PRÓBNA MATURA ZADANIA PRZYKŁADOWE
|
|
- Radosław Kubiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba 00% x 5 % x 6 5% 6 5 x 6 00% x 000 5% x 6 00% x 6 / % x 5% x 0 x 0 odp. D ) Pewien towar kosztował 00 zł. Jego cenę podniesiono o 5%. Towar kosztuje teraz: A. 03 zł C. 0 zł. 5 zł D. 30 zł % odp. D 00 3) uty, które kosztowały 80 zł, przeceniono i sprzedano za zł. Obniżka wynosiła: A. 80% C. 5%. 36% D. 0% obniżka ceny butów II sposób: II sposób: x 36 x nieznany procent 00% 80 x % x % x % 9 5 x 6 / 5 9 x x 0% 36 00% x 0 odp. D
2 5 3 ) Wyrażenie ( : 5 ): ( 5 : 5 ) ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 5 jest równe: A C. 5 D ( : 5 ): ( 5 : 5 ) : : odp. 5) Która z poniższych liczb jest równa? A. A 3 0,0 0 C. ( 0,) ,0 0, C. ( 0,) 0 D. 0 : ( 0,0) 0 0 mnożąc przez 000 przesuwam przecinek w ułamku 0,0 o 3 miejsca w prawą stronę D. 0 : ( 0,0) 00 : ) Jeśli a - i b +, to iloraz b a jest równy: A. C D : 00 odp. D 00 a usuwam niewymierność w mianowniku mnożąc licznik i mianownik przez b + wyrażenie z mianownika z przeciwnym znakiem czyli + ( ) 7) Przedział zaznaczony na osi liczbowej: odp. D jest zbiorem rozwiązań nierówności: A. x C. x 3. x D. x 7 Wzór na odległość między liczbami a b Obliczam odległość między liczbami i 7, wynosi ona 6 i obliczam środek odległości między tymi liczbami, 6 : 3. Zaznaczam x w miejscu. Odległość od jest mniejsza bądź równa 3 x 3 odp. C
3 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 3 8) Dziedziną funkcji jest: A. 0;,. ;, C. 0;, ; 0 ;. D. ( ) x x x ( x) x lub x 0 x / ( ) x 0 x Rozwiązaniem jest część wspólna obu przedziałów, czyli x 0;. II sposób: x x 0 x ( x) 0 Traktujemy tą nierówność jako równanie kwadratowe, czyli x ( x) 0 x 0 lub x 0 x Oba rozwiązania nanosimy na oś OX i rysujemy parabolę dla a < 0, zatem jej ramiona są skierowane do dołu. Następnie patrzymy na znak nierówności ( ), a więc szukamy argumentów x, dla których x x przyjmuje wartości dodatnie, czyli innymi słowy odpowiadający wykres leży nad osią OX. 0 x x 0; odp. C 9) Na rysunku obok przedstawiono wykres funkcji f : - 5; 8 R.Funkcja f jest niemalejąca w przedziale: A. ; 5 C. 5;. ; 8 D. 5; 8 Funkcja niemalejąca składa się z funkcji stałej i rosnącej. ; 8 odp.
4 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 0) Na rysunku obok przedstawiono wykres funkcji f : - 3; 8 R. Największa wartość tej funkcji w przedziale 0 ; 5 jest równa: A. C. 3. D. 0 Największa wartość y odp. A ) Jeśli dziedziną funkcji f(x) - x + jest przedział 0 ;, to jej zbiorem wartości jest przedział: A. 0 ;, C. ;,. 0 ;, D. ;. x 0 f(x) - x + f(0) f() - + zbiór wartości ; odp. D ) Suma współrzędnych wierzchołka paraboli y (x ) + 3 jest równa: A. - C.. - D. W (p, q) Postać kanoniczna funkcji kwadratowej y a( x p) + q p, q 3 +3 odp. D 3) Zbiorem rozwiązań nierówności 5( x) (3x ) jest: A. ; C. ;,. ;, D. ;. 5( x) (3x ) 5 5x 6x / 5 6x 5x 6x 5 x / : ( ) x x ; odp. A
5 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 5 ) Funkcja f(x) x przyjmuje wartości ujemne dla: A. x (, ) (, ) C. x ;. x (, ) D. x ; ; Wykres funkcji y x przesuwam o w dół wzdłuż osi y x y x 0 f (- ) (- ) f (- ) (- ) f (0) 0 0 f () f () 5) Równanie x - x + 0: A. ma jedno rozwiązanie C. nie ma rozwiązań. ma dwa rozwiązania D. ma trzy rozwiązania Wartości ujemne znajdują się pod osią x x ( -, ) odp. a, b -, c b - ac (-) Ponieważ < 0, więc równanie nie ma rozwiązań odp. C 6) Prosta x + y 5 0 jest prostopadła do prostej: A. y x 5, C. y x. y x D. y x + 5 Prosta l : x + y 5 0 po przekształceniu do postaci kierunkowej y x + 5, czyli a Warunek prostopadłości ( l k) a a a / : a ( ) Ponieważ współczynnik kierunkowy a prostej k prostopadłej do prostej l jest równy, więc prosta k ma postać y x 5 odp. A
6 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 6 7) Równanie x+ 6: A. nie ma rozwiązań,. ma rozwiązanie, C. ma rozwiązania, D. ma rozwiązania (x + ) 6 0 korzystamy ze wzoru skróconego mnożenia: (a + b) a + ab + b x + x x + x 0 a, b, c - b - ac - ( ) Ponieważ > 0, więc równanie ma rozwiązania. odp. C 8 ) Jeśli pole trójkąta równobocznego jest równe 9 3, to bok tego trójkąta ma długość: A. 3 C., D. 6 P 9 3 a? P a a 3 / 36 a a / : 3 a 36 a a odp. D 9) Jeżeli kąt α jest kątem ostrym oraz sinα, to: A. α 30 0 C. 0 0 <α < <α <90 0 D. α 60 0 Gdy sinα, to α 30 0 odp. A 0) Jeżeli kąt α jest kątem ostrym oraz cos α, to: A. 0 0 <α <30 0 C. α <α <60 0 D <α <90 0 Gdy cosα, to α 5 0 odp. ) Jeżeli jest kątem ostrym i sinα cos80, to: A. α80,. α0, C. α0, D. α0. Gdy cos 80 0 cos ( ) sin 0 0, czyli α 0 0 odp. D
7 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 7 ) Jeżeli α jest kątem ostrym oraz tgα, to wartość wyrażenia A. 3,.,5, C., D.,5. cosα + sinα cosα jest równa: cosα + sinα cosα cosα sinα + cosα cosα + tgα + 3 odp. A 3) Promień okręgu opisanego na prostokącie o bokach długości 3 i jest równy: A.,5 C.,5. D. 5 Twierdzenie Pitagorasa 3 + d d 5 d d 5 d 5 d r r d : r 5 : r,5 3 d odp. C ) Dany jest odcinek o końcach A(, -) i (a, ). Jeżeli A 5, to: A. a - C. a 6. a D. a - 6 Gdy a, to A y y ( ) A odp. 5) Jeżeli punkt S(, 0) jest środkiem odcinka o końcach A(3, ) i, to: A. (; - ) C. (5, ). (3; ) D. (; ) x A + x x S, y S x S y A + y x A, y A y S S (, 0 ) A ( 3, ) Podstawiam x A 3 i x S do wzoru Podstawiam y A i y S 0 do wzoru 3 + x + y / 0 / 3 + x / y 0 / - x y - (, - ) odp. A
8 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 8 6) Równoboczny trójkąt AP jest wpisany w okrąg. Prosta l jest styczna do okręgu w punkcie P (rysunek obok). Wówczas: A. α 30 0 C. α α < 30 0 D. α > 60 0 A l P α Trójkąt AP ma każdy kąt równy 60 0, wysokość w trójkącie AP dzieli kąt PA na pół, czyli kąt DPA D A L α P Wysokość w trójkącie zawiera promień okręgu, który jest prostopadły do prostej l. α odp. C 7) Okrąg o środku O(-, ) i promieniu 3 ma równanie: A. (x ) +(y + ) 9 C. (x + ) +(y - ) 9. (x ) +(y + ) 3 D. (x + ) +(y - ) 3 Równanie okręgu ( x a) + ( y b) r a, b współrzędne środka okręgu (x (-)) +(y - ) 3 (x + ) +(y - ) 9 odp. C 8) Na rysunku przedstawiono trapez równoramienny o podstawach długości 6 cm i 0 cm oraz wysokości cm. 6 cm cm 0 cm Ramię tego trapezu ma długość: A. cm C. 5 cm. cm D. cm
9 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 9 W trapezie równoramiennym zawsze dorysowujemy drugą wysokość. 6 cm c cm cm. c x 0 cm x x (0 6) : : twierdzenie Pitagorasa c x + c c + c c + c c 8 c 8 odp. 9) Punkt O jest środkiem okręgu (rysunek obok). Kąt α ma miarę równą: A. 0 0, C. 35 0,. 30 0, D Kąt środkowy oparty na półokręgu jest kątem prostym, więc 70 + α 90, czyli kąt α ) Kąt α (rysunek obok) ma miarę równą: A. 70 0, C. 5 0,. 5 0, D odp. A
10 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 0 Kąt β i γ to kąty środkowe, zaś kąt α i kąt 35 0 to kąty wpisane w okrąg. Kąt wpisany w okrąg jest równy połowie kąta środkowego opartego na tym samym łuku, czyli zgodnie z rysunkiem powyżej 35 γ / 70 γ Kąt β i γ tworzy kąt pełny, więc β 360 γ 90. Dodatkowo kąt α wpisany w okrąg jest równy połowie kąta środkowego opartego na tym samym łuku, czyli kąta β, a więc α β 5. odp. C 3) Dany jest okrąg o równaniu Prosta x0: A. Nie ma punktów wspólnych z tym okręgiem,. Ma z tym okręgiem punkty wspólne, między którymi odległość jest równa 5, C. Ma z tym okręgiem punkty wspólne, między którymi odległość jest równa 8, D. Ma z tym okręgiem punkty wspólne, między którymi odległość jest równa 0. Równanie okręgu ( x a) + ( y b) r a, b współrzędne środka okręgu, r - promień okręgu (x + 5) + y 6 (x (-5)) +(y - 0) Czyli S (-5; 0) i r Rysując okrąg o podanych parametrach bez problemu można zauważyć, że okrąg o równaniu z prostą 0 nie ma punktów wspólnych. odp. A
11 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 3) Prosta określona za pomocą równania y x+3 ogranicza, wraz z osiami układu współrzędnych, trójkąt o polu równym: A.,. 6, C. 7, D.. x y 3 x Otrzymujemy trójkąt OA o postawie OA i wysokości O 3. Pol trójkąta obliczamy ze wzoru: P ah OA O 3 6 odp.
12 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR Z A D AN I A O T W A R T E Zadanie. ( pkt) ok sześciokąta foremnego ACDEF ma długość 6 cm. Oblicz promień koła wpisanego w trójkąt ACE. D E R C r. h 6 F A Promień okręgu opisanego na sześciokącie foremnym jest równy długości boku sześciokąta foremnego czyli 6 cm Promień okręgu opisanego na sześciokącie foremnym równa się 3 wysokości trójkąta równobocznego ACE. R h 3 6 h 3 / 3 8 h / : 9 cm h Promień okręgu wpisanego w trójkąt równoboczny równa się 3 wysokości trójkąta równobocznego ACE. r 3 h r 9 3 r 3 cm Odpowiedź: Promień koła wpisanego w trójkąt ACE ma 3 cm.
13 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 3 Zadanie. ( pkt) Wyznacz równanie prostej prostopadłej do prostej x + y + 0 i przechodzącej przez punkt P (, 3). x + y + 0 P (, 3) Zamieniam równanie z postaci ogólnej na postać kierunkową, czyli wyznaczam y x + y + 0 / x y x zatem współczynnik kierunkowy a Dwie proste są względem siebie prostopadłe, gdy spełniony jest warunek:. Po przekształceniu, otrzymujemy warunek na współczynnik kierunkowy drugiej prostej: a a a a Podstawiam a oraz współrzędne punktu P (, 3) do wzoru y a x + b 3 + b 3 + b / - b y x + Odpowiedź: Równanie prostej prostopadłej to y x + Zadanie 3. (5 pkt) Punkt A (, 0) należy do okręgu stycznego do osi OX w punkcie (, 0). Wyznacz równanie tego okręgu oraz współrzędne jego punktów przecięcia z osią OY. Wyznaczam środek okręgu S (a, b), który leży w środku odcinka A xa + x xs ya + y ys + 8 x s y s 5 S (, 5), AS r 5 Równanie okręgu ( ) ( ) (x - ) +(y - 5) 5 (x - ) +(y - 5) 5 x a + y b r
14 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR Wyznaczam współrzędne punktów przecięcia z osią OY, czyli dla x 0 Podstawiam do równania okręgu x 0 (0 - ) +(y - 5) 5 (- ) +(y - 5) y - 0y / y - 0y y - 0y a b - 0 c 6 b - ac (-0) b ( 0) 6 y a b + ( 0) + 6 y a współrzędne punktów przecięcia z osią OY to (0, ) ; (0, 8) Odpowiedź: Równanie okręgu ma postać (x - ) +(y - 5) 5, a współrzędne punktów przecięcia z osią OY, to (0, ) ; (0, 8). Zadanie. ( pkt) Okrąg o promieniu 5 wpisano trójkąt prostokątny, którego jedna przyprostokątna jest dwa razy dłuższa od drugiej. Oblicz długość krótszej przyprostokątnej. x - długość krótszej przyprostokątnej x - długość dłuższej przyprostokątnej d - długość przeciwprostokątnej r 5 Wyznaczam przeciwprostokątną trójkąta, która jest średnicą d okręgu, czyli d 5 5 Korzystam z twierdzenia Pitagorasa: + x + x 5 x +x 80 5x 80/:5 x 6 x Odpowiedź: Długość krótszej przyprostokątnej jest równa. x x
15 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 5 Zadanie 5. ( pkt) Uzasadnij, że prosta y x + nie jest prostopadła do prostej przechodzącej przez punkty A ;3, 6;7. ( ) ( ) Równanie prostej można zapisać w postaci y ax + b i wyznaczyć z korzystając ze współrzędnych punktów A i, uzyskując w ten sposób układ dwóch równań z dwiema niewiadomymi: / Rozwiązując metodą przeciwnych współczynników mnożę pierwsze równanie przez -, a następnie dodaje wyrazy stronami a b + ( 6a) + b 5a /: ( 5) a > współczynnik kierunkowy drugiej prostej b 3 + a 3 Ostatecznie równanie drugiej prostej ma postać: y x Współczynnik kierunkowy pierwszej prostej odczytuje z równania prostej y x +, czyli a. Dwie proste są względem siebie prostopadłe, jeżeli iloczyn ich współczynników kierunkowych jest równy, zatem gdy proste nie są prostopadłe to jest spełniony warunek: W naszym przypadku, czy proste nie są prostopadłe co należało dowieść. Odpowiedź: Iloczyn współczynników kierunkowych obu prostych jest różny od, czyli proste nie są prostopadłe co należało dowieść.
16 ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR 6 Zadanie 6. ( pkt) Dla jakich wartości współczynnika k funkcja y x kx+ nie ma miejsc zerowych? Funkcja kwadratowa nie ma miejsc zerowych dla < 0 a b k c b ac ( k ) k 6 Zatem dostajemy nierówność: k 6 < 0 (k )(k + ) < 0 k 0 lub k + 0 k k Oba rozwiązania nanosimy na oś OX i rysujemy parabolę dla a > 0, zatem jej ramiona są skierowane do góry. Następnie patrzymy na znak nierówności (<), a więc szukamy argumentów x, dla których k 6 przyjmuje wartości ujemne, czyli innymi słowy odpowiadający wykres leży pod osią OX. k ( ;) x Odpowiedź: Funkcja kwadratowa x kx+ y nie ma miejsc zerowych dla ( ;) k.
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Rozwiązania listopad 2016 Zadania zamknięte = = = 2. = =1 (D) Zad 3. Październik x; listopad 1,1x; grudzień 0,6x. (D) Zad 5. #./ 0'!
Zad 1., Rozwiązania listopad 2016 Zadania zamknięte 2 2 4 2 Zad 2. log 50 log 2log log 252 czyli 1 Zad 3. Październik x; listopad 1,1x; grudzień 0,6x.!,!," średnia: 0,9& czyli średnia to 90% października
na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.
Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
LUBELSKA PRÓBA PRZED MATURA
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI LUBELSKA PRÓBA PRZED MATURA DLA KLAS TRZECICH POZIOM PODSTAWOWY GRUPA I 1 STYCZNIA 011 CZAS PRACY: 170 MINUT Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba
ARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik
Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.
lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
LUBELSKA PRÓBA PRZED MATURĄ
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY Stowarzyszenie Nauczycieli Matematyki www.snm.edu.pl KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami
Dopuszczający Dostateczny Dobry Bardzo dobry Celujący
Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie
ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)
Lista nr 1 LICZBY RZECZYWISTE Zad.1 Udowodnij równość: 5 3 10 27 = 10 3 5 9. Zad.2 Wartość wyrażenia (3 1 3 27 2 3 9 1 ) 3 4 zapisz w postaci pierwiastka z liczby wymiernej. Zad.3 Oblicz wartość wyrażenia:
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 16 MARCA 2019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba log 4 2 log 4
Próbny egzamin maturalny z matematyki Poziom podstawowy
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY
5 KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY DATA: 30 MAJA 2017 R. GODZINA ROZPOCZĘCIA: 9:000 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
x+h=10 zatem h=10-x gdzie x>0 i h>0
Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy
SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ
www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI SPRWZIN Z 1. SEMESTRU KLSY 2 ROZSZ ZNIE 1 (5 PKT) Funkcja f określona jest wzorem f (x) = (3m 5)x 2 (2m 1)x + 0, 25(3m 5). Wyznacz te wartości
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 2 Klasa 2
Klasa POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 8 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od. do 5.
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
Zadania zamknięte (0- pkt) Zadanie Jeżeli a = log 6 to a jest równe: 4 A. B. C. - Zadanie Warunek x ; 8 jest rozwiązaniem nierówności: A. x + 5 > B. x 5 C. x 5 x + 5 Zadanie Wskaż warunek, który opisuje
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy
LUBELSKA PRÓBA PRZED MATURĄ klasa poziom podstawowy Kod ucznia lub Nazwisko i imię M A T E M A T Y K A klasa - pp MAJA 018 Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-4).
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego.
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
k R { 5 }.Warunek zadania zapiszemy korzystając z wzorów Viette a:
Zadanie 0 Zbiór A, to półpłaszczyzna ograniczona prostą y -x+, zbiór B, to koło ośrodku S( ; 0) i promieniu r. Różnica B-A jest odcinkiem koła (bez cięciwy). ( ): Zbiory A m, to kwadraty o wierzchołkach
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,