewniony ciągły dostęp. Jest to spowodowane fizycznymi i funkcjonalnymi cechami przerzutników. Są one większe od pojedynczej komórki pamięci, ale pozwalają pozostałym częściom układu na bezpośredni dostęp do przechowywanych danych.

33 Ze względu na łatwy odczyt i zapis, przerzutniki są szczególnie często stosowane w celu: Pamiętania stanu układu, Przechowywania obecnie przetwarzanego słowa danych, Implementacji liczników

34 Przerzutniki możemy podzielić na: Asynchroniczne pracują bez sygnału taktującego, a stan przerzutnika ustala się bezpośrednio w wyniku zmiany stanu wejść, Synchroniczne pracujące z udziałem sygnału taktującego, a stan wejść informacyjnych jest przekazywany na wejście w chwili występowania określonego poziomu sygnału taktującego.

35 Wyróżniamy: Przerzutnik typu D Przerzutnik typu T Przerzutnik typu RS Przerzutnik typu JK

36 Przerzutnik typu D Ma jedno wejście informacyjne D, wyjście zegarowe C oraz dwa wyjścia proste i zanegowane. Może mieć wejście programujące s i r. D Q(t) Q(t+1) Tablica stanów Symbol graficzny

37 Przerzutnik typu T Ma jedno wejście informacyjne T, wyjście zegarowe C oraz dwa wyjścia proste i zanegowane. Może mieć wejście programujące s i r. T Q(t) Q(t+1) Tablica stanów Symbol graficzny

38 Przerzutnik typu RS Ma dwa wejścia informacyjne S i R, wyjście zegarowe C oraz dwa wyjścia proste i zanegowane. Symbol graficzny

39 Przerzutnik typu JK Ma dwa wejścia informacyjne J i K, wyjście zegarowe C oraz dwa wyjścia proste i zanegowane. Może mieć wejście programujące s i r.

40

41 Licznik zbudowany jest najczęściej z kilku równolegle lub szeregowo połączonych przerzutników, zaliczany jest do układów cyfrowych sekwencyjnych i służy do zliczania i pamiętania liczby impulsów podawanych na jego wejście zliczające. Każdy licznik ma określoną pojemność P (długość cyklu), tzn. może zliczyć określoną liczbę impulsów. Pojemność zależy od liczby przerzutników n wchodzących w skład licznika i wynosi P = 2 n

42 PODZIAŁ LICZNIKÓW: 1. Ze względu na liczbę P stanów występujących w jednym pełnym cyklu zliczania; 2. Pod względem długości cyklu; 3. Pod względem kierunku zliczania: jednokierunkowe liczące w przód (dodające), jednokierunkowe liczące wstecz (odejmujące), dwukierunkowe rewersyjne (dodające i odejmujące) 4. Pod względem sposobu oddziaływania impulsów: asynchroniczne (szeregowe), synchroniczne (równolegle), asynchroniczno synchroniczne.

43 Liczniki szeregowe i równoległe Licznik złożony z n przerzutników, który jest w stanie zliczyć do 2 n impulsów nazywa się szeregowymi. Poza zliczaniem bywają one wykorzystywane do dzielenia częstości. Wadą liczników szeregowych jest występowanie stanów nieustalonych. Czas trwania stanu nieustalonego jest tym dłuższy, im większa jest liczba przerzutników. Szybkie liczniki o dużej pojemności buduje się więc jako liczniki równoległe.

44 Licznik scalony 90 układ ten zawiera cztery przerzutniki synchroniczne typu MS, z których pierwszy (A) jest jednobitowym licznikiem, a trzy pozostałe (D, C, B,) tworzą licznik mod5. Trzy przerzutniki (A, B, C,) są przerzutnikami typu JK, a czwarty przerzutnik (D) jest przerzutnikiem RS.

45

46

47 SUMATORY SUMATOR to cyfrowy układ kombinacyjny, który wykonuje operacje dodawania dwóch (lub więcej) liczb dwójkowych. Wyróżniamy dwa główne rodzaje sumatorów: z przeniesieniami szeregowymi (dodają podczas każdej operacji dwa bity składników oraz bit przeniesienia), z przeniesieniami równoległymi (wielopozycyjne, składające się z kilku sumatorów jednobitowych).

48 Do sumatorów równoległych zaliczymy: sumatory z przeniesieniem szeregowym oraz z przeniesieniem równoległym.

49

50 Rejestry Rejestry są układami sekwencyjnymi zbudowanymi z przerzutników, najczęściej synchronicznych typu D, i służących do przechowywania informacji. Liczba bitów informacji, jaka może być przechowywana w rejestrze, jest nazywana długością rejestru i odpowiada zawsze liczbie przerzutników, z których jest zbudowany rejestr.

51 Wprowadzanie informacji do rejestru Informacja może być wprowadzana do rejestru na dwa sposoby: szeregowo (bit po bicie w takt sygnału zegarowego) równolegle (całe słowo wejściowe jest zapisywane jednocześnie w chwili wyznaczonej przez sygnał taktujący) Wyprowadzenie informacji przechowywanej w rejestrze może także odbywać się na te dwa sposoby.

52 W związku z tymi sposobami wprowadzania informacji wyróżnia się następujące rodzaje rejestrów: szeregowo-szeregowy, zapis i odczyt jest realizowany szeregowy szeregowo-równoległy, zapis informacji odbywa się szeregowo, a wyprowadzana równolegle równolegle-szeregowy, zapis jest realizowany równolegle a odczyt szeregowo równolegle-równoległy, zapis i odczyt dobywa się równolegle

53 Parametry rejestrów długość rejestru jest równa liczbie przerzutników n, pojemność rejestru jest równa 2n i określa maksymalną ilość różnych informacji, które mogą być zapamiętane w rejestrze, szybkość pracy rejestru dla rejestru równoległego będzie to czas trwania wprowadzenia i wyprowadzenia informacji; dla rejestru szeregowego będzie to maksymalna częstotliwość impulsów zegarowych, przy której przesuwanie kombinacji nie ulega jeszcze zniekształceniu

54 Budowa i zasada działania rejestrów Najprostszym rejestrem jest przerzutnik typu D. Rejestry powszechnie występują w procesorach, układach wejścia-wyjścia.

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

Podstawy elektroniki cz. 2 Wykład 2

Podstawy elektroniki cz. 2 Wykład 2 Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW e-version: dr inż. Tomasz apłon INTYTUT YBENETYI TEHNIZNE PLITEHNII WŁAWIE ZAŁA ZTUZNE INTELIGENI I AUTMATÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 23 temat: UŁAY EWENYNE. EL ĆWIZENIA

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Liczniki scalone

Podstawy Techniki Cyfrowej Liczniki scalone Podstawy Techniki Cyfrowej Liczniki scalone Liczniki scalone są budowane zarówno jako asynchroniczne (szeregowe) lub jako synchroniczne (równoległe). W liczniku równoległym sygnał zegarowy jest doprowadzony

Bardziej szczegółowo

Funkcja Boolowska a kombinacyjny blok funkcjonalny

Funkcja Boolowska a kombinacyjny blok funkcjonalny SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Funkcja Boolowska a kombinacyjny blok funkcjonalny Kombinacyjny blok funkcjonalny w technice cyfrowej jest układem kombinacyjnym złożonym znwejściach

Bardziej szczegółowo

Układy kombinacyjne. cz.2

Układy kombinacyjne. cz.2 Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

Układy Logiczne i Cyfrowe

Układy Logiczne i Cyfrowe Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

Temat: Pamięci. Programowalne struktury logiczne.

Temat: Pamięci. Programowalne struktury logiczne. Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w

Bardziej szczegółowo

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne... Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki

Bardziej szczegółowo

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55 Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )

Bardziej szczegółowo

Temat 5. Podstawowe bloki funkcjonalne

Temat 5. Podstawowe bloki funkcjonalne Temat 5. Podstawowe bloki funkcjonalne Spis treści do tematu 5 5.. Cyfrowe bloki komutacyjne 5.2. Przerzutniki 5.3. Liczniki 5.4. Rejestry 5.6. Układy arytmetyczne 5.7. Literatura fizyka.p.lodz.pl/pl/dla-studentow/tc/

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi.

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi. 72 WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. ą najprostszymi układami pamięciowymi. PZEZUTNIK WY zapamietanie skasowanie Przerzutmik zapamiętuje zmianę

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Magistrale W układzie bank rejestrów do przechowywania danych. Wybór źródła danych

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Elektryczna implementacja systemu binarnego.

Elektryczna implementacja systemu binarnego. Elektryczna implementacja systemu binarnego. Cela kształcenia: Zna symbole graficzne i działania logiczne bramek: Bramka OR; Bramka AND; Bramka NOT - inwerter Bramki; NAND i NOR; Bramka XOR - ExclusixeOR.

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania. Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne X Selektor ROM ROM AND Specjalizowane układy cyfrowe

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych

1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych .Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE

LABORATORIUM ELEKTRONIKI UKŁADY KOMBINACYJNE LORTORIUM ELEKTRONIKI UKŁDY KOMINCYJNE ndrzej Malinowski 1. Układy kombinacyjne 1.1 Cel ćwiczenia 3 1.2 Podział kombinacyjnych układów funkcjonalnych 3 1.3 Układy komutacyjne 3 1.3.1 Układy zmiany kodów

Bardziej szczegółowo

Sekwencyjne bloki funkcjonalne

Sekwencyjne bloki funkcjonalne ekwencyjne bloki funkcjonalne Układy sekwencyjne bloki funkcjonalne 2/28 ejestry - układy do przechowywania informacji, charakteryzujące się róŝnymi metodami jej zapisu lub odczytu a) b) we wy we... we

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

Cyfrowe układy scalone

Cyfrowe układy scalone Ryszard J. Barczyński, 2 25 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy cyfrowe stosowane są do przetwarzania informacji zakodowanej

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

Kombinacyjne bloki funkcjonalne - wykład 3

Kombinacyjne bloki funkcjonalne - wykład 3 SWB - Kombinacyjne bloki funkcjonalne - wykład 3 asz 1 Kombinacyjne bloki funkcjonalne - wykład 3 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Kombinacyjne bloki funkcjonalne

Bardziej szczegółowo

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia Opracował: mgr inż. Antoni terna ATEDA INFOMATYI TEHNIZNE Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 203 Temat: Układy sekwencyjne 1. el ćwiczenia elem ćwiczenia jest zapoznanie się z

Bardziej szczegółowo

Kombinacyjne bloki funkcjonalne

Kombinacyjne bloki funkcjonalne Sławomir Kulesza Technika cyfrowa Kombinacyjne bloki funkcjonalne Wykład dla studentów III roku Informatyki Wersja., 5//2 Bloki cyfrowe Blok funkcjonalny to układ cyfrowy utworzony z pewnej liczby elementów

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości.

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. TECHNOLOGE CYFOWE kłady elektroniczne. Podzespoły analogowe. Podzespoły cyfrowe Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. Wielkość cyfrowa w danym

Bardziej szczegółowo

Ćwiczenie Digital Works 003 Układy sekwencyjne i kombinacyjne

Ćwiczenie Digital Works 003 Układy sekwencyjne i kombinacyjne TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL Temat: Narzędzia: Digital Works pakiet

Bardziej szczegółowo

Układy cyfrowe. Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Układy cyfrowe. Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Układy cyfrowe Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Bramki logiczne i ich tablice prawdy. Cela kształcenia: Zna symbole graficzne i działania logiczne bramek:

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 5 Rok akademicki: Wydział:

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne Evatronix KontrolerEthernet MAC (Media Access Control)

Bardziej szczegółowo

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

Podstawy techniki cyfrowej cz.2 wykład 3 i 5

Podstawy techniki cyfrowej cz.2 wykład 3 i 5 Podstawy techniki cyfrowej cz.2 wykład 3 i 5 Rafał Walkowiak Wersja 0.1 29.10.2013 Układy cyfrowe Ogólna struktura logiczna: Wej ster Dane bloki funkcjonalne dla realizacji określonych funkcji przetwarzania

Bardziej szczegółowo

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka PAMIĘCI Część 1 Przygotował: Ryszard Kijanka WSTĘP Pamięci półprzewodnikowe są jednym z kluczowych elementów systemów cyfrowych. Służą do przechowywania informacji w postaci cyfrowej. Liczba informacji,

Bardziej szczegółowo

Podział układów cyfrowych. rkijanka

Podział układów cyfrowych. rkijanka Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych

Bardziej szczegółowo

Ćwiczenie 27C. Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych

Ćwiczenie 27C. Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych Ćwiczenie 27C Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych Cel ćwiczenia Poznanie budowy i zasad działania oraz właściwości układów synchronicznych, aby zapewnić podstawy

Bardziej szczegółowo

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.

Bardziej szczegółowo

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE Podstawowymi bramkami logicznymi są układy stanowiące: - funktor typu AND (funkcja

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje

Bardziej szczegółowo

Podstawy Informatyki JA-L i Pamięci

Podstawy Informatyki JA-L i Pamięci Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Operator elementarny Proste układy z akumulatorem Realizacja dodawania Realizacja JAL dla pojedynczego bitu 2 Parametry

Bardziej szczegółowo

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać

Bardziej szczegółowo

LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY. Rev.1.1

LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY. Rev.1.1 LABORATORIUM TECHNIKA CYFROWA LICZNIKI I REJESTRY Rev.1.1 1. Cel ćwiczenia Praktyczna weryfikacja wiedzy teoretycznej z zakresu projektowania układów kombinacyjnych oraz arytmetycznych 2. Projekty Przy

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych REJESTRY Laboratorium Techniki Cyfrowej i Mikroprocesorowej Ćwiczenie IV Opracowano na podstawie

Bardziej szczegółowo

UKŁADY MIKROPROGRAMOWALNE

UKŁADY MIKROPROGRAMOWALNE UKŁAD MIKROPROGRAMOWALNE Układy sterujące mogą pracować samodzielnie, jednakże w przypadku bardziej złożonych układów (zwanych zespołami funkcjonalnymi) układ sterujący jest tylko jednym z układów drugim

Bardziej szczegółowo

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci

PAMIĘĆ RAM. Rysunek 1. Blokowy schemat pamięci PAMIĘĆ RAM Pamięć służy do przechowania bitów. Do pamięci musi istnieć możliwość wpisania i odczytania danych. Bity, które są przechowywane pamięci pogrupowane są na komórki, z których każda przechowuje

Bardziej szczegółowo

Instrukcja do ćwiczenia : Matryca komutacyjna

Instrukcja do ćwiczenia : Matryca komutacyjna Instrukcja do ćwiczenia : Matryca komutacyjna 1. Wstęp Każdy kanał w systemach ze zwielokrotnieniem czasowym jest jednocześnie określany przez swoją współrzędną czasową T i współrzędną przestrzenną S.

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28 Spis treści CZE ŚĆ ANALOGOWA 1. Wstęp do układów elektronicznych............................. 10 1.1. Filtr dolnoprzepustowy RC.............................. 13 1.2. Filtr górnoprzepustowy RC..............................

Bardziej szczegółowo

Asynchroniczne statyczne układy sekwencyjne

Asynchroniczne statyczne układy sekwencyjne Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

O systemach liczbowych

O systemach liczbowych O systemach liczbowych 1. Systemy liczbowe Literatura:Turski,Propedeutyka...;Skomorowski,... 1.1. Dwójkowy system pozycyjny W dziesiętnym systemie pozycyjnym ciąg cyfr 321.23 oznacza liczbę 3 10 2 +2 10

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające 2 Cyfrowe układy sekwencyjne Cel ćwiczenia LABORATORIUM ELEKTRONIKI Celem ćwiczenia jest zapoznanie się z cyfrowymi elementami pamiętającymi, budową i zasada działania podstawowych przerzutników oraz liczników

Bardziej szczegółowo

SYSTEMY WBUDOWANE I MIKROPROCESORY. Aleksandra Zalewska nr SPRAWOZDANIE NR 1

SYSTEMY WBUDOWANE I MIKROPROCESORY. Aleksandra Zalewska nr SPRAWOZDANIE NR 1 2013 SYSTEMY WBUDOWANE I MIKROPROCESORY Aleksandra Zalewska nr 14169 SPRAWOZDANIE NR 1 1 QUARTUS II WPROWADZENIE DO QUARTUSA Program Quartus II firmy Altera jest programem umożliwiającym na projektowanie

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 13 Podstawy elektroniki cyfrowej (układy logiczne kombinacyjne i sekwencyjne) Bramki z otwartym kolektorem/drenem

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Ćwiczenie: Badanie liczników oraz pamięci RAM

Ćwiczenie: Badanie liczników oraz pamięci RAM Badanie liczników i pamięci RAM 1 Ćwiczenie: Badanie liczników oraz pamięci RAM Liczniki Licznikiem nazywamy cyfrowy układ sekwencyjny służący do zliczania i zapamiętywania liczby impulsów podawanych w

Bardziej szczegółowo

Programowanie sterowników PLC wprowadzenie

Programowanie sterowników PLC wprowadzenie Programowanie sterowników PLC wprowadzenie Zakład Teorii Maszyn i Automatyki Katedra Podstaw Techniki Felin p.110 http://ztmia.ar.lublin.pl/sips waldemar.samociuk@up.lublin,pl Sterowniki programowalne

Bardziej szczegółowo

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE 3. BLOKI KOMUTACYJNE 3.. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi układami komutacyjnymi. Ćwiczenie wykonywane jest na modułowym zestawie elementów logicznych UNILOG-2. 3.2. PODSTAWOWE

Bardziej szczegółowo

CZ1. Optymalizacja funkcji przełączających

CZ1. Optymalizacja funkcji przełączających CZ1. Optymalizacja funkcji przełączających 1. Proszę opisać słownie metodę i dokonać optymalizacji łącznej następujących funkcji (najmłodszy bit wejścia proszę oznaczyć A) : F1=SUM m(1,3,5,7,9,13,15) F2=SUM

Bardziej szczegółowo

Układy TTL i CMOS. Trochę logiki

Układy TTL i CMOS. Trochę logiki Układy TTL i CMOS O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

LICZNIKI. Liczniki asynchroniczne.

LICZNIKI. Liczniki asynchroniczne. LICZNIKI Liczniki asynchroniczne. Liczniki buduje się z przerzutników. Najprostszym licznikiem jest tzw. dwójka licząca. Łatwo ją otrzymać z przerzutnika D albo z przerzutnika JK. Na rys.1a został pokazany

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów

Bardziej szczegółowo