(i) Zwykªe dodawanie, odejmowanie, dzielenie i mno»enie w zbiorze A = { 1, 0, 1}.

Wielkość: px
Rozpocząć pokaz od strony:

Download "(i) Zwykªe dodawanie, odejmowanie, dzielenie i mno»enie w zbiorze A = { 1, 0, 1}."

Transkrypt

1 Rudymenty algebry abstrakcyjnej. Algebry Boole'a. Wspóªczesne uj cie poj cia analogii proporcjonalno±ci - poj cie (homo)izomorfizmu. Syntetyczno± twierdze«matematyki w uj ciu Kanta Cz ± poj wprowadzonych na tej li±cie znacz co przekracza tradycyjny program wykªadu z logiki. Po co jednak s one wprowadzane? Otó» cho by poj cie izomorzmu (i jego odmiany) pojawiaj si w wielu argumentacjach dwudziestowiecznej (i nie tylko) lozoi (np. w Epistemologii Wole«skiego izomorzm pojawia si co najmniej kilkana±cie razy), aby wypeªni pust intencj przez naoczno± i nie ±lizga si po tych poj ciach prze wiczymy ich elemetarne wersje. Z tych te» powodów caªo± punktów z tej listy nie b dzie wliczana w ogólny rozrachunek innymi sªowy rozwi zuj c zadania z tej listy korzystamy wiele, a nie rozwi zuj c nie tracimy nic. Zadanie 1. Sprawd¹ czy podane operacje s dziaªaniami w zbiorze A: (i) Zwykªe dodawanie, odejmowanie, dzielenie i mno»enie w zbiorze A = { 1, 0, 1}. (ii) Zwykªe dodawanie, odejmowanie, dzielenie i mno»enie w zbiorze A = N. (iii) Zwykªe dodawanie, odejmowanie, dzielenie i mno»enie w zbiorze A = Z. (iv) (v) Niech n N +. Przyporz dkowanie liczbie naturalnej jej reszty z dzielenia przez n w A = N, a je±li A = Z? Reszt z dzielenia liczby caªkowitej m przez n oznaczamy mmodn. Oczywi±cie mmodn {0, 1, 2,..., n 1}. Dziaªania + n i n w A = {1, 2, 3,..., n 1} zdeniowane nast puj co: a + n b = (a + b)modn, a n b = (a b)modn (vi) ažb = ab + a + b 7 w zbiorze A = Q, a w zbiorze A = R? (vii) Operacja ž okre±lona w nast puj cy sposób 0ž0 = 0, 0ž1 = 0, 1ž0 = 0, 1ž1 = 1 w zbiorze A = {0, 1}. (viii) Niech B b dzie dowolnym zbiorem.,, \, w zbiorze A = P(B). Zadanie 2. Narysuj tabelk dziaªa«+ 4 i 4 w zbiorze {0, 1, 2, 3}. Czy s one ª czne i przemienne? Czy 4 jest rozdzielne wzgl dem + 4? Zadanie 3. W zbiorze liczb caªkowitych poda przykªady: (i) (ii) podzbioru zamkni tego wzgl dem dodawania, który nie jest zamkni ty wzgl dem mno»enia, podzbioru zamkni tego wzgl dem mno»enia, który nie jest zamkni ty wzgl dem dodawania. Zadanie 4. Czy podane dziaªania w odpowiednich zbiorach s ª czne, przemienne, idempotentne oraz czy istnieje element neutralny? Wyznaczy te elementy podanego zbioru, dla których istnieje element odwrotny i wyrazi element odwrotny do a (o ile istnieje) przez a. (i) ažb = a b w zbiorze N + ; Lista 6 (lista dodatkowa) 1

2 (ii) a b = a+b 2 w zbiorze Q ; (iii) a b = a + b + 1 w zbiorze R; (iv) a b = ab + a + b w zbiorze R; (v) a b = ab a+b w zbiorze R; Zadanie 5. Dziaªanie w zbiorze A = {p, g, r, s, t} zadane jest tabelk : p q r s t p p q r s t q q p t p p r r s t r s s s q s t p t t p q p p Wskaza elementy odwrotne (o ile istniej ) do elementów zbioru A. Zadanie 6. Zbiór G, w którym okre±lone jest dziaªanie ž, nazywamy grup, je±li speªnione s nast puj ce warunki: 1. dziaªanie ž jest ª czne; 2. w G istnieje element neutralny wzgl dem dziaªania ž; 3. dla ka»dego g G istnieje w G element odwrotny do g wzgl dem dziaªania ž. Warunki (1)-(3) nazywamy aksjomatami teorii grup. Sprawd¹ czy podany system algebraiczny A jest grup : (i) A = N, +, A = Z, + ; (ii) A = Z,, A = Q, ; (iii) A = R\{0},, A = Q +, ; (iv) (v) A = Z n, + n gdzie Z n = {0,..., n 1} oraz n N +, A = Z p, p, gdzie p jest liczb pierwsz. A = P(X),, gdzie X jest dowolnym zbiorem. Zadanie 7. Wyka»,»e dla dowolnego zbioru system algebraiczny zªo»ony ze zbioru pot gowego oraz dziaªa«: sumy, iloczynu i dopeªnienia mnogo±ciowego jest algebr Boole'a. Podobnie, udowodnij,»e system algebraiczny, którego uniwersum skªada si z 0 i 1, na którym okre±lone s dziaªania koniunkcji, alternatywy i negacji jest (dwuelementow ) algebr Boole'a. Co jest zerem a co jedynk tych algebr? Zadanie 8. Sprawdzi,»e podane funkcje f s izomorzmami systemów A i B. (Wªa±nie w takim sensie mo»emy ±ci±le wypowiedzie my±l,»e s one analogiczne). (i) A = (R, +), B = (R +, ) oraz f(x) = 2 x ; (ii) A = (P(X),, ), B = (P(X),, ) oraz f(a) = A ; Lista 6 (lista dodatkowa) 2

3 (iii) A = (R,, ), B + (R,, ) oraz f(a) = a, gdzie a b = max(a, b), a b = min(a, b); (iv) Podaj tak funkcj f, która jest izomorzmem A w A. Zadanie 9. Jakie systemy algebraiczne nazywamy pier±cieniami, a jakie ciaªami? Podaj ich denicj (tzn. aksjomatyk teorii pier±cieni i teorii ciaª), i dwa przykªady pier±cienia i dwa przykªady ciaªa (razem 4 ró»ne przykªady). Zadanie 10. Na gruncie dost pnej wiedzy z algebry abstrakcyjnej skomentuj twierdzenie Kanta: S dy matematyczne s s dami syntetycznymi a priori. Jak mo»na uzasadni syntetyczno± twierdze«matematyki u»ywaj c rydymentów algebry? Oto dokªadne wysªowienie Kanta z Krytyki czystego rozumu: S dy matematyczne s wszystkie syntetyczne. (... ) Przede wszystkim trzeba zauwa»y : wªa±ciwe twierdzenia matematyczne s zawsze s dami a priori, a nie s dami empirycznymi, gdy» odznaczaj si konieczno±ci, której nie mo»na zaczerpn z do±wiadczenia. (... ) Mo»na by pocz tkowo my±le,»e twierdzenie, i» = 12, jest zdaniem czysto analitycznym, wynikaj cym na mocy zasady sprzeczno±ci z poj cia sumy siedmiu i pi ciu. Jednak»e rozpatrzywszy spraw bli»ej znajdujemy,»e poj cie sumy siedmiu i pi ciu nie zawiera w sobie niczego wi cej, jak poª czenie obu liczb w jedn, przez co wcale nie my±limy, jak jest owa jedna liczba, która je obie w sobie ª czy. Poj cie liczby dwana±cie nie jest jeszcze wcale samo przez to pomy±lane,»e my±l sobie jedynie owo poª czenie siedmiu i pi ciu. I mog sobie poj cie takiej mo»liwej sumy do woli analizowa, a mimo to nie znajd w nim liczby dwana±cie. Trzeba wyj± poza te poj cia, bior c sobie do pomocy dane unaocznione, które jednemu z nich odpowiadaj, np. swoje pi palców (... ) To,»e liczba 5 miaªa by dodana do 7, pomy±laªem wprawdzie w poj ciu = 7 + 5, ale nie to,»e ta suma równa si 12. Twierdzenie arytmetyczne jest wi c zawsze syntetyczne, a u±wiadamiamy sobie to tym wyra¹niej, im nieco wi ksze liczby bierzemy, poniewa» wówczas staje si jasne,»e cho by±my nasze poj cia do woli obracali na wszystkie strony, nigdy nie mogliby±my znale¹ sumy przy pomocy samej analizy naszych poj, bez uciekania si do pomocy naoczno±ci 1. 1 I. Kant, Krytyka czystego rozumu, ANTYK, K ty 2001, s Lista 6 (lista dodatkowa) 3

4 Podstawowe definicje. Dodatek C Definicja 1 (Dziaªanie n-argumentowe) Niech n N +. Dziaªaniem n-argumentowym okre±lonym w niepustym zbiorze A nazywamy dowoln funkcj f : A n A. Definicja 2 (System algebraiczny) Dowolny niepusty zbiór A z wyró»nionym ukªadem dziaªa«n-argumentowych (liczby argumentów odpowiadaj ce ró»nym dziaªaniom mog by ró»ne) okre±lonych w A oraz wyró»nionym ukªadem elemntów zbioru A nazywamy systemem algebraicznym b d¹ po prostu algebr. Notacja: A, (f i ) i I, (a t ) t T. Gdzie I, T s dowolnymi zbiorami indeksów, f i jest dowolnie argumentowym dziaªaniem w A dla ka»dego i, a t A dla ka»dego t. Definicja 3 (Wªasno±ci dziaªa«dwuargumentowych) Niech * b dzie dziaªaniem dwuargumentowym okre±lonym w zbiorze A. Mówimy,»e dzia- ªanie to jest: ˆ idempotentne, je±li a a = a dla ka»dego a A, ˆ ª czne, je±li a (b c) = (a b) c dla dowolnych a, b, c A, ˆ przemienne, je±li a b = b a dla dowolnych a, b A. Je±li jest równie» dwuargumentowym dziaªaniem w zbiorze A, to dziaªanie * nazywamy : ˆ obustronnie rozdzielnym wzgl dem, gdy a (b c) = (a b) (a c) oraz (b c) a = (b a) (c a). Definicja 4 (Element neutralny, element odwrotny ) b dzie dziaªaniem okre±lonym w zbiorze A oraz a, b A. Niech ž ˆ Mówimy,»e e jest elementem neutralnym dziaªania ž je±li aže = eža = a dla wszystkich a A. ˆ Je±li e jest elementem neutralnym dziaªania ž, to mówimy,»e b jest elementem odwrotnym do a wzgl dem dziaªania ž, je±li ažb = bža = e. Definicja 5 (Algebra Boole'a) System algebraiczny A = A,,,, 0, 1 nazywamy algebr Boole'a, je±li speªnione s nast puj ce wªasno±ci: 1. dziaªania, s idempotentne, przemienne i ª czne; 2. jest rozdzielne wzgl dem ; 3. x (x y) = x, x (x y) = x; 4. x 1 = x, x x = 0, x 0 = x, x x = 1. Definicja 6 (Homomorfizm) Niech A = A, (f i ) i I, (c j ) j J oraz B = B, (g i ) i I, (d j ) j J b d systemami algebraicznymi, gdzie odpowiednie dziaªania maj t sam arno±. Homomorzmem z A do B nazywamy funkcj F : A B tak,»e dla ka»dego i I oraz a 1,..., a mi A, gdzie m i jest liczb argumentów i-tej funkcji, mamy: Lista 6 (lista dodatkowa) 4

5 oraz dla ka»dego j J mamy: F (f i (a 1,..., a mi )) = g i (F (a 1 ),..., F (a mi )) F (c j ) = d j W przypadku, gdy A = A, +,, c oraz B = B,,, d homomorzmem z A w B nazywamy funkcj F : A B tak,»e dla a, b, c A oraz d B: oraz F (a + b) = F (a) F (b) F (a b) = F (a) F (b) F (c) = d Je±li istnieje homomorzm z A do B to mówimy,»e s one homomorczne. Podobnie w przypadku endo- mono- i izomorzmu. Jak widzimy, dziaªania jednego systemu przenosz si homomorcznie na dzia- ªania drugiego, oraz obrazem elementów wyró»nionych pierwszego systemu s odpowiednio elementy wyró»nione drugiego systemu. Te okoliczno±ci pozwalaj dopatrywa si zbie»no±ci z lozocznym poj ciem analogii proporcjonalno±ci. Poznali±my jednak tylko uj cie algebraiczne wspóªczesnego odpowiednika poj cia analogii, s te» inne, jak np. (chyba najogólniejsze) w matematycznej teorii kategorii poj cie morzmu oraz o czym warto wspomnie poj cie homeomorzmu w topologii. Platon nie wpuszczaª do Akademii osobników nieznaj cych geometrii nie bez powodu, otó» wskazuje si,»e geneza lozocznego poj cia istoty ma swe ¹ródªo w geometrii. Wspóªczesn wersj, niejako uogólnieniem, geometrii jest analysis situs, czyli topologia. Oddajmy w tej sprawie gªos Kazimierzowi Kuratowskiemu: Topologia jest to nauka o tych wªasno±ciach tworów geometrycznych, które nie ulegaj zmianie, gdy twory te poddajemy przeksztaªceniom ró»nowarto±ciowym i obustronnie ci gªym, czyli homeomor- zmom. (... ) Wªasno±ci takie nazywamy niezmiennikami topologicznymi. Na przykªad wªasno± okr gu polegaj ca na tym,»e rozcina on pªaszczyzn na dwa obszary, jest niezmiennikiem topologicznym; je±li okr g przeksztaªcimy w elips czy w obwód trójk ta, wªasno± ta zostanie zachowana. Natomiast posiadanie stycznej w ka»dym punkcie nie jest wªasno±ci topologiczn ; posiada j okr g, nie posiada za± obwód trójk ta, cho powstaje on z okr gu przez przeksztaªcenie ró»nowarto±ciowe i obustronnie ci gªe. 2 Homeomorzm oraz inne poj cia topologiczne (np. otoczenie, brzeg, g sto±, ró»ne wersje spójno±ci, zwarto±, ograniczono±, metryka) s wykorzystywane we wspóªczesnej metazyce (na wzór Scholastyków i Husserla). W tej sprawie wystarczy przestudiowa pisma np. Barry'ego Smith'a 3 z Uniwersytetu w Bualo w Stanie NY lub ±p. Jerzego Perzanowskiego 4. 2 Kuratowski K., Wst p do teorii mnogo±ci i topologii, PWN, Warszawa 1972, s Perzanowski J., Ontologie i ontologiki oraz Byt [w:] Studia lozoczne, nr 6-7, Warszawa 1988, i wiele innych prac. Lista 6 (lista dodatkowa) 5

6 Definicja 7 (Izomorfizm, monomorfizm, endomorfizm) Homomorzm nazywamy monorzmem, je±li jest 1 1, endomorzmem je±li jest na oraz izmorzmem je±li jest 1 1 i na. Je±li dwa systemy algebraiczne A i B s izomorczne, to piszemy A = B. Šatwo zauwa»y,»e bycie izomorcznym = jest zwrotne, symetryczne i przechodnie. Definicja 8 (Funkcja, dziedzina i obraz funkcji) Niech X i Y b d zbiorami. Funkcj ze zbioru X w zbiór Y (f : X Y ) nazywamy dowolny podzbiór iloczynu kartezja«kiego X i Y (f X Y ) taki,»e: 1. ( x X)( y Y )( x, y f) 2. ( x X)( y 1, y 2 Y )( x, y 1 f x, y 2 f y 1 = y 2 ) Dziedzina funkcji dom(f) = X oraz obraz funkcji rng(f) = {y Y : ( x X) x, y f} Dla przypomnienia: funkcj f : A B nazywamy ró»nowarto±ciow, (inaczej: 1 1, wzajemnie jednoznaczn czy injekcj ) wtedy, gdy dla ró»nych argumentów przyjmuje ró»ne warto±ci, tzn. ( a, b A)(a b f(a) f(b)). Funkcj f : A B za± nazywamy na (surjekcj ), gdy caªy zbiór B jest zbiorem warto±ci f, tzn. ( b B)( a A)(f(a) = b). Je±li funkcja jest surjekcj i injekcj, to mówimy wówczas,»e jest bijekcj. Definicja 8 jest ju» drug denicj funkcji, któr podajemy (pierwsza byªa w dodaku B), pomimo,»e ró»ni si te denicje w wysªowieniu (oraz, co za tym idzie, podkre±laj inny aspekt funkcji) s one jednak równowa»ne. Lista 6 (lista dodatkowa) 6

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Jan Rodziewicz-Bielewicz, Wydziaª Informatyki ZUT May 8, 2019 8 Struktury algebraiczne ZASTOSOWANIE: Kryptograa. 1. Sprawdzi, czy jest dziaªaniem wewn trznym: (a) y y w zbiorze Q,

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Matematyczne podstawy kognitywistyki

Matematyczne podstawy kognitywistyki Matematyczne podstawy kognitywistyki Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM pogon@amu.edu.pl Struktury algebraiczne Jerzy Pogonowski (MEG) Matematyczne podstawy kognitywistyki Struktury algebraiczne

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2 Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu) Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,

Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B, Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0

Bardziej szczegółowo

Algebra Boole'a i logika cyfrowa

Algebra Boole'a i logika cyfrowa Algebra Boole'a i logika cyfrowa 7.X. 2009 1 Aksjomatyczna denicja algebry Boole'a Do opisywanie ukªadów cyfrowych b dziemy u»ywali formalizmu nazywanego algebr Boole'a. Formalnie algebra Boole'a to struktura

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

GRUPA PODSTAWOWA I X. GRZEGORZ ZBOROWSKI

GRUPA PODSTAWOWA I X. GRZEGORZ ZBOROWSKI GRUPA PODSTAWOWA GRZEGORZ ZBOROWSKI 1. Definicja i podstawowe poj cia Pierwszym krokiem do zdeniowania grupy podstawowej b dzie poj cie drogi w przestrzeni topologicznej, czyli mówi c nie±ci±le, krzywej

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Freyd, Abelian Categories

Freyd, Abelian Categories Algebra 2, zadania na wiczenia, seria II Króti wst p do ategorii i funtorów. W tej serii jest du»o zada«ale s (z reguªy) ªatwe lub bardzo ªatwe. Najpierw denicje, tóre zapewne Pa«stwo znaj lub pozna ªatwo

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

1 Otwarto± i domkni to±

1 Otwarto± i domkni to± Topologia 1 1 Otwarto± i domkni to± (X, O) przestrze«topologiczna rodzina zbiorów otwartych O 2 X speªnia (i), X O, (ii) U 1, U 2 O U 1 U 2 O, (iii) ( j J U j O ) j J U j O. X D zbiór domkni ty X \ D O;

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

Wykªad 12. Transformata Laplace'a i metoda operatorowa

Wykªad 12. Transformata Laplace'a i metoda operatorowa Wykªad 2. Tranformata Laplace'a i metoda operatorowa Tranformata Laplace'a Dla odpowiednio okre±lonej klay funkcji zdeniujemy operator L, nazywany tranformat Laplace'a, okre±lony wzorem L[ f ]() = f(t)e

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

Rachunek zda«. Relacje. 2018/2019

Rachunek zda«. Relacje. 2018/2019 Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.

Bardziej szczegółowo

Ÿ1 Oznaczenia, poj cia wst pne

Ÿ1 Oznaczenia, poj cia wst pne Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Twierdzenie 1 (Hindmana). Ustalmy dowolne kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów. Wtedy istnieje zbiór niesko«- czony A

Twierdzenie 1 (Hindmana). Ustalmy dowolne kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów. Wtedy istnieje zbiór niesko«- czony A Twierdzenie 1 (Hindmana). Ustalmy dowolne kolorowanie zbioru liczb naturalnych na sko«czenie wiele kolorów. Wtedy istnieje zbiór niesko«- czony A taki»e wszystkie sko«czone sumy jego (ró»nych) elementów

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów wiczenia

Podstawy logiki i teorii zbiorów wiczenia Spis tre±ci 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Ró»nica symetryczna 4 5 Kwantykatory 5 6 Relacje 7 7 Relacje porz dku i równowa»no±ci 8 8 Funkcje

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Przetwarzanie sygnaªów

Przetwarzanie sygnaªów Przetwarzanie sygnaªów Laboratorium 1 - wst p do C# Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 17 Czego mo»na oczekiwa wzgl dem programowania w C# na tych laboratoriach? Dawid Poªap Przetwarzanie

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

Wyra»enia logicznie równowa»ne

Wyra»enia logicznie równowa»ne Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia

Bardziej szczegółowo

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie 2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

Logika matematyczna (16) (JiNoI I)

Logika matematyczna (16) (JiNoI I) Logika matematyczna (16) (JiNoI I) Jerzy Pogonowski Zakªad Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 15/16 lutego 2007 Jerzy Pogonowski (MEG) Logika matematyczna (16) (JiNoI I) 15/16

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Model obiektu w JavaScript

Model obiektu w JavaScript 16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego

Bardziej szczegółowo

Notatki do wykªadu Algebra

Notatki do wykªadu Algebra Notatki do wykªadu Algebra (semestr letni 10/11) Emanuel Kiero«ski 1 Grupy, pier±cienie i ciaªa 1.1 Struktury algebraiczne Denicja 1 A = (A, f 1, f 2,...) zbiór A wraz ze zdeniowanymi na nim dziaªaniami

Bardziej szczegółowo

Algebroidy i grupoidy Liego i wspóªczesna teoria Liego

Algebroidy i grupoidy Liego i wspóªczesna teoria Liego Algebroidy i grupoidy Liego i wspóªczesna teoria Liego Wykªad habilitacyjny Andriy Panasyuk Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski oraz Instytut Matematyczny PAN Wst p: Grupy symetrii

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Schematy i reguªy wnioskowania w logice rozmytej

Schematy i reguªy wnioskowania w logice rozmytej Wybrane schematy i reguªy wnioskowania w logice rozmytej Uniwersytet l ski Letnia Szkoªa Instytutu Matematyki, Brenna, 24-28 wrze±nia 2018 w logice klasycznej Sylogizm hipotetyczny (A B) (B C) A C w logice

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo