Wprowadzenie do programu MATHCAD

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do programu MATHCAD"

Transkrypt

1 Wprowadzenie do programu MATHCAD Zaletami programu MathCad, w porównaniu do innych programów służących do obliczeń matematycznych, takich jak Matlab, Mathematica, są proste i intuicyjne zasady pracy z programem, umożliwiające opanowanie go w krótkim czasie. Obszar roboczy głównego okna programu można traktować jak arkusz papieru, na którym w dowolnym miejscu, wskazanym kursorem myszki, można wpisywać wyrażenia i równania matematyczne. Graficzna postać wpisywanych wyrażeń zgodna jest z ich wyglądem na tradycyjnej kartce papieru dla powszechnie stosowanej konwencji zapisu matematycznego. MathCad oblicza wyrażenia i równania matematyczne w kolejności w jakiej występują one na arkuszu obliczeniowym w kierunku na prawo i w dół arkusza. Operatory matematyczne używane w wyrażeniach matematycznych można wprowadzać z klawiatury, bądź z palet dostępnych na pasku narzędzi. Po otwarciu palety, należy wybrać odpowiednią ikonkę, wprowadzającą operator matematyczny w miejscu wskazanym kursorem myszki: paleta operatorów arytmetycznych paleta operatorów relacji i logicznych paleta wykresów paleta wektorów i macierzy

2 paleta operatorów analizy paleta programowania paleta liter greckich W przykładach podanych w poniższej tabeli, w prawej kolumnie zamieszczono komentarze i sposoby wykonywania obliczeń. Wyrażenia arytmetyczne 5. = Nacisnąć po kolei klawisze (przecinków nie wprowadzamy): =.89 5,*,,+,= Nacisnąć po kolei klawisze:,+,5,*,,spacja,spacja,/,7,spacja,-,= 5 + =.,*,\,5,spacja,+,,/,,spacja,spacja,spacja,/,,*,,^,, spacja,-,= Definiowanie zmiennych t := Nacisnąć klawisze: t,:, t jest nazwą zmiennej, jest jej wartością. Jest to definicja zmiennej lokalnej, która obowiązuje od miejsca, w którym została zdefiniowana do końca dokumentu (na prawo i w dół). Aby wyświetlić wartość zdefiniowanej zmiennej, piszemy jej nazwę i znak = β := y := β + 5 Litery greckie wprowadzamy z palety, albo pisząc odpowiednik polski litery greckiej i naciskając CTRL+G. y=7

3 G Definicja zmiennej globalnej. Należy nacisnąć klawisze: G,~(tylda), Zmienna globalna obowiązuje w całym dokumencie (również powyżej miejsca jej zdefiniowania). Definicja lokalna zawsze przysłania definicję globalną. M := Nazwa zmiennej z dolnym indeksem. Należy nacisnąć klawisze: M,.(kropka),,:, Definiowanie funkcji fx ():= x Funkcja jednej zmiennej. x jest argumentem funkcji. Przy wywołaniu funkcji podajemy aktualny argument (nazwę, która może być inna niż x, lub wartość) np.: f(.)=5.87 gxy (, ) x+ 6y := Funkcja dwóch zmiennych. Wywołanie np.: a:=. g(a,a)=.6 g(,*a)=.8 zrfi (, ) r cos( fi) Definicja funkcji globalnej, obowiązującej w całym dokumencie. (Symbol wstawiamy z palety, lub naciskając klawisz ~ (tylda)). Zmienna iterowana k,.. := Zmienna iterowana k przyjmuje kolejne wartości, itd. co do. Zmienną taką definiuje się podając: początkową wartość, następną wartość i po symbolu złożonego z dwóch kropek, wartość końcową. Symbol złożony z dwóch kropek wprowadza się z palety lub naciskając klawisz ; (średnik). Jeśli nie podamy następnej wartości (w przykładzie: ), to domyślnie przyjmowany jest przyrost wartości równy. Wszystkie wartości zmiennej k otrzymamy, pisząc k=. Zmiennej iterowanej używa się w obliczeniach powtarzanych w pętli, lub do kreślenia wykresów. dt,... := Zakres zmienności zmiennej dt obejmuje liczby od do co.. Zastosowanie zmiennej iterowanej t :=,.. a := 9.8 a t a Wyrażenie t zostanie obliczone dla każdej wartości zmiennej t z zakresu.. (co ).

4 Definiowanie macierzy. + x A := A, = B, := B B, := 7 B B = 7 5 zero, := zero = M := identity( ) M =, :=, := 5 Aby utworzyć macierz (wektor), należy wskazać kursorem początkowy punkt i nacisnąć klawisze CTRL+M lub skorzystać z palety. W okienku należy podać liczbę wierszy (rows=) i kolumn (columns=), następnie wypełniać poszczególne komórki. Standardowo wiersze i kolumny są numerowane od zera (można to zmienić). Aby odwołać się do elementu A[,] naciskamy klawisze: A,[,,przecinek,,= Macierz można również utworzyć przez nadanie wartości jej poszczególnym elementom. Macierz zerową najprościej utworzyć przez utworzenie jej ostatniego elementu. Pozostałe, niezdefiniowane elementy będą miały domyślną wartość zerową. Macierz jednostkową wprowadzamy wywołując wbudowaną funkcję identity(n), gdzie n oznacza wymiar macierzy. Zdefiniowane w MathCadzie funkcje wywołujemy wybierając myszką ikonkę f(x), lub z menu: Math Choose Function. Z wyświetlonej listy wybieramy odpowiednią funkcję. A := B := 5 6 C := augment( A, B) C = 5 6 D := stack( A, B) D = 5 6 Macierz można utworzyć z podmacierzy korzystając z wbudowanych funkcji augment i stack.

5 Działania i operacje na macierzach A := B := 5 6 C:= A + B D:= A B Dodawanie i mnożenie macierzy. C = D = 9 8 A := 5 D:= A D = Macierz odwrotna. Symbol - można wprowadzić korzystając z palety lub wpisując z klawiatury: A,^,- 7 8 T = 8 7 Transpozycja macierzy. Symbol T można wprowadzić korzystając z palety lub wpisując z klawiatury CTRL+ Odwoływanie się do kolumn i wierszy macierzy A := A = ( A T ) = A <> kolumna (A T ) <> wiersz Symbol <> można wprowadzić korzystając z palety lub wpisując z klawiatury CTRL+6 5

6 Wykresy x-y k :=.. x k :=. ( k ) y k ( x k 5) + sin π x k := + z k := x k 5 ( ) + sin π x k + 5 Zapis x k oznacza k-ty element wektora x. Wektor x zawiera elementów. MathCad nanosi kolejne punkty wykresu o współrzędnych (x k, y k ) i łączy je linią tworząc pierwszą krzywą wykresu. Drugą krzywą tworzą punkty (x k, z k ). wykres tworzymy korzystając z palety wykresów lub z menu w zaznaczonym polu na osi x wpisujemy x k w polu na osi y wpisujemy y k, wpisujemy przecinek (,) i w polu poniżej wpisujemy z k klikamy myszką poza obszar wykresu. Krzywe zostaną wykreślone. Jedną krzywą tworzą punkty (x k,y k ), drugą krzywą tworzą punkty (x k,z k ). wykres można powiększyć. Kliknąć na wykresie, aby go zaznaczyć. Ustawić kursor np. w prawym rogu ramki tak aby przybrał postać ukośnej dwustronnej strzałki, nacisnąć i przeciągnąć myszkę do innego punktu. y k z k x k 9.99 formatowanie wykresu jest dostępne w okienku wyświetlanym po dwukrotnym kliknięciu na wykresie aby wykres przeskalować, najpierw trzeba go zaznaczyć (kliknąć na wykresie). Potem kliknąć na jednej z czterech liczb wyświetlanych po lewej stronie osi y i u dołu osi x i zwyczajnie je zmienić (edycja wartości liczby) 6

7 Wykresy w układzie współrzędnych biegunowych A:=.5 R:= fi :=, π.. π π rfi ( ) := R + A sin fi wykres tworzymy korzystając z palety wykresów lub z menu: Insert Graph Polar Plot (lub Ctrl+7) w polu dolnym wpisujemy kąt fi w polu lewym wpisujemy promienie: R (krzywa : okrąg), wpisujemy przecinek, r(fi) (krzywa ). Aby zakreskować obszar pomiędzy obydwoma krzywymi, rysujemy je jeszcze raz: przecinek, R (krzywa ), przecinek, r(fi) (krzywa ). Klikając dwukrotnie w obszarze rysunku, otwieramy okno formatowania. Na zakładce Polar Axes wyłączamy wszystkie pola, zaznaczamy tylko Axis Style: None Na zakładce Traces dla krzywej i, w polu Type wybieramy error. Zaznaczamy Hide Arguments i Hide Legend. (Uwaga: aby wkleić rysunek z Mathcada do Worda bez żadnych opisów, umieszczono blisko rysunku w polu tekstowym kropkę. Następnie skopiowano do schowka obydwa obiekty (rysunek i kropkę) i wklejono do Worda). Wykres D fxy (, ) := x + y. Naciskamy Ctrl+ (lub z menu: Insert Graph Surface Plot). W polu pod wykresem wpisujemy nazwę funkcji f.. Dwukrotnie klikamy na wykresie i na zakładce Appearance zaznaczamy Fill Surface i ColorMap. Po zamknięciu okna dialogowego, można obracać wykresem, przez przeciąganie myszki. f 7

8 Edycja wyrażeń Zmiana operatora: x a x. a Aby w wyrażeniu zmienić operator matematyczny np. znak na znak +, należy zaznaczyć lewostronnie cyfrę (tak aby pionowa niebieska kreska znajdowała się z lewej strony cyfry ), nacisnąć klawisz Backspace i wpisać nowy operator. Do zmiany zaznaczenia lewostronnego na prawostronne i odwrotnie naciskamy klawisz INS.. x ( x. ). x + x Aby wyrażenie x podnieść do kwadratu zamiast pierwiastkowania, należy zaznaczyć lewostronnie wyrażenie podpierwiastkowe i nacisnąć klawisz Backspace. Zostanie usunięty symbol pierwiastka. Następnie zaznaczyć prawostronnie wyrażenie podnoszone do potęgi ( x) i wprowadzić operator podnoszenia do kwadratu. x x Aby przed wyrażeniem x dopisać operator dodawania, należy zaznaczyć lewostronnie to wyrażenie i wpisać nowy operator +. Następnie wpisujemy lewy operand. x y x y Aby wstawić operator pierwiastkowania dla całego wyrażenia x+y należy wyrażenie x+y zaznaczyć lewostronnie lub prawostronnie i wprowadzić nowy operator pierwiastek. Wprowadzanie tekstu Wyrażenie algebraiczne Aby rozpocząć pisanie tekstu, należy wskazać kursorem początkowy punkt i nacisnąć klawisz (cudzysłów) Rozwiązywanie nieliniowych równań algebraicznych Aby rozwiązać nieliniowe równanie algebraiczne f(x)=, należy podać początkową wartość zmiennej x=x (punkt startowy). Funkcja root znajduje pierwiastek równania f(x)= najbliższy podanemu punktowi startowemu. Wykorzystywana jest metoda siecznych. Funkcja ta nie znajduje wszystkich pierwiastków. O obecności innych pierwiastków można się przekonać, wykreślając wykres funkcji: Poniżej rozwiązano równanie x -x+= 8

9 x, x 5 root x. x, x =.58 x. x 5 x root x. x, x =. x 5 root x. x, x = x Rozwiązywanie układu liniowych równań algebraicznych Rozwiązać układ równań liniowych: x+6y=9 x+.5y= Tworzymy macierz współczynników i wektor danych, następnie wywołujemy funkcję lsolve M 6.5 lsolve( M, V) = V 9 Rozwiązywanie nieliniowych równań algebraicznych metodą Levenberga-Marquardta Rozwiązać układ równań nieliniowych: x + y = 6 (x r,y r ) z ograniczeniami x, y > x + y = x +y =6 x+y= x y Given x y 6 x y x y> x r Find( x, y) y r x r =. y r =. ) szacujemy początkowe wartości zmiennych (punkt startowy) ) Blok rozwiązujący, zaczynający się słowem kluczowym Given, a kończący się wywołaniem procedury rozwiązującej Find, zawiera równania i ograniczenia w postaci nierówności ) W równaniach, symbol równości wprowadzamy z palety lub przez naciśnięcie klawiszy Ctrl = ) Ograniczenia nie są konieczne. Ich zastosowanie spowodowało odrzucenie drugiego rozwiązania równań (prawego, dolnego punktu przecięcia prostej z okręgiem). 9

10 Rozwiązywanie układu równań różniczkowych Rozwiązanie układu liniowych równań różniczkowych zwyczajnych I rzędu d [ X ] = [ A][ X ] + [ B] z warunkami początkowymi [ X ] = [ X ] dt D(t,X):=[A][X ]+[B] Z:=rkfixed(X,t pocz,t konc,liczbapunktow,d) t pocz czas początkowy dla którego znany jest warunek początkowy [X ] t konc czas końcowy obliczeń liczbapunktow liczba punktów dla których zostanie wyznaczone rozwiązanie. Liczba ta określa krok całkowania. t x x L xn Z <> - w pierwszej kolumnie znajduje się czas t x x L xn W następnych kolumnach znajdują się =. x x L xn Z wartości poszczególnych elementów. x x L x wektora stanu X: n Z <> =x, Z <> =x, itd. M M M O M konc konc konc tkonc x x L xn Rozwiązać równanie różniczkowe dy + y = z warunkiem początkowym y()= dt y Dt (, y) y. W rkfixed( y,,,, D) i.. rows( W ) W < > i W < > i ) Najpierw wprowadzamy warunek początkowy. Zmienna określająca ten warunek ma być wektorem. W rozpatrywanym przykładzie jest to wektor jednoelementowy. Indeks wprowadzamy za pomocą klawisza [ ) Funkcja D określa pierwsza pochodną równania. Wektor y zawiera tylko jeden element y ) Rozwiązanie obliczone jest w przedziale czasu (,...,) sekundy, w krokach i jest zapisane w macierzy W ) W <> pierwsza kolumna macierzy W zawierająca kolejne wartości czasu 5) W <> druga kolumna macierzy W zawierająca kolejne wartości funkcji y 6) indeks i numeruje kolejne wiersze macierzy W (numery kroków całkowania). Funkcja rows oblicza liczbę wierszy macierzy W.

11 Rozwiązać układ równań różniczkowych dx t + x y = e dt z warunkami początkowymi x()=, y()= dy t x + y = e dt z Dtz (, ) z z e t z z e t W rkfixed( z,,.5,, D) i.. rows( W ) t i W < > i x i W > i y i W > i ) Wektor zmiennych oznaczono literą z. Najpierw wprowadzamy warunek początkowy (wektor) ) Funkcja D określa pierwsze pochodne równania ) Rozwiązanie obliczone jest w przedziale czasu (,...,.5) sekundy w krokach i jest zapisane w macierzy W.658 x i y i t i.5 Obliczenia symboliczne Rozwiązać symbolicznie równanie kwadratowe ax + bx + c = ax + bx + c a a ( ) b + b ac ( ) b b ac ) Wprowadzamy równanie (ze znakiem równości Ctrl+=, lub bez) i zaznaczamy zmienną ) Z menu Symbolics wybieramy: Variable Solve

12 Odwrócić symbolicznie macierz a c b d a c b d ) Wpisujemy macierz z symbolem odwracania i zaznaczamy ją ) Z palety Symbolics wybieramy: Evaluate Symbolically ad ad d c bc bc ad b a ad bc bc Inny sposób: ) Wpisujemy macierz z symbolem odwracania i zaznaczamy ją ) Naciskamy klawisze Ctrl+. (kropka), naciskamy ENTER Różniczkowanie funkcji dx ( x sin(x) ) d ( ) d x x sin() x d x sin() x + x cos () x Ctrl +. <ENTER> Całkowanie funkcji Całka oznaczona: c x dx c Całka nieoznaczona: Ctrl +.(kropka) <ENTER> bx dx bx Wzory trygonometryczne Rozwinąć wzór trygonometryczny sin ( α + β) : sin( a + b) expand, a sin( a) cos ( b) + cos ( a) sin( b) ) Po napisaniu wzoru, wybieramy z palety Symbolics expand, wpisujemy w wyświetlonym polu a i naciskamy ENTER

13 Przekształcenie Laplace a Wyznaczyć transformatę Laplace a funkcji ( ) z e z t ( ) z e z t ( ) z e z t laplace, t laplace, t z z s s s + z s + z simplify s ( s + z) ) Po wpisaniu funkcji, z palety Symbolic wybieramy laplace i w wyświetlonej komórce wpisujemy zmienną t. Naciskamy ENTER ) Można teraz zaznaczyć wynikowe wyrażenie i wybrać z palety simplify. Nacisnąć ENTER. Wynik zostanie uproszczony. Wyznaczyć odwrotną transformatę Laplace a wyrażenia operatorowego s ( s + z) s ( s + z) invlaplace, s z z e z t ) Po wpisaniu wyrażenia operatorowego, z palety Symbolic wybieramy invlaplace i w wyświetlonej komórce wpisujemy zmienną s. Naciskamy ENTER Elementy programowania Zdefiniowanie funkcji o przebiegu prostokątnym fp( x) := if mod( ceil() x, ) otherwise fp() x 5 x ) Wpisujemy fp(x):= ) z palety Programming wybieramy Add line ) w pierwszej komórce wpisujemy ) z palety Programming wybieramy if 5) wpisujemy mod(ceil(x),)= 6) w drugiej komórce wpisujemy - 7) z palety Programming wybieramy otherwise Funkcja ceil(x) zwraca najbliższą liczbę całkowitą x. Funkcja mod(x,y) zwraca resztę z dzielenia całkowitego x/y.

14 Pętla for pfor := for i.. a a + i a Zostaną powtórzone działania określone wewnątrz pętli for dla kolejnych wartości i:,,,. Pętla while silnia( n) := f while f n n f f ( n + ) Zastosowanie pętli while do zdefiniowania funkcji do obliczania silni. silnia(5) =

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

PODSTAWY MATHCADA. 1. Interfejs graficzny programu. 1.1. Pasek menu

PODSTAWY MATHCADA. 1. Interfejs graficzny programu. 1.1. Pasek menu PODSTAWY MATHCADA PODSTAWY MATHCADA...3 1. Interfejs graficzny programu...3 1.1. Pasek menu...3 1.2. Pasek narzędzi podstawowych...4 1.3. Pasek narzędzi formatujących...4 1.4. Pasek operatorów matematycznych...4

Bardziej szczegółowo

Arkusz kalkulacyjny EXCEL

Arkusz kalkulacyjny EXCEL ARKUSZ KALKULACYJNY EXCEL 1 Arkusz kalkulacyjny EXCEL Aby obrysować tabelę krawędziami należy: 1. Zaznaczyć komórki, które chcemy obrysować. 2. Kursor myszy ustawić na menu FORMAT i raz kliknąć lewym klawiszem

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

1. WSTĘP. www.mathsoft.com, www.mathcad.com

1. WSTĘP. www.mathsoft.com, www.mathcad.com MATHCAD-W strona. WSTĘP MATHCAD to uniwersalny program do obliczeń matematycznych o bardzo dużych możliwościach. Jest łatwy do opanowania, nie wymaga nauki języka programowania a więc jest idealny dla

Bardziej szczegółowo

EXCEL wprowadzenie Ćwiczenia

EXCEL wprowadzenie Ćwiczenia EXCEL wprowadzenie Ćwiczenia 1. Nadaj nazwę arkuszowi Ćwiczenie 1 W lewej, dolnej części okna programu znajdują się nazwy otwartych arkuszy programu (Arkusz 1..). Zmiana nazwy, w tym celu należy kliknąć

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1

Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1 Praktyczne wykorzystanie arkusza kalkulacyjnego w pracy nauczyciela część 1 Katarzyna Nawrot Spis treści: 1. Podstawowe pojęcia a. Arkusz kalkulacyjny b. Komórka c. Zakres komórek d. Formuła e. Pasek formuły

Bardziej szczegółowo

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych

Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi

Bardziej szczegółowo

Wykresy. Lekcja 10. Strona 1 z 11

Wykresy. Lekcja 10. Strona 1 z 11 Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz. 1

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz. 1 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny 2010 dla WINDOWS cz. 1 Slajd 1 Slajd 2 Ogólne informacje Arkusz kalkulacyjny podstawowe narzędzie pracy menadżera Arkusz kalkulacyjny

Bardziej szczegółowo

Zadanie 8. Dołączanie obiektów

Zadanie 8. Dołączanie obiektów Zadanie 8. Dołączanie obiektów Edytor Word umożliwia dołączanie do dokumentów różnych obiektów. Mogą to być gotowe obiekty graficzne z galerii klipów, równania, obrazy ze skanera lub aparatu cyfrowego.

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Edycja wyrażeń, definiowanie zmiennych i funkcji

Edycja wyrażeń, definiowanie zmiennych i funkcji Strona z Edycja wyrażeń, definiowanie zmiennych i funkcji Kursory Krzyżyk - - pozwala umiejscowić równanie, wykres lub pole tekstowe na stronie. Punkt wstawienia - - "pionowa kreska" - używany do edycji

Bardziej szczegółowo

Prezentacja multimedialna MS PowerPoint 2010 (podstawy)

Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Prezentacja multimedialna MS PowerPoint 2010 (podstawy) Cz. 1. Tworzenie slajdów MS PowerPoint 2010 to najnowsza wersja popularnego programu do tworzenia prezentacji multimedialnych. Wygląd programu w

Bardziej szczegółowo

MathCAD cz.1. Spis treści wykładu:

MathCAD cz.1. Spis treści wykładu: Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1)Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów

Bardziej szczegółowo

Co to jest arkusz kalkulacyjny?

Co to jest arkusz kalkulacyjny? Co to jest arkusz kalkulacyjny? Arkusz kalkulacyjny jest programem służącym do wykonywania obliczeń matematycznych. Za jego pomocą możemy również w czytelny sposób, wykonane obliczenia przedstawić w postaci

Bardziej szczegółowo

4.Arkusz kalkulacyjny Calc

4.Arkusz kalkulacyjny Calc 4.Arkusz kalkulacyjny Calc 4.1. Okno programu Calc Arkusz kalkulacyjny Calc jest zawarty w bezpłatnym pakiecie OpenOffice.org 2.4. Można go uruchomić, podobnie jak inne aplikacje tego środowiska, wybierając

Bardziej szczegółowo

Ekran tytułowy (menu główne)

Ekran tytułowy (menu główne) Wstęp Ten multimedialny program edukacyjny przeznaczony jest dla uczniów szkół podstawowych. Oferując ciekawe zadania tekstowe, służy przede wszystkim doskonaleniu umiejętności matematycznych. Program

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz. 1

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz. 1 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz. 1 Slajd 1 Excel Slajd 2 Ogólne informacje Arkusz kalkulacyjny podstawowe narzędzie pracy menadżera Arkusz

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI PROGRAMU LOGGER PRO

INSTRUKCJA OBSŁUGI PROGRAMU LOGGER PRO CENTRUM NAUCZANIA MATEMATYKI I FIZYKI 1 LABORATORIUM FIZYKI INSTRUKCJA OBSŁUGI PROGRAMU LOGGER PRO 1. Wprowadzanie danych. 2. Dokonywanie obliczeń zestawionych w kolumnach. 3. Tworzenie wykresu. 4. Dopasowanie

Bardziej szczegółowo

EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20

EXCEL. Diagramy i wykresy w arkuszu lekcja numer 6. Instrukcja. dla Gimnazjum 36 - Ryszard Rogacz Strona 20 Diagramy i wykresy w arkuszu lekcja numer 6 Tworzenie diagramów w arkuszu Excel nie jest sprawą skomplikowaną. Najbardziej czasochłonne jest przygotowanie danych. Utworzymy następujący diagram (wszystko

Bardziej szczegółowo

Cw.12 JAVAScript w dokumentach HTML

Cw.12 JAVAScript w dokumentach HTML Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane

Bardziej szczegółowo

1. Umieść kursor w miejscu, w którym ma być wprowadzony ozdobny napis. 2. Na karcie Wstawianie w grupie Tekst kliknij przycisk WordArt.

1. Umieść kursor w miejscu, w którym ma być wprowadzony ozdobny napis. 2. Na karcie Wstawianie w grupie Tekst kliknij przycisk WordArt. Grafika w dokumencie Wprowadzanie ozdobnych napisów WordArt Do tworzenia efektownych, ozdobnych napisów służy obiekt WordArt. Aby wstawić do dokumentu obiekt WordArt: 1. Umieść kursor w miejscu, w którym

Bardziej szczegółowo

Dodawanie grafiki i obiektów

Dodawanie grafiki i obiektów Dodawanie grafiki i obiektów Word nie jest edytorem obiektów graficznych, ale oferuje kilka opcji, dzięki którym można dokonywać niewielkich zmian w rysunku. W Wordzie możesz zmieniać rozmiar obiektu graficznego,

Bardziej szczegółowo

Jak korzystać z Excela?

Jak korzystać z Excela? 1 Jak korzystać z Excela? 1. Dane liczbowe, wprowadzone (zaimportowane) do arkusza kalkulacyjnego w Excelu mogą przyjmować różne kategorie, np. ogólne, liczbowe, walutowe, księgowe, naukowe, itd. Jeśli

Bardziej szczegółowo

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy 1 Podstawowym przeznaczeniem arkusza kalkulacyjnego jest najczęściej opracowanie danych liczbowych i prezentowanie ich formie graficznej. Ale formuła arkusza kalkulacyjnego jest na tyle elastyczna, że

Bardziej szczegółowo

MATHCAD Obliczenia symboliczne

MATHCAD Obliczenia symboliczne MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic

Bardziej szczegółowo

Arkusz kalkulacyjny MS Excel

Arkusz kalkulacyjny MS Excel Arkusz kalkulacyjny MS Excel I. Wprowadzenie do arkusza kalkulacyjnego Program Excel służy do tworzenia elektronicznego arkusza kalkulacyjnego, który umożliwia dokumentowanie i analizę danych numerycznych.

Bardziej szczegółowo

Po naciśnięciu przycisku Dalej pojawi się okienko jak poniżej,

Po naciśnięciu przycisku Dalej pojawi się okienko jak poniżej, Tworzenie wykresu do danych z tabeli zawierającej analizę rozwoju wyników sportowych w pływaniu stylem dowolnym na dystansie 100 m, zarejestrowanych podczas Igrzysk Olimpijskich na przestrzeni lat 1896-2012.

Bardziej szczegółowo

Wstęp Arkusz kalkulacyjny Za co lubimy arkusze kalkulacyjne Excel

Wstęp Arkusz kalkulacyjny Za co lubimy arkusze kalkulacyjne Excel SPIS TREŚCI Wstęp... 7 1 Arkusz kalkulacyjny... 11 Za co lubimy arkusze kalkulacyjne... 14 Excel 2007... 14 2 Uruchamianie programu... 17 3 Okno programu... 21 Komórka aktywna... 25 4 Nawigacja i zaznaczanie...

Bardziej szczegółowo

dolar tylko przed numerem wiersza, a następnie tylko przed literą kolumny.

dolar tylko przed numerem wiersza, a następnie tylko przed literą kolumny. Wskazówki do wykonania Ćwiczenia 0, przypomnienie (Excel 2007) Autor: dr Mariusz Giero 1. Pobieramy plik z linku przypomnienie. Należy obliczyć wartości w komórkach zaznaczonych żółtym kolorem. 2. Obliczenie

Bardziej szczegółowo

Spis treści. 1. Obsługa programu podstawowe operacje... 5. 2. Operatory... 20. 3. Funkcje... 52. 4. Słowa kluczowe obliczeń symbolicznych...

Spis treści. 1. Obsługa programu podstawowe operacje... 5. 2. Operatory... 20. 3. Funkcje... 52. 4. Słowa kluczowe obliczeń symbolicznych... Spis treści 1. Obsługa programu podstawowe operacje... 5 Środowisko pracy...7 Poruszanie się w oknie programu Mathcad...12 Zaznaczanie znaków...14 Obszary...14 Tekst w dokumentach programu Mathcad...17

Bardziej szczegółowo

TABELE I WYKRESY W EXCELU I ACCESSIE

TABELE I WYKRESY W EXCELU I ACCESSIE TABELE I WYKRESY W EXCELU I ACCESSIE 1. Tabele wykonane w Excelu na pierwszych ćwiczeniach Wielkość prób samce samice wiosna/lato 12 6 jesień 6 7 zima 10 9 Średni ciężar osobnika SD ciężaru osobnika samce

Bardziej szczegółowo

Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab

Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej

Bardziej szczegółowo

Wprowadzenie do formuł i funkcji

Wprowadzenie do formuł i funkcji Wprowadzenie do formuł i funkcji Wykonywanie obliczeń, niezależnie od tego, czy są one proste czy złożone, może być nużące i czasochłonne. Przy użyciu funkcji i formuł programu Excel można z łatwością

Bardziej szczegółowo

Podstawy MATLABA, cd.

Podstawy MATLABA, cd. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie

Bardziej szczegółowo

TWORZENIE OBIEKTÓW GRAFICZNYCH

TWORZENIE OBIEKTÓW GRAFICZNYCH R O Z D Z I A Ł 2 TWORZENIE OBIEKTÓW GRAFICZNYCH Rozdział ten poświęcony będzie dokładnemu wyjaśnieniu, w jaki sposób działają polecenia służące do rysowania różnych obiektów oraz jak z nich korzystać.

Bardziej szczegółowo

Temat: Organizacja skoroszytów i arkuszy

Temat: Organizacja skoroszytów i arkuszy Temat: Organizacja skoroszytów i arkuszy Podstawowe informacje o skoroszycie Excel jest najczęściej wykorzystywany do tworzenia skoroszytów. Skoroszyt jest zbiorem informacji, które są przechowywane w

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

najlepszych trików Excelu

najlepszych trików Excelu 70 najlepszych trików W Excelu 70 najlepszych trików w Excelu Spis treści Formatowanie czytelne i przejrzyste zestawienia...3 Wyświetlanie tylko wartości dodatnich...3 Szybkie dopasowanie szerokości kolumny...3

Bardziej szczegółowo

Numeryczne rozwiązywanie równań i układów równań

Numeryczne rozwiązywanie równań i układów równań Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:

Bardziej szczegółowo

, h(x) = sin(2x) w przedziale [ 2π, 2π].

, h(x) = sin(2x) w przedziale [ 2π, 2π]. Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję

Bardziej szczegółowo

Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy

Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy Temat: Arkusze kalkulacyjne. Program Microsoft Office Excel. Podstawy Arkusz kalkulacyjny to program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników.

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Projekt graficzny z metamorfozą (ćwiczenie dla grup I i II modułowych) Otwórz nowy rysunek. Ustal rozmiar arkusza na A4. Z przybornika wybierz rysowanie elipsy (1). Narysuj okrąg i nadaj mu średnicę 100

Bardziej szczegółowo

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert)

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert) Procesy i techniki produkcyjne Wydział Mechaniczny Ćwiczenie 3 (2) CAD/CAM Zasady budowy bibliotek parametrycznych Cel ćwiczenia: Celem tego zestawu ćwiczeń 3.1, 3.2 jest opanowanie techniki budowy i wykorzystania

Bardziej szczegółowo

TEMAT : Przykłady innych funkcji i ich wykresy.

TEMAT : Przykłady innych funkcji i ich wykresy. Elżbieta Kołodziej e-mail: efreet@pf.pl matematyka, informatyka Gimnazjum Nr 5 37-450 Stalowa Wola ul. Poniatowskiego 55 SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT : Przykłady innych funkcji

Bardziej szczegółowo

GRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY

GRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska GRAFIKA INŻYNIERSKA INSTRUKCJA PODSTAWOWE KOMENDY AUTOCADA - TRÓJKĄTY Prowadzący

Bardziej szczegółowo

Krótka instrukcja opracowania danych w programie SciDAVis v. 1-D013-win

Krótka instrukcja opracowania danych w programie SciDAVis v. 1-D013-win Krótka instrukcja opracowania danych w programie SciDAVis v. 1-D013-win 1 Instalacja programu SciDAVis Microsoft Windows Informacje na temat projektu SciDAVis dostępne są na stronie http://scidavis.sourceforge.net/.

Bardziej szczegółowo

MATHCAD 2000 ściąga do ćwiczeń z podstaw informatyki

MATHCAD 2000 ściąga do ćwiczeń z podstaw informatyki MATHCAD 000 ściąga do ćwiczeń z podstaw informatyki 1. Wprowadzenie Mathcad 000 to profesjonalny program matematyczny służący do rozwiązywania różnego typu zagadnień inżynierskich. Umożliwia prowadzenie

Bardziej szczegółowo

Ćwiczenie nr 10 Bloki Dynamiczne

Ćwiczenie nr 10 Bloki Dynamiczne Ćwiczenie nr 10 Bloki Dynamiczne Bloki dynamiczne zawierają oprócz elementów rysunkowych i/lub atrybutów również operacje na elementach bloku. Aby można było je realizować konieczne są specjalne obiekty

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS Wyższa Szkoła Ekologii i Zarządzania Excel Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.4 Slajd 1 Slajd 2 Najlepszym sposobem prezentacji danych jest prezentacja graficzna. Z pomocą wykresu

Bardziej szczegółowo

Klawisze funkcyjne w OpenOffice.org Writer

Klawisze funkcyjne w OpenOffice.org Writer Klawisze funkcyjne w OpenOffice.org Writer F2 Ctrl + F2 F3 Ctrl + F3 F4 Shift + F4 F5 Ctrl + Shift + F5 F7 Ctrl + F7 F8 Ctrl + F8 Shift + F8 Ctrl+Shift+F8 F9 Ctrl + F9 Shift + F9 Ctrl + Shift + F9 Ctrl

Bardziej szczegółowo

Przenoszenie, kopiowanie formuł

Przenoszenie, kopiowanie formuł Przenoszenie, kopiowanie formuł Jeżeli będziemy kopiowali komórki wypełnione tekstem lub liczbami możemy wykorzystywać tradycyjny sposób kopiowania lub przenoszenia zawartości w inne miejsce. Jednak przy

Bardziej szczegółowo

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1

1. SFC W PAKIECIE ISAGRAF 2. EDYCJA PROGRAMU W JĘZYKU SFC. ISaGRAF WERSJE 3.4 LUB 3.5 1 ISaGRAF WERSJE 3.4 LUB 3.5 1 1. SFC W PAKIECIE ISAGRAF 1.1. Kroki W pakiecie ISaGRAF użytkownik nie ma możliwości definiowania własnych nazw dla kroków. Z każdym krokiem jest związany tzw. numer odniesienia

Bardziej szczegółowo

Zadaniem tego laboratorium będzie zaznajomienie się z podstawowymi możliwościami operacji na danych i komórkach z wykorzystaniem Excel 2010

Zadaniem tego laboratorium będzie zaznajomienie się z podstawowymi możliwościami operacji na danych i komórkach z wykorzystaniem Excel 2010 Zadaniem tego laboratorium będzie zaznajomienie się z podstawowymi możliwościami operacji na danych i komórkach z wykorzystaniem Excel 2010 Ms Excel jest przykładem arkusza kalkulacyjnego, grupy oprogramowania

Bardziej szczegółowo

Ćwiczenia nr 2. Edycja tekstu (Microsoft Word)

Ćwiczenia nr 2. Edycja tekstu (Microsoft Word) Dostosowywanie paska zadań Ćwiczenia nr 2 Edycja tekstu (Microsoft Word) Domyślnie program Word proponuje paski narzędzi Standardowy oraz Formatowanie z zestawem opcji widocznym poniżej: Można jednak zmodyfikować

Bardziej szczegółowo

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego 1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia

Bardziej szczegółowo

Dlaczego stosujemy edytory tekstu?

Dlaczego stosujemy edytory tekstu? Edytor tekstu Edytor tekstu program komputerowy służący do tworzenia, edycji i formatowania dokumentów tekstowych za pomocą komputera. Dlaczego stosujemy edytory tekstu? możemy poprawiać tekst możemy uzupełniać

Bardziej szczegółowo

Matematyka z komputerem dla gimnazjum

Matematyka z komputerem dla gimnazjum IDZ DO PRZYK ADOWY ROZDZIA KATALOG KSI EK ZAMÓW DRUKOWANY KATALOG TWÓJ KOSZYK CENNIK I INFORMACJE ZAMÓW INFORMACJE O NOWO CIACH ZAMÓW CENNIK CZYTELNIA SPIS TRE CI KATALOG ONLINE DODAJ DO KOSZYKA FRAGMENTY

Bardziej szczegółowo

SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK

SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK Tworzenie Listy wyboru Tworzenie obliczeo z wykorzystaniem adresowania mieszanego (symbol $) Tworzenie wykresu i zmiana jego parametrów Wszelkie wskazówki

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

W oknie tym wybieramy pożądany podział sekcji, strony, kolumny. Naciśnięcie powoduje pojawienie się następującego okna:

W oknie tym wybieramy pożądany podział sekcji, strony, kolumny. Naciśnięcie powoduje pojawienie się następującego okna: - 1 - WSTAW Aby uruchomić menu programu należy Wskazać myszką podmenu Wstaw a następnie nacisnąć lewy przycisk myszki lub Wcisnąć klawisz (wejście do menu), następnie klawiszami kursorowymi (w prawo

Bardziej szczegółowo

WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2

WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2 - 1 - MS EXCEL CZ.2 FUNKCJE Program Excel zawiera ok. 200 funkcji, będących predefiniowanymi formułami, słuŝącymi do wykonywania określonych obliczeń. KaŜda funkcja składa się z nazwy funkcji, która określa

Bardziej szczegółowo

Wprowadzenie do MS Excel

Wprowadzenie do MS Excel Wprowadzenie do MS Excel Czym jest Excel? Excel jest programem umożliwiającym tworzenie tabel, a także obliczanie i analizowanie danych. Należy do typu programów nazywanych arkuszami kalkulacyjnymi. W

Bardziej szczegółowo

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia

Ćwiczenia Skopiować do swojego folderu plik cwiczenia-kl.ii.xls, a następnie zmienić jego nazwę na imię i nazwisko ucznia Temat 23 : Poznajemy podstawy pracy w programie Excel. 1. Arkusz kalkulacyjny to: program przeznaczony do wykonywania różnego rodzaju obliczeń oraz prezentowania i analizowania ich wyników, utworzony (w

Bardziej szczegółowo

MS Excel. Podstawowe wiadomości

MS Excel. Podstawowe wiadomości MS Excel Podstawowe wiadomości Do czego służy arkusz kalkulacyjny? Arkusz kalkulacyjny wykorzystywany jest tam gdzie wykonywana jest olbrzymia ilość żmudnych, powtarzających się według określonego schematu

Bardziej szczegółowo

Zadanie Wstaw wykres i dokonaj jego edycji dla poniższych danych. 8a 3,54 8b 5,25 8c 4,21 8d 4,85

Zadanie Wstaw wykres i dokonaj jego edycji dla poniższych danych. 8a 3,54 8b 5,25 8c 4,21 8d 4,85 Zadanie Wstaw wykres i dokonaj jego edycji dla poniższych danych Klasa Średnia 8a 3,54 8b 5,25 8c 4,21 8d 4,85 Do wstawienia wykresu w edytorze tekstu nie potrzebujemy mieć wykonanej tabeli jest ona tylko

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

TEMAT: Ilustracja graficzna układu równań.

TEMAT: Ilustracja graficzna układu równań. SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT: Ilustracja graficzna układu równań. Cel ogólny: Uczeń rozwiązuje metodą graficzną układy równań przy użyciu komputera. Cele operacyjne: Uczeń: - zna

Bardziej szczegółowo

Wykresy. Informatyka Arkusz kalkulacyjny Excel dla WINDOWS. Excel. cz.4. Wykresy. Wykresy. Wykresy. Wykresy

Wykresy. Informatyka Arkusz kalkulacyjny Excel dla WINDOWS. Excel. cz.4. Wykresy. Wykresy. Wykresy. Wykresy Zespół Szkół Agrotechnicznych i Ogólnokształcących im.józefa Piłsudskiego w śywcu Excel Informatyka Arkusz kalkulacyjny Excel dla WINDOWS cz.4 Najlepszym sposobem prezentacji danych jest prezentacja graficzna.

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL 2010

Arkusz kalkulacyjny MS EXCEL 2010 Arkusz kalkulacyjny MS EXCEL 2010 podstawy Materiały dla osób prowadzących zajęcia komputerowe w bibliotekach Poradnik powstał w ramach projektu Informacja dla obywateli cybernawigatorzy w bibliotekach,

Bardziej szczegółowo

Edytor tekstu OpenOffice Writer Podstawy

Edytor tekstu OpenOffice Writer Podstawy Edytor tekstu OpenOffice Writer Podstawy Cz. 5. Tabulatory i inne funkcje edytora OpenOffice Writer Tabulatory umożliwiają wyrównanie tekstu do lewej, do prawej, do środka, do znaku dziesiętnego lub do

Bardziej szczegółowo

Andrzej Frydrych SWSPiZ 1/8

Andrzej Frydrych SWSPiZ 1/8 Kilka zasad: Czerwoną strzałką na zrzutach pokazuje w co warto kliknąć lub co zmieniłem oznacza kolejny wybierany element podczas poruszania się po menu Ustawienia strony: Menu PLIK (Rozwinąć żeby było

Bardziej szczegółowo

MATERIAŁY SZKOLENIOWE WORD PODSTAWOWY

MATERIAŁY SZKOLENIOWE WORD PODSTAWOWY MATERIAŁY SZKOLENIOWE WORD PODSTAWOWY 2013 Klawiatura narzędzie do wpisywania tekstu. 1. Wielkie litery piszemy z wciśniętym klawiszem SHIFT albo z włączonym klawiszem CAPSLOCK. 2. Litery typowe dla języka

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Techniki wstawiania tabel

Techniki wstawiania tabel Tabele w Wordzie Tabela w Wordzie to uporządkowany układ komórek w postaci wierszy i kolumn, w które może być wpisywany tekst lub grafika. Każda komórka może być formatowana oddzielnie. Możemy wyrównywać

Bardziej szczegółowo

Maxima i Visual Basic w Excelu

Maxima i Visual Basic w Excelu 12 marca 2013 Maxima - zapoznanie z programem Maxima to program - system algebry komputerowej. Podstawowa różnica w stosunku do klasycznych programów obliczeniowych jest możliwość wykonywania obliczeń

Bardziej szczegółowo

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać

Bardziej szczegółowo

Lekcja 1: Origin GUI GUI to Graficzny interfejs użytkownika (ang. GraphicalUserInterface) często nazywany też środowiskiem graficznym

Lekcja 1: Origin GUI GUI to Graficzny interfejs użytkownika (ang. GraphicalUserInterface) często nazywany też środowiskiem graficznym Lekcja 1: Origin GUI GUI to Graficzny interfejs użytkownika (ang. GraphicalUserInterface) często nazywany też środowiskiem graficznym jest to ogólne określenie sposobu prezentacji informacji przez komputer

Bardziej szczegółowo

Mateusz Bednarczyk, Dawid Chałaj. Microsoft Word Kolumny, tabulatory, tabele i sortowanie

Mateusz Bednarczyk, Dawid Chałaj. Microsoft Word Kolumny, tabulatory, tabele i sortowanie Mateusz Bednarczyk, Dawid Chałaj Microsoft Word Kolumny, tabulatory, tabele i sortowanie 1. Kolumny Office Word umożliwia nam dzielenie tekstu na kolumny. Zaznaczony tekst dzieli się na wskazaną liczbę

Bardziej szczegółowo

1.1 Wykorzystanie programu Microsoft Excel w rekonstrukcji wypadków drogowych - wprowadzenie.

1.1 Wykorzystanie programu Microsoft Excel w rekonstrukcji wypadków drogowych - wprowadzenie. 1.1 Wykorzystanie programu Microsoft Excel w rekonstrukcji wypadków drogowych - wprowadzenie. Microsoft Excel jest arkuszem kalkulacyjnym. Program słuŝy do głównie obliczeń: finansowych, technicznych,

Bardziej szczegółowo

Plik->Opcje->Zakladka Główne->Dostosuj Wstążkę Zaznaczamy kwadracik Developer na liscie po prawej stronie. Klikamy OK.

Plik->Opcje->Zakladka Główne->Dostosuj Wstążkę Zaznaczamy kwadracik Developer na liscie po prawej stronie. Klikamy OK. Aktywacja zakładki Developer. Plik->Opcje->Zakladka Główne->Dostosuj Wstążkę Zaznaczamy kwadracik Developer na liscie po prawej stronie. Klikamy OK. Rejestracja makr. Klikamy Zakladke Developer. Klikamy

Bardziej szczegółowo

Pole formuły. Pasek narzędzi: Formatowanie. Pasek narzędzi: Standardowy. Pasek menu. Przyciski okna aplikacji. Pasek tytułu. Przyciski okna skoroszytu

Pole formuły. Pasek narzędzi: Formatowanie. Pasek narzędzi: Standardowy. Pasek menu. Przyciski okna aplikacji. Pasek tytułu. Przyciski okna skoroszytu Pasek narzędzi: Formatowanie Pasek narzędzi: Standardowy Pasek tytułu Pasek menu Nagłówki wierszy Zakładki arkuszy w skoroszycie Pole formuły Nagłówki kolumn komórka o adresie: D8 Paski przewijania Przyciski

Bardziej szczegółowo

Metody numeryczne Laboratorium 2

Metody numeryczne Laboratorium 2 Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania

Bardziej szczegółowo

BIBLIOGRAFIA W WORD 2007

BIBLIOGRAFIA W WORD 2007 BIBLIOGRAFIA W WORD 2007 Ćwiczenie 1 Tworzenie spisu literatury (bibliografii) Word pozwala utworzyć jedną listę główną ze źródłami (cytowanymi książkami czy artykułami), która będzie nam służyć w różnych

Bardziej szczegółowo

Klawiatura. Klawisze specjalne. Klawisze specjalne. klawisze funkcyjne. Klawisze. klawisze numeryczne. sterowania kursorem. klawisze alfanumeryczne

Klawiatura. Klawisze specjalne. Klawisze specjalne. klawisze funkcyjne. Klawisze. klawisze numeryczne. sterowania kursorem. klawisze alfanumeryczne Klawiatura Klawisze specjalne klawisze funkcyjne Klawisze specjalne klawisze alfanumeryczne Klawisze sterowania kursorem klawisze numeryczne Klawisze specjalne Klawisze specjalne Klawiatura Spacja służy

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

Zastosowanie GeoGebry w realizacji zagadnień związanych z trygonometrią 13. Wykresy funkcji sin x i cos x Paweł Perekietka 13

Zastosowanie GeoGebry w realizacji zagadnień związanych z trygonometrią 13. Wykresy funkcji sin x i cos x Paweł Perekietka 13 . Spis treści 1. 2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 2.9. 2.10. 3. 3.1. Wstęp Katarzyna Winkowska-Nowak, Edyta Pobiega, Robert Skiba 11 Zastosowanie GeoGebry w realizacji zagadnień związanych z

Bardziej szczegółowo

MathCAD cz.1. Spis treści wykładu:

MathCAD cz.1. Spis treści wykładu: Narzędzia obliczeniowe inżyniera MathCAD cz.1 Opracował: Zbigniew Rudnicki 1 Spis treści wykładu: 1) Narzędzia obliczeniowe inżyniera 2) Mathcad - cechy, struktura dokumentu, kursory,.. 3) Tworzenie regionów

Bardziej szczegółowo

2,34E7 (tzw. format naukowy - odpowiada 2,34 107) przecinek Lp. Data Towar Ilość Cena jednostkowa Wartość

2,34E7 (tzw. format naukowy - odpowiada 2,34 107) przecinek Lp. Data Towar Ilość Cena jednostkowa Wartość PWSW ćw.5 MS EXCEL (1) 1. Rozpocząć pracę w nowym skoroszycie w arkuszu1. 2. Kliknąć myszką dowolną komórkę i wprowadzić dowolny tekst. 3. Wprowadzić dane do kilku komórek w różnych formatach, np.: 5-4,5

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA)

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Instrukcje Język Basic został stworzony w 1964 roku przez J.G. Kemeny ego i T.F. Kurtza z Uniwersytetu w Darthmouth (USA). Nazwa Basic jest

Bardziej szczegółowo

Zaznaczanie komórek. Zaznaczenie pojedynczej komórki polega na kliknięciu na niej LPM

Zaznaczanie komórek. Zaznaczenie pojedynczej komórki polega na kliknięciu na niej LPM Zaznaczanie komórek Zaznaczenie pojedynczej komórki polega na kliknięciu na niej LPM Aby zaznaczyć blok komórek które leżą obok siebie należy trzymając wciśnięty LPM przesunąć kursor rozpoczynając od komórki

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

Struktura dokumentu w arkuszu kalkulacyjnym MS EXCEL

Struktura dokumentu w arkuszu kalkulacyjnym MS EXCEL Lekcja 1. Strona 1 z 13 Struktura dokumentu w arkuszu kalkulacyjnym MS EXCEL Zeszyt Nowy plik programu Excel nazywany zeszytem lub skoroszytem składa się na ogół z trzech arkuszy. Przykładowe okno z otwartym

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska INSTRUKCJA KOMPUTEROWA z Rysunku technicznego i geometrii wykreślnej RYSUNEK TECHNICZNY

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo