8. Realizacja projektowanie i pomiary filtrów IIR

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "8. Realizacja projektowanie i pomiary filtrów IIR"

Transkrypt

1 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów cyfrowych. Liniowe filtry cyfrowe Liniowy przyczynowy filtr cyfrowy o transmitancji 1 Y( z) b0 b1 z... bm z H( z) 1 X ( z) a a z... a z 0 1 N M N. (7.1) opisany jest równaniem różnicowym a0 y[ n] a1 y[ n 1]... an y[ n N] b0 n] b1 n 1]... bm n M], (7.2) gdzie: n] pobudzenie, y[n] odpowiedź, b 0,, b M i a 0,, a N współczynniki licznika i mianownika transmitancji będące jednocześnie współczynnikami równania różnicowego i współczynnikami filtru. Po przekształceniu równania (7.2) uzyskuje się wzór pozwalający obliczyć odpowiedź filtru y[n] na pobudzenie n] 1 y[ n] b0 n] b1 n 1]... bm n M ] a1 y[ n 1]... a a 0 N y[ n N]. (7.3)

2 54 Często dla uproszczenia obliczeń i struktury filtru przyjmuje się, że a 0 = 1. Wzór (7.3) pozwala bezpośrednio obliczyć kolejną próbkę sygnału wyjściowego, jako średnią ważoną przeszłych próbek sygnału wejściowego i wyjściowego oraz bieżącej próbki sygnału wejściowego rolę współczynników wagowych pełnią współczynniki filtru. Wzór (7.3) może być wykorzystywany dla programowej realizacji filtrów cyfrowych. Realizacja filtru cyfrowego na procesorze sygnałowym Realizacja filtru cyfrowego na procesorze sygnałowym podlega ograniczeniom wynikającym z możliwości obliczeniowych procesora. Dużo trudniej jest realizować filtry na procesorach stałoprzecinkowych 16-bitowych, niż na procesorach zmiennoprzecinkowych 32-bitowych. Arytmetyka procesora 16- bitowego (stałoprzecinkowego) wymaga, aby współczynniki filtru były zapisane w formacie Q1.15, w którym można zapisać tylko liczby wymierne z zakresu od 1.0 do z rozdzielczością Trudnością przy realizacji filtru jest też możliwość uzyskania w wyniku obliczeń próbki o wartości wykraczającej poza zakres zmienności liczb 16- bitowych. Metodą walki z przepełnieniem jest unormowanie charakterystyki amplitudowej filtru tak, aby filtr nie wzmacniał sygnału, czyli aby maksymalna wartość charakterystyki amplitudowej była równa 1. Unormowane filtry spełniają warunek j max H ( e ) 1 dla [, ). (7.4) Spełnienie warunku (7.4) pozwala oczekiwać, że podczas pracy filtru nie wystąpi przepełnienie i filtr będzie liniowy, chociaż nie dla każdego sygnału wejściowego, przykładem może być filtracja sygnału prostokątnego przez filtr selektywny. Z rozwinięcia w szereg Fouriera sygnału prostokątnego (1.3) wynika, że amplituda składowej sinusoidalnej o częstotliwości podstawowej jest o 4/ 1, 273 większa od wartości szczytowej samego prostokąta. Jeśli filtr

3 55 selektywny przepuści bez tłumienia składową o częstotliwości podstawowej i usunie wszystkie pozostałe składowe, to sinusoidalny sygnał wyjściowy będzie miał większa amplitudę od wartości szczytowej prostokątnego sygnału wejściowego i przy dużym poziomie sygnału wejściowego może wystąpić przepełnienie. Filtry IIR pierwszego rzędu Transmitancja dolnoprzepustowego filtru IIR pierwszego rzędu dana jest wzorem 1 1 z 2 1 z 1 H LP ( z) 1, 0 1. (7.5) Dla powyższej transmitancji próbki sygnału wyjściowego można obliczać na podstawie wzoru y[ n] ay[ n 1] 0.5(1 ) n] n 1], (7.6) będącego podstawą jego programowej realizacji. Struktura filtru przedstawiona jest na rys 7.1; z 1 oznacza opóźnienie jednostkowe. n] 0.5(1-α) z 1 z 1 y[n] n-1] y[n-1] α Rys 7.1. Struktura filtru o transmitancji (7.5) zrealizowanego na podstawie wzoru (7.6) Dla ω = 0 wzmocnienie filtru jest równe 0 db, 3-dB częstotliwość graniczna ω 3dB dana jest wzorem

4 56 cos 3dB 2, (7.7) 2 1 Na podstawie wzoru (7.7) można wyprowadzić wzór pozwalający obliczyć wartość współczynnika α dla zadanej częstotliwości granicznej ω 3dB 1 sin cos 3dB. (7.8) 3dB Filtry dolnoprzepustowe znajdują szerokie zastosowanie w algorytmach CPS, czego przykłady znajdą się w rozdziale poświęconym układom demodulatorów. Do zbadania właściwości filtru można wykorzystać program MATLAB. Polecenia z listingu 7.1 Listing 7.1. Kod projektu filtru dolnoprzepustowego języku MATLAB f3db = 4000; % częstotliwość graniczna filtru w Hz fp = 48000; % częstotliwość próbkowania w Hz W3dB = 2*pi*f3dB/fp; % unormowana pulsacja graniczna filtru alfa = (1.0 - sin(w3db))/cos(w3db); % wzór (7.8) fvtool((1-alfa)/2 * [1 1],[1 -alfa]); zaprojektują filtr o częstotliwości granicznej f 3dB = 4 khz, dla f p = 48 khz, następnie uruchomią narzędzie Filter Visualization Tool obliczające numerycznie charakterystyki filtru (7.5) [9]. Transmitancja górnoprzepustowego filtru IIR pierwszego rzędu dana jest wzorem 1 1 z 2 1 z 1 H HP ( z) 1, 0 1. (7.9) Częstotliwość graniczną filtru można obliczyć na podstawie wzoru (7.7). Doświadczenie 7.1. Pomiary charakterystyk filtrów IIR pierwszego rzędu program mainlp_hp (szybkość próbkowania równa 48 khz).

5 57 1. Pomierzyć charakterystyki częstotliwościowe zrealizowanych filtrów programem Charakterystyki. 2. Przeprowadzić badania filtrów przy pomocy Filter Visualization Tool obejmujące mapę zer i biegunów i charakterystyki częstotliwościowe. W sprawozdaniu: 1. Umieścić wykresy pomierzonych charakterystyk częstotliwościowych filtrów i obliczonych programem MATLAB. 2. Ręcznie opisać charakterystyki amplitudowe, zaznaczyć częstotliwości graniczne. Filtry IIR drugiego rzędu wzorem Transmitancja pasmowoprzepustowego filtru drugiego rzędu dana jest 1 1 z 2 1 (1 ) z 2 H BP ( z) 1 2 z, 1, 1. (7.9) Dla powyższej transmitancji próbki sygnału wyjściowego można obliczać na podstawie wzoru y[ n] b0 n] b1 n 1] b2 n 2] a1 y[ n 1] a2 y[ n 2], (7.10) gdzie: b (1 ) / 2, b 0, b (1 ) / 2, a (1 ), a Wzór (7.10) jest podstawą dla programowej realizacji filtru. Struktura filtru przedstawiona jest na rysunku

6 58 n] b 0 y[n] z 1 z 1 n-1] y[n-1] b 1 a 1 z 1 z 1 n-2] y[n-2] b 2 a 2 Rys 7.2. Struktura filtru o transmitancji (7.9) zrealizowanego na podstawie wzoru (7.10) Parametry filtru dane są następującymi wzorami: częstotliwość maksimum charakterystyki amplitudowej f cos 1 ( ) f / 2, 0 p 1 2 szerokość pasma 3-decybelowego B3dB cos f / 2 2 p, 1 dobroć filtru Q f 0 / B 3 DB [11]. Na listingu 7.1 zamieszczono kod w języku MATLAB projektujący filtr pasmowoprzepustowy o częstotliwości środkowej f 0 = 8 khz, paśmie B 3dB = 500 Hz i następnie prezentujące charakterystyki zaprojektowanego filtru uruchomiający narzędzie Filter Visualization Tool Listing 7.1. Kod projektu filtru pasmowoprzepustowego języku MATLAB fp = 48000; % częstotliwość próbkowania w Hz f0 = 8000; % częstotliwość środkowa filtru w Hz BW = 500; % pasmo 3dB w Hz w0 = f0 / (fp/2); % unormowana częstotliwość środkowa bw = BW / (fp/2); % unormowane pasmo 3dB B = cos(pi*bw); % obliczenie pierwiastka trójmianu delta = *B*B; % B*alfa^2 2*alfa B alfa = (2.0 - sqrt(delta))/(2.0*b); beta = cos(pi*w0);

7 59 b = ((1-alfa)/2)*[1 0-1]; a = [1 -beta*(1alfa) alfa]; fvtool(b, a); % licznik transmistacji filtru BP % mianownik transmitancji filtru BP b1 = ((1alfa)/2)*[1-2*beta 1]; % licznik transmistacji filtru BS a1 = [1 -beta*(1alfa) alfa]; % mianownik transmitancji filtru BS fvtool(b1,a1); % to samo z wykorzystaniem funkcji iirpeak [b,a] = iirpeak(w0, bw); % projekt filtru, b, a wsp. licznika i mian. fvtool(b,a); Rysunek 7.3 przedstawia charakterystykę amplitudową filtru uzyskaną programem MATLAB za pomocą poleceń z listingu 7.1. Rys Charakterystyka amplitudowa filtru pasmowoprzepustowego uzyskana w programie MATLAB listingiem 7.1; f p = 48 khz; f 0 = 8 khz; B 3dB = 500 Hz Kolejny rysunek 7.4 przedstawia pomierzoną charakterystykę filtru (7.9) zrealizowanego na zestawie TMX320C5515 ezdsp; f p = 48 khz; f 0 = 8 khz, B 3dB = 500 Hz.

8 60 Rys Pomierzona charakterystyka amplitudowa filtru pasmowoprzepustowego (7.9); f p = 48 khz; f 0 = 8 khz; B 3dB = 500 Hz Transmitancja pasmowozaporowego filtru drugiego rzędu dana jest wzorem 1 1 2z z 2 1 (1 ) z z 1 2 H BS ( z) 1 2, 1, 1. (7.10) Parametry filtru dane są następującymi wzorami: częstotliwość minimum charakterystyki amplitudowej f cos 1 ( ) f / 2, 0 p 1 2 szerokość pasma 3-decybelowego B3dB cos f / 2 2 p, 1 dobroć filtru Q f 0 / B 3 DB [11]. Do projektowania filtru pasmowozaporowego można wykorzystać kod z listingu 7.1 zamieniając funkcję iirpeak(w0, bw), projektującą filtr pasmowoprzepustowy, na funkcję iirnotch(w0, bw), projektującą filtr pasmowozaporowy.

9 61 Doświadczenie 7.2. Pomiary filtrów pasmowo przepustowych IIR II rzędu, program BPvarF (przestrajana częstotliwość środkowa), program BPvarB3dB (przestrajane pasmo 3DB), program BPvarFxB3dB (częstotliwość środkowa i pasmo wprowadzane z konsoli). 1. Pomierzyć charakterystyki amplitudowe filtrów programem Charakterystyki. 2. Przeprowadzić badania filtrów przy pomocy Filter Visualization Tool obejmujące mapę zer i biegunów oraz charakterystyki częstotliwościowe. 3. Odczytać z charakterystyk częstotliwościowych, pomierzonych i obliczonych programem MATLAB, częstotliwości środkowe i pasmo filtrów, porównać wyniki z wartościami projektowanymi. W sprawozdaniu: 1. Umieścić wykresy pomierzonych charakterystyk częstotliwościowych filtrów i obliczonych przez programem MATLAB. 2. Odczytać z charakterystyk częstotliwościowych, pomierzonych i obliczonych programem MATLAB, częstotliwości środkowe i pasma filtrów, porównać wyniki z wartościami projektowanymi. 3. Ręcznie opisać charakterystyki amplitudowe, zaznaczyć obliczone w punkcie 2 parametry. 4. Opisać związek między położeniem zer i biegunów a charakterystyką amplitudową filtru. Doświadczenie 7.3. Badanie filtru pasmowoprzepustowego i pasmowo zaporowego program BPxBS. 1. Pomierzyć charakterystyki amplitudowe filtrów programem Charakterystyki. 2. Przeprowadzić badania filtrów przy pomocy Filter Visualization Tool obejmujące mapę zer i biegunów i charakterystyki częstotliwościowe.

10 62 3. Odczytać z charakterystyk częstotliwościowych, pomierzonych i obliczonych programem MATLAB, częstotliwości środkowe i pasmo filtrów, porównać wyniki z wartościami projektowanymi. W sprawozdaniu: 1. Umieścić wykresy pomierzonych charakterystyk częstotliwościowych filtrów i obliczonych przez programem MATLAB. 2. Odczytać z charakterystyk częstotliwościowych, pomierzonych i obliczonych programem MATLAB, częstotliwości środkowe i pasma filtrów, porównać wyniki z wartościami projektowanymi. 3. Ręcznie opisać charakterystyki amplitudowe, zaznaczyć obliczone w punkcie 2 parametry. 4. Opisać związek między położeniem zer i biegunów a charakterystyką amplitudową filtru. Filtry grzebieniowe Transmitancja grzebieniowego filtru IIR dana jest wzorem 1 H( z), 0 1. (7.11) D 1z Dla powyższej transmitancji próbki sygnału wyjściowego można obliczać na podstawie wzoru y[ n] y[ n D] (1 ) n], (7.12) będącego podstawą jego programowej realizacji. Struktura filtru przedstawiona jest na rys 7.5; z D oznacza opóźnienie o D próbek.

11 63 n] 1-α y[n] α z D y[n D] Rys 7.5. Struktura filtru o transmitancji (7.11) zrealizowanego na podstawie wzoru (7.12) Polecenia Do badania właściwości filtrów można wykorzystać program MATLAB. alfa=0.8; D=10; fvtool(1-alfa,[1 zeros(1,d-1) -alfa]); uruchomią narzędzie Filter Visualization Tool obliczające numerycznie charakterystyki filtru (7.11) dla D = 10 i α = 0,8 oraz prezentujące wyniki na wykresach [9]. Dla D = 1 filtr o transmitancji (7.11) jest filtrem dolnoprzepustowym, dla D > 1 jest filtrem o wielu maksimach charakterystyki amplitudowej występujących na częstotliwościach fk f pk / D, k = 0, 1,..., D 1. Na rys. 7.6 przedstawiono mapę zer i biegunów filtru dla D = 10 i α = 0,8 uzyskaną przy pomocy programu MATLAB.

12 64 Rys Mapa zer i biegunów filtru o transmitancji (7.5); α = 0,75, D = 10 Rysunek 7.7 przedstawia pomierzone charakterystyki amplitudowe filtrów (7.5) o różnych parametrach α = 0,9 i α = 0,8 oraz wspólnym parametrze D = 10. Rys Pomierzone charakterystyki amplitudowe filtrów (7.11) o α = 0,9 i α = 0,8; D = 10, f p = 48kHz Ze względu na kształt charakterystyki amplitudowej badane filtry są nazywane filtrami grzebieniowymi (ang. Comb filters).

13 65 wzorem Drugim badanym filtrem grzebieniowym jest filtr o transmitancji danej D 1 1 z H( z), 0 1. (7.13) D 2 1z Dla powyższej transmitancji próbki sygnału wyjściowego można obliczać na podstawie wzoru y[ n] ay[ n D] 0.5(1 ) n] n D], (7.14) będącego podstawą jego programowej realizacji. Struktura filtru przedstawiona jest na rysunku 7.8. n] 0.5(1-α) z D z D y[n] n-d] y[n-d] α Rys 7.8. Struktura filtru o transmitancji (7.13) zrealizowanego na podstawie wzoru (7.14) Dla D = 1 filtr o transmitancji (7.13) jest filtrem górnoprzepustowym 1 2 o unormowanej pulsacji granicznej 3dB cos [11], filtr jest często 2 1 wykorzystywany do usuwania składowej stałej sygnału. Dla D > 1 uzyskuje się filtr grzebieniowy o wielu minimach charakterystyki amplitudowej występujących na częstotliwościach f f k D, k = 0, 1,..., D 1. k p / Doświadczenie 7.4. Badanie filtrów grzebieniowych program CombIIRxIIR. 1. Pomierzyć charakterystyki amplitudowe filtrów programem Charakterystyki.

14 66 2. Przeprowadzić badania filtrów przy pomocy Filter Visualization Tool obejmujące mapę zer i biegunów i charakterystyki częstotliwościowe. fvtool((1alfa)/2*[1 zeros(1,d-1) -1],[1 zeros(1,d-1) -alfa]); 3. Odczytać z charakterystyk częstotliwościowych, pomierzonych i obliczonych programem MATLAB, częstotliwości środkowe i pasmo filtrów, porównać wyniki z wartościami projektowanymi. W sprawozdaniu: 1. Umieścić wykresy pomierzonych charakterystyk częstotliwościowych filtrów i obliczonych przez programem MATLAB. 2. Ręcznie opisać charakterystyki amplitudowe, zaznaczyć obliczone częstotliwości maksimów i minimów. 3. Opisać związek między położeniem zer i biegunów a charakterystyką amplitudową filtru.

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

Ćwiczenie - 7. Filtry

Ćwiczenie - 7. Filtry LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Szybkie metody projektowania filtrów aktywnych

Szybkie metody projektowania filtrów aktywnych Szybkie metody projektowania filtrów aktywnych Aby szybko rozpocząć projektowanie układów filtrów aktywnych należy znać: Wartości dostępnych źródeł zasilania: zasilanie plus/minus (symetryczne) czy tylko

Bardziej szczegółowo

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy: POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 2 Temat: Projektowanie i analiza

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr górnoprzepustowy . el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe . el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima 2010 L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis:

Bardziej szczegółowo

Tranzystor bipolarny LABORATORIUM 5 i 6

Tranzystor bipolarny LABORATORIUM 5 i 6 Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

Filtry. Przemysław Barański. 7 października 2012

Filtry. Przemysław Barański. 7 października 2012 Filtry Przemysław Barański 7 października 202 2 Laboratorium Elektronika - dr inż. Przemysław Barański Wymagania. Sprawozdanie powinno zawierać stronę tytułową: nazwa przedmiotu, data, imiona i nazwiska

Bardziej szczegółowo

Filtry cyfrowe procesory sygnałowe

Filtry cyfrowe procesory sygnałowe Filtry cyfrowe procesory sygnałowe Rozwój wirtualnych przyrządów pomiarowych Algorytmy CPS działające na platformie TMX 320C5515e ZDSP USB STICK realizowane w laboratorium FCiPS Rozszerzenie ćwiczeń o

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia:

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia: Technika analogowa Problematyka ćwiczenia: Pomiędzy urządzeniem nadawczym oraz odbiorczym przesyłany jest sygnał użyteczny w paśmie 10Hz 50kHz. W trakcie odbioru sygnału po stronie odbiorczej stwierdzono

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 10

Bardziej szczegółowo

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR

Bardziej szczegółowo

12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego

12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego 94 12. Demodulatory synchroniczne z fazową pętlą sprzężenia zwrotnego Cele ćwiczenia Badanie właściwości pętli fazowej. Badanie układu Costasa do odtwarzania nośnej sygnału AM-SC. Badanie układu Costasa

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW, SYSTEMÓW I MODULACJI. Filtracja cyfrowa. v.1.0

STUDIA MAGISTERSKIE DZIENNE LABORATORIUM SYGNAŁÓW, SYSTEMÓW I MODULACJI. Filtracja cyfrowa. v.1.0 Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji SUDIA MAGISERSKIE DZIENNE LABORAORIUM SYGNAŁÓW, SYSEMÓW I MODULACJI Filtracja cyfrowa v.1. Opracowanie: dr inż. Wojciech Kazubski,

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji)

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji) WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH (komputerowe metody symulacji) Zagadnienia: Filtr bierny, filtry selektywne LC, charakterystyka amplitudowo-częstotliwościowa, fazowo-częstotliwościowa, przebiegi

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

, , ,

, , , Filtry scalone czasu ciągłego laboratorium Organizacja laboratorium W czasie laboratorium należy wykonać 5 ćwiczeń symulacyjnych z użyciem symulatora PSPICE a wyniki symulacji należy przesłać prowadzącemu

Bardziej szczegółowo

FILTRY AKTYWNE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego

FILTRY AKTYWNE. Politechnika Wrocławska. Instytut Telekomunikacji, Teleinformatyki i Akustyki. Instrukcja do ćwiczenia laboratoryjnego Politechnika Wrocławska Instytut Telekomunikacji, Teleinormatyki i Akustyki Zakład Układów Elektronicznych Instrukcja do ćwiczenia laboratoryjnego FILTY AKTYWNE . el ćwiczenia elem ćwiczenia jest praktyczne

Bardziej szczegółowo

Ćwiczenie F3. Filtry aktywne

Ćwiczenie F3. Filtry aktywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ 1 Ćwiczenie F3 Filtry aktywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:

Bardziej szczegółowo

Filtry elektroniczne sygnałów ciągłych - cz.1

Filtry elektroniczne sygnałów ciągłych - cz.1 Filtry elektroniczne sygnałów ciągłych - cz.1 Wprowadzenie Podstawowe pojęcia Klasyfikacje, charakterystyki częstotliwościowe filtrów Właściwości filtrów w dziedzinie czasu Realizacje elektroniczne filtrów

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

POŁÓWKOWO-PASMOWE FILTRY CYFROWE

POŁÓWKOWO-PASMOWE FILTRY CYFROWE Krzysztof Sozański POŁÓWKOWOPASMOWE FILTRY CYFROWE W pracy przedstawiono połówkowopasmowe filtry cyfrowe. Opisano dwa typy filtrów: pierwszy z zastosowaniem filtrów typu FIR oraz drugi typu IIR. Filtry

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

13.2. Filtry cyfrowe

13.2. Filtry cyfrowe Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo

Bardziej szczegółowo

OPROGRAMOWANIE WSPOMAGAJĄCE PROJEKTOWANIE FILTRÓW CYFROWYCH

OPROGRAMOWANIE WSPOMAGAJĄCE PROJEKTOWANIE FILTRÓW CYFROWYCH Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 22 XVI Seminarium ZASTOSOWANIE KOMPUTERÓW W NAUCE I TECHNICE 2006 Oddział Gdański PTETiS Referat nr 21 OPROGRAMOWANIE WSPOMAGAJĄCE

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04

PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04 PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 6 BADANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH FILTRÓW AKTYWNYCH. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Detekcja zespołów QRS w sygnale elektrokardiograficznym

Detekcja zespołów QRS w sygnale elektrokardiograficznym Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych

2. Arytmetyka procesorów 16-bitowych stałoprzecinkowych 4. Arytmetyka procesorów 16-bitowych stałoprzecinkowych Liczby stałoprzecinkowe Podstawowym zastosowaniem procesora sygnałowego jest przetwarzanie, w czasie rzeczywistym, ciągu próbek wejściowych w ciąg

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

A-4. Filtry aktywne RC

A-4. Filtry aktywne RC A-4. A-4. wersja 4 4. Wstęp Filtry aktywne II rzędu RC to układy liniowe, stacjonarne realizowane za pomocą elementu aktywnego jakim jest wzmacniacz, na który załoŝono sprzęŝenie zwrotne zbudowane z elementów

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Wykład 2 Projektowanie cyfrowych układów elektronicznych

Wykład 2 Projektowanie cyfrowych układów elektronicznych Wykład 2 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Sztuka Elektroniki - P. Horowitz, W.Hill kłady półprzewodnikowe.tietze,

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska

Bardziej szczegółowo

Ćwiczenie F1. Filtry Pasywne

Ćwiczenie F1. Filtry Pasywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.

Bardziej szczegółowo

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień

Laboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień Laboratorium Inżynierii akustycznej Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień STRONA 1 Wstęp teoretyczny: LABORATORIUM NR1 Przetwarzanie sygnału dźwiękowego wiąże

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje

Bardziej szczegółowo

Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone

Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone Filtry bierne typu k i m... Z A Z + Z 4Z A Z Z + 4 Z Z Z Z Z ZT ZZ + Z + 4Z Filtry spełniające warunek filtrów typu k: 4 Z Z Z T Z Z Z k Można wykazać, że

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek

Bardziej szczegółowo

Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW

Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW SYMULACJA UKŁADÓW ELEKTRONICZNYCH Z ZASTOSOWANIEM PROGRAMU SPICE Opracował dr inż. Michał Szermer Łódź, dn. 03.01.2017 r. ~ 2 ~ Spis treści Spis treści 3

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

Imię.. Nazwisko Nr Indeksu...

Imię.. Nazwisko Nr Indeksu... (V) (V) (V) (V) Układy elektroniczne 2 Zestaw pytań przykładowych Łódź 213 1) Podaj różnicę pomiędzy szumem a zniekształceniem. 2) Podaj różnicę pomiędzy szumem a zakłóceniem. 3) Dlaczego sprawność wzmacniacza

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 5 BADANIE STABILNOŚCI UKŁADÓW ZE SPRZĘŻENIEM ZWROTNYM 1. Cel ćwiczenia Celem ćwiczenia jest ugruntowanie

Bardziej szczegółowo

1 Układy wzmacniaczy operacyjnych

1 Układy wzmacniaczy operacyjnych 1 Układy wzmacniaczy operacyjnych Wzmacniacz operacyjny jest elementarnym układem przetwarzającym sygnały analogowe. Stanowi blok funkcjonalny powszechnie stosowany w układach wstępnego przetwarzania i

Bardziej szczegółowo

Imię.. Nazwisko Nr Indeksu...

Imię.. Nazwisko Nr Indeksu... 1) Podaj różnicę pomiędzy szumem a zniekształceniem. 2) Podaj różnicę pomiędzy szumem a zakłóceniem. 3) Dlaczego sprawność wzmacniacza mocy jest istotna? 4) Podaj warunki jakie musi spełniać wzmacniacz

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Autorzy: Karol Kropidłowski Jan Szajdziński Michał Bujacz 1. Cel ćwiczenia 1. Cel laboratorium: Zapoznanie się i przebadanie podstawowych

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Zastosowania liniowe wzmacniaczy operacyjnych

Zastosowania liniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Temat: Wzmacniacze selektywne

Temat: Wzmacniacze selektywne Temat: Wzmacniacze selektywne. Wzmacniacz selektywny to układy, których zadaniem jest wzmacnianie sygnałów o częstotliwości zawartej w wąskim paśmie wokół pewnej częstotliwości środkowej f. Sygnały o częstotliwości

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa. MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Analiza widmowa Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

Generowanie sygnałów na DSP

Generowanie sygnałów na DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą

Bardziej szczegółowo