Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać"

Transkrypt

1 met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe w posti szeregu potęgowego u ( Poiewż fukj d rówiem ( m yć rozwiąziem rówi (, to po jej podstwiiu do ( powiiśmy otrzymć tożsmość. Pohode fukji u( moż olizyć różizkują szereg ( wyrz po wyrzie du d ( d u d ( Jeżeli współzyiki rówi (, tz. fukje f(, g( orz h( moż tkże rozwiąć w szereg posti ( w otozeiu puktu fukji f(, g(, h( do ( dostjemy, to po podstwieiu rozwiięć (, (, ( orz rozwiięć k k ( k gdzie współzyiki k k,, zleżą od,,, k, Jeżeli rówie ( m yć słusze dl wszystkih wrtośi (z rozptrywego przedziłu zmieośi, to wszystkie współzyiki k k,, muszą yć jedoześie rówe zeru. Przyrówie, k tyh współzyików do zer pozwl wyzzeie wrtośi współzyików,, poszukiwego rozwiązi (., / --

2 met_szer_potegowyh-.doowyh Moż udowodić, że jeżeli współzyiki rówi (, tz. fukje f(, g( orz h( moż rozwiąć w szereg potęgowy w otozeiu puktu może yć rozwiięte w szereg potęgowy w otozeiu tego puktu., to rówież rozwiązie rówi ( u( Przykłdy Przykłd CM- Zleźć rozwiązie rówi różizkowego y y y os ( z wrukmi pozątkowymi y ( ( y ( ( w otozeiu puktu. Rozwiązie Rówie ( jest rówiem liiowym o zmieyh współzyikh, o ogólej posti y p( y q( y r( ( Rozwiiemy współzyiki rówi ( w szeregi potęgowe w otozeiu puktu p( ( q ( ( r ( os (!!! Poszukujemy rozwiązi rówi ( w posti stępująego szeregu potęgowego y (7 / --

3 met_szer_potegowyh-.doowyh Wyzzmy z (7 pierwszą i drugą pohodą fukji y y ( y ( ( Szeregi (-( podstwimy do rówi ( [ [ ( ] [ ]!!! ] ( Przyrówujemy do sieie współzyiki stojąe przy jedkowyh potęgh po ou stroh rówi ( ( ( (d (e (f 7 (g 7 Podstwimy wruek pozątkowy ( do rówi (7 y( ( stąd ( / --

4 met_szer_potegowyh-.doowyh Wruek pozątkowy ( podstwimy do ( otrzymują y ( ( zyli ( Z rówi ( dostjemy ( z ( ( z ( ( z (d (d z (e (e z (f 7 (f z (g (g / --

5 met_szer_potegowyh-.doowyh Podstwimy terz współzyiki (, ( i ( do rówi (7 otrzymują przyliżoe rozwiązie zgdiei pozątkowego (-( w posti szeregu potęgowego y( (7 Przykłd MM-7 Zleźć rozwiązie ogóle w posti szeregu potęgowego stępująego rówi różizkowego, w otozeiu puktu =. d u u d ( Poszukujemy rozwiązi w posti u ( ( Drug pohod prwej stroy rówi ( m postć d u d ( Podstwimy ( i ( do ( ( Grupujemy wyrzy, w któryh występuje w tej smej potędze ( ( ( Rówie ( m yć spełioe tożsmośiowo dl dowolego, dltego współzyiki stojąe przy, dl =,,,..., muszą yć rówe zeru ( ( / --

6 met_szer_potegowyh-.doowyh / -- ( (d Wyzzmy z rówń ( współzyiki i, dl i =,,,..., w zleżośi od współzyików orz (7 (7 7 (7 7 (7d itd. Podstwimy terz współzyiki (7 do rozwiązi ( ( u ( Rozwiązie ogóle ( zwier dwie stłe dowole i, które wyzz się z dwóh wruków grizyh. Rozwiązie to moż przedstwić w ieo iej formie!!!! ( u ( Zuwżmy, że

7 met_szer_potegowyh-.doowyh si (!! os (!! Otrzymujemy w te sposó dokłde rozwiązie rówi ( u( Asi B os ( gdzie stłe A, B wyzz się z dwóh wruków grizyh. Przykłd MS- Metodą szeregów potęgowyh zleźć rozwiązie rówi y os y e y ( spełijąe wruki pozątkowe y ( ( y ( Rozwiązie Dl, fukje os orz -e są rozwijle odpowiedio w stępująe szeregi potęgowe os (!!! e!!! ( Poszukujemy rozwiązi w posti szeregu y ( ( 7/ --

8 met_szer_potegowyh-.doowyh / -- Z ( olizmy ( y ( orz ( y (7 Zleżośi (-(7 podstwimy do (!!!!! ( Stąd po wymożeiu i uporządkowiu ( Rówie ( jest spełioe dl kżdego wtedy i tylko wtedy, gdy kżdy z wisów stojąyh po lewej stroie ( jest rówy zeru. Z wruków pozątkowyh ( dostjemy ( ( Wykorzystują ( dostjemy kolejo z ( ( ( stąd (

9 met_szer_potegowyh-.doowyh (d stąd (e (f stąd (g Rozwiązie szzególe rówi ( z wrukmi pozątkowymi ( m wię postć stępująego szeregu y ( ( / --

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa / WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

Równania liniowe rzędu drugiego stałych współczynnikach

Równania liniowe rzędu drugiego stałych współczynnikach Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH METODY NUMERYCZNE Wykłd. Cłkowie umeryze dr h. iż. Ktrzy Zkrzewsk, pro. AGH Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rihrdso Metod Romerg Metod Simpso wzór prol Metod Guss Cłkowie umeryze -

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1 METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych (1)

Rozwiązywanie układów równań liniowych (1) etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych etody dokłde pozwlą uzyskie rozwiązi w skończoe liczbie kroków obliczeiowych.

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel Automty i ooty Aliz Wyłd dr Adm Ćmil mil@gh.du.pl SZEEGI POTĘGOWE iąg liz zspoloyh z z - szrg potęgowy, gdzi - iąg współzyiów szrgu, z C - środ, trum ustlo, z C - zmi. Dl dowolgo ustlogo z C szrg potęgowy

Bardziej szczegółowo

Macierze w MS Excel 2007

Macierze w MS Excel 2007 Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

Zadania i rozwiązania prac domowych z Analizy Matematycznej 1.2 z grupy pana Ryszarda Kopieckiego, semestr letni 2011/2012.

Zadania i rozwiązania prac domowych z Analizy Matematycznej 1.2 z grupy pana Ryszarda Kopieckiego, semestr letni 2011/2012. Zdi i rozwiązi prc domowych z Alizy Mtemtyczej. z grupy p Ryszrd Kopieckiego, semestr leti / Ntli Skowsk . seri UWAGA: wykresów oczywiście rysowć ie trzeb. Co więcej, wykres ie jest dowodem żdego stwierdzei.

Bardziej szczegółowo

Struna nieograniczona

Struna nieograniczona Rówie sry Rówie okreś rch sry sprężysej kórą ie dziłją siły zewęrze Sł okreśo jes przez włsości izycze sry Zkłdmy że w położei rówowgi sr pokryw się z pewym przedziłem osi OX Fkcj okreś wychyeie z położei

Bardziej szczegółowo

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna WIELOMIANY SZACHOWE

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna  WIELOMIANY SZACHOWE MAEMAYKA DYKENA (0/0) r h. iż. Młgorzt ter mlgorzt.ster@s.put.poz.pl www.s.put.poz.pl/mster/ WIELOMIANY ZACHOWE Mtemtyk Dyskret Młgorzt ter B WIELOMIANY ZACHOWE Wielomiy szhowe opisują lizę możliwyh rozmieszzeń

Bardziej szczegółowo

[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ

[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ I UKŁAD RÓNAŃ Defiicj Ukłd rówń liiowych z iewidoyi,,., : Defiicj Postć cierzow ukłdu rówń: A, lu krócej A, gdzie: A,,. Mcierz A zywy cierzą ukłdu rówń, wektor zywy wektore wyrzów wolych (koluą wyrzów

Bardziej szczegółowo

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że AŁKA NIEOZNAZONA f - fukj określo w rzedzile E. Fukją ierwotą fukji f w rzedzile E zywy fukję F tką, że F N. fukją ierwotą fukji f = + R jest fukj F = + o F +, Zuwży, że fukje F = + + 5 i F = + też są

Bardziej szczegółowo

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zdi Odpowiedzi Pukty Bde umiejętości Obszr stdrdu. B 0 pluje i wykouje obliczei liczbch rzeczywistych,

Bardziej szczegółowo

Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego.

Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego. Wybre zgdiei bdń opercyjych Wykłd Metod simpleks rozwiązywi zdń progrmowi liiowego Prowdzący: dr iiż.. Zbiigiiew TARAPATA De kotktowe: e-mil: WWW: Zbigiew.Trpt@wt.edu.pl http://trpt.stref.pl tel. : 83-94-3,

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r. KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,

Bardziej szczegółowo

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej. 5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer.

METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. ETODY NUERYCZNE Wykłd 6. Rozwiązywie ukłdów rówń liiowych dr hb. iż. Ktrzy Zkrzewsk, prof. AGH et.numer. wykłd 6 Pl etody dokłde etod elimicji Guss etod Guss-Seidl Rozkłd LU et.numer. wykłd 6 Ukłd rówń

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0

Bardziej szczegółowo

Wykład 9. Podejmowanie decyzji w warunkach niepewności

Wykład 9. Podejmowanie decyzji w warunkach niepewności Wkłd 9. Podejowie deczji w wrukch ieewości E L l E E F E F l S 0 0 ; R D D F F D i F() - wrtość zieej losowej - zbiór ciągł f - fukcj gęstości rozkłdu rwdoodobieństw zieej losowej Wówczs: d f E L l d

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury. Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,

Bardziej szczegółowo

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim (

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim ( AM11 zadaia 8 Przypom e kilka dosyć ważyh grai, które już pojawiły się a zajeiah e 1 lim 1 l(1+) (1+) 1, lim 1, lim a 1 si a, lim 1 0 0 0 0 l 2 lim 0, lim a 0 dla każdego a R, lim (1 + 1 e ) e, lim 1/

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 2 Ha i 2 Lb 2011 str 1

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 2 Ha i 2 Lb 2011 str 1 Zres teriłu oowiązująy do egziu poprwowego z tetyi s H i 0 str Dził progrowy Fuj wdrtow Wieoiy iągi Wieoąty Trygooetri Przyłdowe zdi: Fuj wdrtow:. D jest fuj: y 0 Zres reizji Włsośi fuji (p. ootoizośd,

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -

Bardziej szczegółowo

Ciągi liczbowe podstawowe definicje i własności

Ciągi liczbowe podstawowe definicje i własności Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń

Bardziej szczegółowo

6. Układy równań liniowych

6. Układy równań liniowych 6. Ukłdy rówń liiowych 6. Podstwowe określei Defiicj 6.. (ukłd rówń liiowych rozwiązie ukłdu rówń) Ukłde rówń liiowych z iewidoyi gdzie N zywy ukłd rówń postci:...... (6..) O... gdzie ij R to tzw. współczyiki

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

Ciągi i szeregi liczbowe

Ciągi i szeregi liczbowe Ciągi i szeregi liczbowe Defiicj. Jeżeli kżdej liczbie turlej przyporządkow zostł jkś liczb rzeczywist, to mówimy, że zostł określoy ciąg liczbowy (ieskończoy). Formlie ozcz to, że ciąg liczbowy jest fukcją

Bardziej szczegółowo

REPREZENTACJA SYGNAŁÓW

REPREZENTACJA SYGNAŁÓW REPREZENTACJA SYGNAŁÓW Spi reści:. Bzy ygłów.. Procedur oroormlizcyj. 3. Wielomiy, fukcje Hr i Wlh, fukcje gięe, rygoomerycze. 4. Sygły dwurgumeowe... -. -...5..5.3 Reprezecj ygłmi elemerymi.5 N = 8 =.9

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej. WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Koputerowe wspogie decyzi 008/009 Liiowe zgdiei decyzye Nottki do tetu Metody poszukiwi rozwiązń edokryterilych probleów decyzyych etody dl zgdień liiowego progrowi tetyczego Liiowe zgdiei decyzye część

Bardziej szczegółowo

Wykład Podejmowanie decyzji w warunkach niepewności

Wykład Podejmowanie decyzji w warunkach niepewności Wkłd Podejowie deczji w wrukch ieewości Rozwż rzkłd: M sieć I koli które leż zoderizowć. Istieje J writów oderizcji i kżd z ich o koszcie c ij jeśli i-t koli jest oderizow j-t sosób (i = I j = J). Urobek

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2).

ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2). ZADANIA NA POCZA TEK Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 4 3 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4

Bardziej szczegółowo

Szeregi o wyrazach dowolnych znaków, dwumian Newtona

Szeregi o wyrazach dowolnych znaków, dwumian Newtona Poprwi lem 9 czerwc 206 r, godz 20:0 Twierdzeie 5 kryterium Abel Dirichlet Niech be dzie ieros cym ci giem liczb dodtich D Jeśli 0 i ci g sum cze ściowych szeregu b jest ogriczoy, to szereg b jest zbieży

Bardziej szczegółowo

MATEMATYKA W EKONOMII I ZARZĄDZANIU

MATEMATYKA W EKONOMII I ZARZĄDZANIU MATEMATYA W EONOMII I ZARZĄDZANIU Wykłd - Alger iiow) eszek S Zre Wektore zywy iąg liz ) p 567) 5) itp W ekooii koszyk dór zpisuje się jko wektory Np 567) jko koszyk dór wyspie Hul Gul oŝe ozzć 5 jłek

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). Ciągi i szeregi - Lucj owlski CIĄGI LICZBOWE N,,,... zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej). Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

Ciągi i szeregi funkcyjne

Ciągi i szeregi funkcyjne Mteriły do ćwiczeń Aliz Mtemtycz II 7/8 Mri Frotczk, Ludwik Kczmrek, Ktrzy Klimczk, Mri Michlsk, Bet Osińsk-Ulrych, Tomsz Rodk, Adm Różycki, Grzegorz Sklski, Stisłw Spodziej Teori pod przed ćwiczeimi pochodzi

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności. CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

Temat: Wybrane zagadnienia kinematyki mechanizmów. Ruch punktu: prostoliniowy, krzywoliniowy (np. po okręgu, elipsie, dowolnej krzywej)

Temat: Wybrane zagadnienia kinematyki mechanizmów. Ruch punktu: prostoliniowy, krzywoliniowy (np. po okręgu, elipsie, dowolnej krzywej) Tem: Wybre zgdiei kiemyki mechizmów Ruch puku: prosoliiowy, krzywoliiowy (p. po okręgu, elipsie, dowolej krzywej) Ruch bryły: posępowy, obroowy, płski, kulisy, śrubowy, dowoly. Liczbę iezleżych współrzędych

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x

Bardziej szczegółowo

Analiza Matematyczna 2 Szeregi liczbowe i funkcyjne

Analiza Matematyczna 2 Szeregi liczbowe i funkcyjne Aliz Mtemtycz 2 Szeregi liczbowe i fukcyje Wydził Mtemtyki wykłdowc T. Dowrowicz 5 kwieti 2017 Wykłdy III i IV SZEREGI LICZBOWE Obrzowo mówiąc, szeregiem, zywmy ciąg, w którym zmist przeików stwimy zki

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM

TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:

Bardziej szczegółowo

Powtórka dotychczasowego materiału.

Powtórka dotychczasowego materiału. Powtórk dotychczsowego mteriłu. Zdi do smodzielego rozwiązi. N ćwiczeich w środę 7.6.7 grupy 4 leży wskzć zdi, które sprwiły jwięcej problemów. 43. W kżdym z zdń 43.-43.5 podj wzór fukcję różiczkowlą f

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego

Bardziej szczegółowo

Szeregi trygonometryczne Fouriera. sin(

Szeregi trygonometryczne Fouriera. sin( Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś

Bardziej szczegółowo

Ciąg arytmetyczny i geometryczny

Ciąg arytmetyczny i geometryczny Ciąg rytmetyczy i geometryczy Zd. : Ciąg ( ) jest opisy wzorem = 5 + ( )(k k ), gdzie k jest prmetrem. ) WykŜ, Ŝe ( ) jest ciągiem rytmetyczym. Dl jkich wrtości prmetru k ciąg te jest mlejący? b) Dl k

Bardziej szczegółowo

Collegium Novum Akademia Maturalna

Collegium Novum Akademia Maturalna Collegium Novum Akdemi Mturl wwwcollegium-ovumpl 0- -89-66 Mtemtyk (GP dt: 00008 sobot Collegium Novum Akdemi Mturl Temt 5: CIĄGI Prowdzący: Grzegorz Płg Termi: 0007 godzi 9:00-:0 8 Zdie Które wyrzy ciągu

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do rkusz Prónej Mtury z OPERONEM Mtemtyk Poziom rozszerzony Listopd 009 W kluczu sà prezentowne przyk dowe prwid owe odpowiedzi. Nle y równie uznç odpowiedzi uczni, jeêli sà inczej sformu

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem

Bardziej szczegółowo

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011 Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

ph ROZTWORÓW WODNYCH

ph ROZTWORÓW WODNYCH ph ROZTWORÓW WODNYCH ph roztworów monyh kwsów i zsd H O H O A α 00 % MeOH Me OH MeOH α 00 % np.: HCl, r, HI, HNO, HClO i HClO NOH, OH, CsOH i ROH [H O [OH MeOH ph - log poh - log MeOH Mone kwsy dwuprotonowe,

Bardziej szczegółowo

ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH.

ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH. AGEBRA MACIERZY. UKŁADY RÓWNAŃ INIOWYCH. MACIERZE Mcierzą o wymirch m (m ) zywmy prostokątą tblicę której elemetmi jest m liczb rzeczywistych mjącą m wierszy i kolum postci A m m kolumy wiersze m Stosujemy

Bardziej szczegółowo

Szkice rozwiązań zadań zawody rejonowe 2019

Szkice rozwiązań zadań zawody rejonowe 2019 XVI Śląski Konkurs Mtemtyzny Szkie rozwiązń zdń zwody rejonowe 9 Zdnie. Znjdź wszystkie lizy pierwsze p, dl któryh liz pp+ + też jest lizą pierwszą. Rozwiąznie Jeżeli p, to pp+ + 3 + i jest to liz złożon.

Bardziej szczegółowo

Analiza matematyczna ISIM I

Analiza matematyczna ISIM I Aliz mtemtycz ISIM I Ryszrd Szwrc Spis treści Ciągi liczbowe. Zbieżość ciągów......................... 3. Liczb e.............................. 0 Szeregi liczbowe 3. Łączość i przemieość w sumie ieskończoej.........

Bardziej szczegółowo

MATEMATYKA MATURA 2007 PRZYKŁADOWY ARKUSZ DLA POZIOMU ROZSZERZONEGO. Henryk Dąbrowski Ewa Stożek

MATEMATYKA MATURA 2007 PRZYKŁADOWY ARKUSZ DLA POZIOMU ROZSZERZONEGO. Henryk Dąbrowski Ewa Stożek Hery Dąrowsi Ew Stoże MTEMTYK PRZYKŁDOWY RKUSZ DL POZIOMU ROZSZERZONEGO MTUR 7 Pulij współfisow przez Europejsi Fudusz Społezy etrl Koisj Egziyj ul Łu -8 Wrszw e-il: efs@eedupl etrl Koisj Egziyj DODTEK

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do rkusz Prónej Mtury z OPERONEM Mtemtyk Poziom rozszerzony Listopd 009 W kluczu sà prezentowne przyk dowe prwid owe odpowiedzi. Nle y równie uznç odpowiedzi uczni, jeêli sà inczej sformu

Bardziej szczegółowo

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n 6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Matematyka wybrane zagadnienia. Lista nr 4

Matematyka wybrane zagadnienia. Lista nr 4 Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest

Bardziej szczegółowo

Zagadnienie Sturma-Liouville a. Definicja : Zagadnieniem Sturma-Liouville a nazywamy równanie różniczkowe postaci

Zagadnienie Sturma-Liouville a. Definicja : Zagadnieniem Sturma-Liouville a nazywamy równanie różniczkowe postaci Zgdieie Sturm-Liouville Defiicj : Zgdieiem Sturm-Liouville zywmy rówie różiczkowe postci p x y x + q x + λ r x y x = 0, x,, λ R gdzie p x, p x, q x, r x są ciągłe, orz x, p x 0 r(x) 0 z wrukmi rzegowymi.

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM klasa 2F 1. FUNKCJA LINIOWA

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM klasa 2F 1. FUNKCJA LINIOWA WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM kls 2F 1. FUNKCJA LINIOWA Uczeń otrzymuje oceę dopuszczjącą, jeśli: rozpozje fukcję liiową podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Analiza Matematyczna

Analiza Matematyczna Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuow bezpłtie Dostęp stroie: Autork: Agieszk Jędruszek Hour Firm Usługow Jo Jędruszek Kompedium do pobri stroie: Publikcj jest dystrybuow bezpłtie

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm

Bardziej szczegółowo

1, π) m, n 0 ( 2, 3. a b =

1, π) m, n 0 ( 2, 3. a b = MATEMATYKA - POWTÓRZENIE I. Lizy i dziłi. Przyjmujemy, Ŝe jmiejszą lizą turlą jest liz 0. W ziorze liz turlyh wyróŝimy lizy rzyste i ierzyste. Lizą ierwszą zywmy tką lizę turlą, któr m tylko dw róŝe dzieliki:

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO

WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO WOJSKOWA AKADEMIA TECHNICZNA im. Jrołw Dąrowkiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEO Przemiot: PODSTAWY AUTOMATYKI (tui tjore I topi) ĆWICZENIE RACHUNKOWE Nr STABILNOŚĆ UKŁADÓW DYNAMICZNYCH Wrzw ĆWICZENIEE

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

Rachunek wektorowo-macierzowy w programie SciLab

Rachunek wektorowo-macierzowy w programie SciLab Rchuek wektorowo-mcierzowy w progrmie Scib Rchuek wektorowo-mcierzowy w progrmie Scib Dziłi liczbch Dodwie i odejmowie + b 3 + = 5 b = + (-b) 3 = 3 + (-) = + 0 = + (-) = 0 Rchuek wektorowo-mcierzowy w

Bardziej szczegółowo