Wprowadzenie do Mathcada 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do Mathcada 1"

Transkrypt

1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:. Zdefiniowanie funkcji kwadratowej f() a^ +b +c,. Wykonanie wykresu tej funkcji, 3. Utworzenie tablicy wartości funkcji,. Obliczenie miejsc zerowych,. Obliczenie pola powierzchni pod wykresem funkcji.. Zdefiniowanie współczynników a, b, c Postać danych w dokumencie (oddzielone przecinkami) a : a, : (dwukropek), b : analogicznie, jak wyżej c : analogicznie, jak wyżej. Zdefiniowanie funkcji Postać wzoru w dokumencie (oddzielone przecinkami) f( ) : a + b + c f(), : (dwukropek), a, *,, ^,, spacja, +, b, *,, +, c 3. Utworzenie wykresu funkcji Postać wykresu w dokumencie Opis czynności f( ) utworzyć okienko wykresu z klawiatury przez kombinacje klawiszy Shift+@. w pole opisu funkcji wpisać f() 3. w pole argumentu wpisać. w polach zakresu argumentu podać i. sformatować wykres przez podwójne kliknięcie i wybranie odpowiednich opcji: (Aes style -> crossed), (X-ais -> Grid Lines, Numbered), (Number of Grids -> ), (Y-ais - analogicznie). Obliczenie tablicy wartości funkcji.. Zdefiniowanie zbioru wartości argumentu - {.,.,.,., 3., 3..} ogólna postać wyrażenia: wartość początkowa, druga wartość, wartość końcowa Postać wzoru w dokumencie :,..., : (dwukropek),,, (przecinek),., ; (średnik), 7--7 Opracowanie: M.Slonski, ITIwIL PK

2 Wprowadzenie do Mathcada.. Obliczenie zbioru wartości funkcji f() f( ) f(),. Obliczenie miejsc zerowych funkcji kwadratowej Postać wzoru i obliczeń w dokumencie : b a c b : a b + : 3 a wycentrowanie tabelki:. wskazać kursorem tabelkę,. kliknąć prawy przycisk myszki, 3. wybrać Aligment/Center D, Ctrl+g, :, b, ^,, spacja, -, *, a, *, c D, Ctrl+g,,. (kropka),, :, - b, -, \, D, Ctrl+g, spacja, spacja, /,, *, a,.(kropka),, analogicznie do. Obliczenie pola powierzchni pod wykresem funkcji kwadratowej Postać wzoru i obliczeń w dokumencie f( ) Zadanie. d.33 &, f(), Tab,, Tab,, Tab,, spacja, Przygotuj dokument pokazujący na wykresach poniższe cztery wielomiany 3. stopnia. H ( ξ) : 3 ξ + ξ 3 H ( ξ) : ξ ξ + ξ 3 ξ H 3 ( ξ) : 3 ξ ξ 3 H ( ξ) : ξ + ξ 3 Porada: Aby otrzymać literę ξ naciśnij:, Ctrl+g. Ćwiczenie. - Interpolacja Lagrange'a Ćwiczenie. ilustruje kolejne kroki tworzenia dokumentu dotyczącego interpolacji pewnej funkcji za pomocą wielomianów bazowych Lagrange'a. stopnia. Dokument składa się z następujących elementów:. Zdefiniowanie funkcji interpolowanej f() sin()*e^,. Wykonanie wykresu f() w przedziale [,] z przyrostem., 3. Określenie węzłów interpolacji,. Obliczenie wartości funkcji interpolowanej w węzłach interpolacji,. Zdefiniowanie wielomianów bazowych Lagrange'a. stopnia,. Zdefiniowanie wielomianu interpolacyjnego φ(), 7. Wykonanie wykresu obu funkcji f() i φ(),. Zastosowanie funkcji pspline() i interp() do interpolacji funkcji Opracowanie: M.Slonski, ITIwIL PK

3 Wprowadzenie do Mathcada 3. Zdefiniowanie funkcji interpolowanej Postać wzoru w dokumencie g( ) : sin( ) ep( ). Utworzenie wykresu funkcji g( ) Postać wykresu w dokumencie (oddzielone przecinkami) g(), : (dwukropek), sin(), *, ep() Opis czynności :,..., : (dwukropek),,, (przecinek),., ; (średnik), Zdefiniowanie węzłów interpolacji : : :. utworzyć okienko wykresu z klawiatury przez kombinacje klawiszy Shift+@. w pole opisu funkcji wpisać g() 3. w pole argumentu wpisać. w polach zakresu argumentu podać i. sformatować wykres przez podwójne kliknięcie i wybranie odpowiednich opcji g : g g : g g : g. Obliczenie wartości funkcji interpolowanej w węzłach interpolacji g( ) g( ).7 g( ).79. Zdefiniowanie wielomianów bazowych Lagrange'a ( ) ( ) ( ) ( ) L ( ) : L ( ) : L ( ) : ( ) ( ) ( ) ( ) ( ) ( ). Zdefiniowanie wielomianu interpolacyjnego ϕ( ) : L ( ) g + L ( ) g + L ( ) g 7. Wykres funkcji interpolowanej i wielomianu interpolacyjnego g( ) ϕ( ) 3. utworzyć okienko wykresu z klawiatury przez kombinacje klawiszy Shift+@. w pole opisu funkcji wpisać: " g(), φ()" 3. w pole argumentu wpisać. w polach zakresu argumentu podać i. sformatować wykres przez podwójne kliknięcie i wybranie odpowiednich opcji 7--7 Opracowanie: M.Slonski, ITIwIL PK

4 Wprowadzenie do Mathcada. Interpolacja Lagrange'a - zastosowanie funkcji pspline() v : vy : g g g Zdefiniowanie węzłów interpolacji w wektorach v i vy. Aby zdefiniować wektor v naciśnij: v, :, Ctrl+m, wpisz odpowiednio liczbę wierszy i kolumn oraz wpisz wartości składowych. Analogicznie dla vy. Φ( ) : interp( pspline( v, vy), v, vy, ) Obliczenie wartości wielomianu Φ() g( ) Φ( ) 3 Ćwiczenie 3. - Operacje na wektorach i macierzach Początkowy indeks wektorów i macierzy w Mathcadzie przechowywany jest w zmiennej globalnej ORIGIN. Domyślna wartość wynosi. Poniższe polecenie zmienia to ustawienie na. ORIGIN : ORIGIN (DUŻE LITERY), : (dwukropek),. Definiowanie wektorów i macierzy -. sposób Sposób. - definicja niezerowych elementów Postać danych w dokumencie (oddzielone przecinkami) V :. V, [ (lewy nawias kwadratowy), :,.. V 3 : 3.33 analogicznie, jak wyżej V 3.33 V, Wystarczy zdefiniować niezerowe wyrazy wektora lub macierzy (pozostałe automatycznie są równe ). Wymiar wektora jest określony przez aktualnie zdefiniowany, maksymalny indeks (w przykładzie jest to 3). Analogicznie określane są wymiary macierzy. A, :.3 A 3, :. A.3 A, [,,, :,.3 analogicznie, jak wyżej A,. Sposób. - definicja wszystkich elementów B :. Definiowanie macierzy jednostkowej I : identity 3 I B, :, Ctrl+M, w okienku wpisać wymiary i wpisać kolejne elementy macierzy 7--7 Opracowanie: M.Slonski, ITIwIL PK

5 Wprowadzenie do Mathcada 3. Operacje algebraiczne na wektorach i macierzach 3.. Transpozycja macierzy C : B T C 3.. Suma i różnica macierzy 3.3 A + C Iloczyn macierzy.3. A B A C. B A 3.. Wyznacznik macierzy D F C, :, B, Ctrl+ (jeden) : A B F, F, 3.. Macierz odwrotna E : ( B A) E. Macierze funkcji H( ) : 3 Obliczenia numeryczne: H(.).3... Operacje na blokach macierzy.3.3. Definicja macierzy funkcji H() Obliczenia symboliczne: Ctrl+. (kropka) H Do operowania blokami służą specjalne funkcje: submatri(a, wg, wd, kl, kp) - wyciągnięcie bloku prostokątnego z macierzy A, ograniczonego przez wiersze górny wg i dolny wd oraz przez kolumny lewą kl i prawą kp, augment(m, N) - sklejenie dwóch macierzy M i N w poziomie, stack(p, R) - sklejenie dwóch macierzy P i R w pionie, 3 3. Wyciągnięcie bloków z macierzy K K : b : submatri K,, 3,, 3 b : submatri K,, 3,, b b 7--7 Opracowanie: M.Slonski, ITIwIL PK

6 Wprowadzenie do Mathcada. Sklejenie dwóch bloków w poziomie b 3 : augment( b, b ) b 3.3 Sklejenie dwóch bloków w pionie T : stack b, b b b Ćwiczenie. - Rozwiązywanie układów równań liniowych AXB M( a, b) : A : M, A.33 B : a b 3 a b a b a b X : A B X X 3.. Ćwiczenie. - Całkowanie macierzy funkcji: Q( ) : 3 i :.. j :.. Zdefiniowanie macierzy funkcyjnej M(a,b) Zdefiniowanie macierzy A Obliczenie wyznacznika Zdefiniowanie wektora B Numeryczne obliczenie rozwiązania X Symboliczne obliczenie rozwiązania X Zdefiniowanie macierzy funkcji Q() Zdefiniowanie zakresu indeksów D i, j : Q( ) i, j d Zdefiniowanie macierzy D zawierającej wartości całek macierzy Q D..333 Zadanie.333. Wynik całkowania macierzy funkcji Q() Przygotuj dokument rozwiązujący układ równań liniowych KXF, gdzie macierz K i wektor F są dowolnymi blokami o wymiarach, odpowiednio i macierzy KG i wektora FG. Zastosuj 3 poznane funkcje do operowania blokami. Zdefiniuj macierz KG i wektor FG oraz przyjmij wartości stałych a,b,c,d Opracowanie: M.Slonski, ITIwIL PK

7 Wprowadzenie do Mathcada 7 Ćwiczenie. - Operacje z macierzami boolowskimi Celem ćwiczenia jest sposób definiowania macierzy boolowskich (zawierających wartości i ) i operacje z wykorzystaniem takich macierzy. A, : A 3 A, : A, 3 : A 3, : A, 7 : A, 9 : A 3 K : K : A T K A K Opracowanie: M.Slonski, ITIwIL PK

8 Wprowadzenie do Mathcada Ćwiczenie 7. - Rozwiązywanie równań różniczkowych zwyczajnych Celem ćwiczenia jest rozwiązanie równania różniczkowego zwyczajnego. rzędu za pomocą zamiany wyjściowego równania na układ dwóch równań różniczkowych. rzędu i rozwiązania tego układu równań metodą Runge-Kutty IV rzędu z wykorzystaniem wbudowanej funkcji Mathcada rkfied[.].. Zdefiniowanie równania różniczkowego zwyczajnego. rzędu y'' - y' + y e t sin(t), t z warunkami początkowymi: y() -. i y'() -.. Zamiana wyjściowego równania na układ dwóch równań. rzędu Przyjmując, że: u (t) y(t) i u (t) y'(t) wyjściowe równanie możemy zamienić na układ równań: u' (t) u (t), u' (t) e t sin(t) - u (t) + u (t) z warunkami początkowymi: u () -. i u () Rozwiązanie układu równań za pomocą funkcji rkfied[.] 3. Zdefiniowanie wektora kolumnowego F(t, u), którego elementy zawierają prawe strony równań rozwiązywanego układu. F( t, u) : ep t sin t u u + u 3. Wywołanie funkcji Mathcada rkfied[.] z odpowiednimi argumentami. rkfied[y, a, b, N, F] ogólna postać wywołania funkcji rkfied[.], gdzie: y - wektor kolumnowy zawierający warunki początkowe równań rozwiązywanego układu, a, b - odpowiednio początek i koniec przedziału, w którym poszukujemy rozwiązania, N - liczba podprzedziałów rozpatrywanego przedziału, F - zdefiniowany powyżej wektor prawych stron równań rozwiązywanego układu. 3.3 Rozwiązanie układu równań W : rkfied..,,,, F W Rozwiązanie układu równań zostało zapisane w 3-kolumnowej macierzy W, której kolumny zawierają kolejno wartości węzłowe: zmiennej t, zmiennej u (t) y(t) i zmiennej u (t) y'(t) Opracowanie: M.Slonski, ITIwIL PK

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert)

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert) Procesy i techniki produkcyjne Wydział Mechaniczny Ćwiczenie 3 (2) CAD/CAM Zasady budowy bibliotek parametrycznych Cel ćwiczenia: Celem tego zestawu ćwiczeń 3.1, 3.2 jest opanowanie techniki budowy i wykorzystania

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Wprowadzenie do programu MATHCAD

Wprowadzenie do programu MATHCAD Wprowadzenie do programu MATHCAD Zaletami programu MathCad, w porównaniu do innych programów służących do obliczeń matematycznych, takich jak Matlab, Mathematica, są proste i intuicyjne zasady pracy z

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy

Bardziej szczegółowo

MATHCAD 2000 ściąga do ćwiczeń z podstaw informatyki

MATHCAD 2000 ściąga do ćwiczeń z podstaw informatyki MATHCAD 000 ściąga do ćwiczeń z podstaw informatyki 1. Wprowadzenie Mathcad 000 to profesjonalny program matematyczny służący do rozwiązywania różnego typu zagadnień inżynierskich. Umożliwia prowadzenie

Bardziej szczegółowo

MATHCAD Obliczenia symboliczne

MATHCAD Obliczenia symboliczne MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi . Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Arkusz kalkulacyjny. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

Arkusz kalkulacyjny. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski Arkusz kalkulacyjny R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl O arkuszach ogólnie! Arkusz kalkulacyjny (spreadshit) to komputerowy program umożliwiający

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

Interpolacja funkcji

Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,

Bardziej szczegółowo

EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący

EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący EXCEL Prowadzący: dr hab. inż. Marek Jaszczur Poziom: początkujący Laboratorium 3: Macierze i wykresy Cel: wykonywanie obliczeń na wektorach i macierzach, wykonywanie wykresów Czas wprowadzenia 25 minut,

Bardziej szczegółowo

MathCAD cz.1. Spis treści wykładu:

MathCAD cz.1. Spis treści wykładu: Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1)Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Ćwiczenia nr 2. Edycja tekstu (Microsoft Word)

Ćwiczenia nr 2. Edycja tekstu (Microsoft Word) Dostosowywanie paska zadań Ćwiczenia nr 2 Edycja tekstu (Microsoft Word) Domyślnie program Word proponuje paski narzędzi Standardowy oraz Formatowanie z zestawem opcji widocznym poniżej: Można jednak zmodyfikować

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Przykład 2 układ o rozwiązaniu z parametrami. Rozwiążemy następujący układ równań:

Przykład 2 układ o rozwiązaniu z parametrami. Rozwiążemy następujący układ równań: Przykład 2 układ o rozwiązaniu z parametrami Rozwiążemy następujący układ równań: Po zapisaniu układu w postaci macierzy rozszerzonej będziemy dążyć do uzyskania macierzy jednostkowej po lewej stronie

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

4.Arkusz kalkulacyjny Calc

4.Arkusz kalkulacyjny Calc 4.Arkusz kalkulacyjny Calc 4.1. Okno programu Calc Arkusz kalkulacyjny Calc jest zawarty w bezpłatnym pakiecie OpenOffice.org 2.4. Można go uruchomić, podobnie jak inne aplikacje tego środowiska, wybierając

Bardziej szczegółowo

Elementy metod numerycznych - zajęcia 9

Elementy metod numerycznych - zajęcia 9 Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie

Bardziej szczegółowo

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która 3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi

Bardziej szczegółowo

Wykresy. Lekcja 10. Strona 1 z 11

Wykresy. Lekcja 10. Strona 1 z 11 Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Jak korzystać z Excela?

Jak korzystać z Excela? 1 Jak korzystać z Excela? 1. Dane liczbowe, wprowadzone (zaimportowane) do arkusza kalkulacyjnego w Excelu mogą przyjmować różne kategorie, np. ogólne, liczbowe, walutowe, księgowe, naukowe, itd. Jeśli

Bardziej szczegółowo

Ćwiczenie pochodzi ze strony

Ćwiczenie pochodzi ze strony Ćwiczenie pochodzi ze strony http://corel.durscy.pl/ Celem ćwiczenia jest poznanie właściwości obiektu Elipsa oraz możliwości tworzenia za pomocą niego rysunków. Dodatkowo, w zadaniu tym, ćwiczone są umiejętności

Bardziej szczegółowo

PAKIET MathCad - Ćzęść II

PAKIET MathCad - Ćzęść II Opracowanie: Jadwiga Matla Ćw.xmcd / Katedra Informatyki Stosowanej - Studium Podstaw Informatyki Obliczenia wektorowe i macierzowe PAKIET MathCad - Ćzęść II Uwagi:. Mathcad traktuje wektory jak macierze

Bardziej szczegółowo

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...

; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze... Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję

Bardziej szczegółowo

Mathcad. Æwiczenia. Wydanie II

Mathcad. Æwiczenia. Wydanie II Mathcad. Æwiczenia. Wydanie II Autor: Jacek Pietraszek ISBN: 83-246-1188-6 Format: A5, stron: 152 Wydawnictwo Helion ul. Koœciuszki 1c 44-100 Gliwice tel. 032 230 98 63 e-mail: helion@helion.pl Wykorzystaj

Bardziej szczegółowo

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY

OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY Dodawanie i odejmowanie macierzy jest możliwe tylko dla dwóch macierzy o takich samych wymiarach! Wynikiem tych operacji jest macierz o takich samych

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

Interpolacja i aproksymacja, pojęcie modelu regresji

Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 1 Interpolacja i aproksymacja, pojęcie modelu regresji 27 styczeń 2009 SciLab w obliczeniach numerycznych - część 3 Slajd 2 Plan zajęć

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach

Bardziej szczegółowo

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 3 1. PRZYKŁADY UWAGA: W poniższych przykładach została przyjęta następująca zasada oznaczania definicji początku i końca pręta

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle

Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle Mathematica III Równania różniczkowe, układy równań różniczkowych, wykresy, badanie funkcji, importowanie danych, instrukcje warunkowe, pętle na podstawie materiałów wolfram.com Równania różniczkowe: Równanie

Bardziej szczegółowo

Edycja wyrażeń, definiowanie zmiennych i funkcji

Edycja wyrażeń, definiowanie zmiennych i funkcji Strona z Edycja wyrażeń, definiowanie zmiennych i funkcji Kursory Krzyżyk - - pozwala umiejscowić równanie, wykres lub pole tekstowe na stronie. Punkt wstawienia - - "pionowa kreska" - używany do edycji

Bardziej szczegółowo

1. Wybierz polecenie rysowania linii, np. poprzez kliknięcie ikony W wierszu poleceń pojawi się pytanie o punkt początkowy rysowanej linii:

1. Wybierz polecenie rysowania linii, np. poprzez kliknięcie ikony W wierszu poleceń pojawi się pytanie o punkt początkowy rysowanej linii: Uruchom program AutoCAD 2012. Utwórz nowy plik wykorzystując szablon acadiso.dwt. 2 Linia Odcinek linii prostej jest jednym z podstawowych elementów wykorzystywanych podczas tworzenia rysunku. Funkcję

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY

MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie

Bardziej szczegółowo

Czwicienie 2 1. Wektory i macierze

Czwicienie 2 1. Wektory i macierze Czwicienie 2 1. Wektory i macierze Wektor można definiować jako ciąg (patrz ćw.7) lub przez wstawienie macierzy o jednej kolumnie lub jednym wierszu (z palety przycisków "macierze i wektory"). Rozwiązywanie

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

Wykorzystanie programów komputerowych do obliczeń matematycznych

Wykorzystanie programów komputerowych do obliczeń matematycznych Temat wykładu: Wykorzystanie programów komputerowych do obliczeń matematycznych Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Przykłady: Programy wykorzystywane

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia: ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia

Bardziej szczegółowo

for - instrukcja pętli "dla" umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j

for - instrukcja pętli dla umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw4.mcd /9 Katedra Inmatyki Stosowanej - Studium Podstaw Inmatyki PAKIET MathCad - Część IV. PROGRAMOWANIE MathCad posiada możliwości tworzenia prostych podprogramów,

Bardziej szczegółowo

PODSTAWY MATHCADA. 1. Interfejs graficzny programu. 1.1. Pasek menu

PODSTAWY MATHCADA. 1. Interfejs graficzny programu. 1.1. Pasek menu PODSTAWY MATHCADA PODSTAWY MATHCADA...3 1. Interfejs graficzny programu...3 1.1. Pasek menu...3 1.2. Pasek narzędzi podstawowych...4 1.3. Pasek narzędzi formatujących...4 1.4. Pasek operatorów matematycznych...4

Bardziej szczegółowo

Klawisze funkcyjne w OpenOffice.org Writer

Klawisze funkcyjne w OpenOffice.org Writer Klawisze funkcyjne w OpenOffice.org Writer F2 Ctrl + F2 F3 Ctrl + F3 F4 Shift + F4 F5 Ctrl + Shift + F5 F7 Ctrl + F7 F8 Ctrl + F8 Shift + F8 Ctrl+Shift+F8 F9 Ctrl + F9 Shift + F9 Ctrl + Shift + F9 Ctrl

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Ćwiczenie 2 (Word) Praca z dużym tekstem

Ćwiczenie 2 (Word) Praca z dużym tekstem Ćwiczenie 2 (Word) Praca z dużym tekstem 1. Przygotowanie dokumentu głównego (Tworzenie rozdziałów i podrozdziałów) Otwórz dokument o nazwie Duży tekst.docx znajdujący się na stronie prowadzącego zajęcia.

Bardziej szczegółowo

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:

Bardziej szczegółowo

MathCAD cz.1. Spis treści wykładu:

MathCAD cz.1. Spis treści wykładu: Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1) Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów

Bardziej szczegółowo

str. 1 Excel ćwiczenia 1 Podstawy użytkowania komputerów

str. 1 Excel ćwiczenia 1 Podstawy użytkowania komputerów Excel ćwiczenia 1 Rozdział 1 Zapoznanie się z arkuszem kalkulacyjnym Program Excel służy do tworzenia elektronicznego arkusza kalkulacyjnego, który umożliwia dokumentowanie i analizę danych numerycznych.

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

Struktura dokumentu w arkuszu kalkulacyjnym MS EXCEL

Struktura dokumentu w arkuszu kalkulacyjnym MS EXCEL Lekcja 1. Strona 1 z 13 Struktura dokumentu w arkuszu kalkulacyjnym MS EXCEL Zeszyt Nowy plik programu Excel nazywany zeszytem lub skoroszytem składa się na ogół z trzech arkuszy. Przykładowe okno z otwartym

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

CorelDraw - podstawowe operacje na obiektach graficznych

CorelDraw - podstawowe operacje na obiektach graficznych CorelDraw - podstawowe operacje na obiektach graficznych Przesuwanie obiektu Wymaż obszar roboczy programu CorelDraw (klawisze Ctrl+A i Delete). U góry kartki narysuj dowolnego bazgrołka po czym naciśnij

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi.

, to liczby γ +δi oraz γ δi opisują pierwiastki z a+bi. Zestaw 1 Liczby zespolone 1 Zadania do przeliczenia Nie będziemy robić na ćwiczeniach S 1 Policz wartość 1 + i + (2 + i)(i 3) 1 i Zadania domowe x y(1 + i) 1 Znajdź liczby rzeczywiste x, y takie, że +

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo